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Abstract.—Under the multispecies coalescent model of molecular evolution, gene trees have independent evolutionary
histories within a shared species tree. In comparison, supermatrix concatenation methods assume that gene trees share a
single common genealogical history, thereby equating gene coalescence with species divergence. The multispecies coalescent
is supported by previous studies which found that its predicted distributions fit empirical data, and that concatenation is not
a consistent estimator of the species tree. *BEAST, a fully Bayesian implementation of the multispecies coalescent, is popular
but computationally intensive, so the increasing size of phylogenetic data sets is both a computational challenge and an
opportunity for better systematics. Using simulation studies, we characterize the scaling behavior of *BEAST, and enable
quantitative prediction of the impact increasing the number of loci has on both computational performance and statistical
accuracy. Follow-up simulations over a wide range of parameters show that the statistical performance of *BEAST relative to
concatenation improves both as branch length is reduced and as the number of loci is increased. Finally, using simulations
based on estimated parameters from two phylogenomic data sets, we compare the performance of a range of species tree and
concatenation methods to show that using *BEAST with tens of loci can be preferable to using concatenation with thousands
of loci. Our results provide insight into the practicalities of Bayesian species tree estimation, the number of loci required
to obtain a given level of accuracy and the situations in which supermatrix or summary methods will be outperformed
by the fully Bayesian multispecies coalescent. [Bayesian phylogenetics, Concatenation, Gene tree, Multispecies coalescent,
Phylogenomics, Species tree, Supermatrix].

INTRODUCTION

In recent years, a number of new techniques have
applied next-generation sequencing to phylogenetics
and phylogeography (McCormack et al. 2013). These
new methods include target enrichment strategies
(Mamanova et al. 2010) like exon capture (Bi et al.
2012), anchored phylogenomics (Lemmon et al. 2012),
and ultra-conserved elements (Faircloth et al. 2012),
as well as RAD sequencing (Baird et al. 2008; Davey
et al. 2011). As a result, genome-wide samples of large
numbers of loci from multiple individuals and multiple
species have become increasingly common. This trend is
rapidly shifting the modus operandi of systematic biology
from phylogenetics to phylogenomics. This move to
phylogenomics has also heralded a rapid development
and uptake of species tree inference methods that
acknowledge and model the discordance among
individual gene trees. As with the field of phylogenetics,
there is a broad acceptance that probabilistic model-
based methods are preferable; however, the amount
of data produced by next-generation technologies has
also spurred the development of faster methods that do
not utilize all the available data and employ statistical
shortcuts such as admitting no uncertainty in individual
gene trees (Kubatko et al. 2009; Liu et al. 2009).

Bayesian Species Tree Estimation
The theory of incomplete lineage sorting and

its implications for phylogenetic inference has been
appreciated for some time (Pamilo and Nei 1988), and

early approaches to applying this theory inferred the
species tree that minimizes deep coalescences using gene
tree parsimony (Maddison 1997; Page and Charleston
1997; Slowinski and Page 1999). The fully probabilistic
application of the theory to molecular sequence analysis
has only begun more recently with the introduction of
Bayesian implementations of the multispecies coalescent
(Rannala and Yang 2003; Edwards et al. 2007; Liu 2008;
Liu et al. 2008; Heled and Drummond 2010). This model
embeds gene trees within a birth–death or pure Yule
species tree, and within each lineage (or branch) of
the species tree, gene trees are assumed to follow a
coalescent process (Heled and Drummond 2010). Prior
to the development of these methods, it was necessary to
assume that the history of each gene is shared and equal
to the history of the species tree being studied.

However, gene trees evolve within a species tree
and the approximation of equating them becomes
increasingly problematic as one samples more loci, when
in reality each have distinct gene tree topologies and
divergence times. The multispecies coalescent brings
together coalescent and birth–death models of time-
trees into a single model. It describes the probability
distribution of one or more gene trees that are nested
inside a species tree. The species tree describes the
relationship between the sampled species, or sometimes,
sampled populations that have been separated for long
periods of time relative to their population sizes. In the
latter case it may be referred to as a population tree instead.

The initial implementations of the multispecies
coalescent made very simple assumptions including no
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recombination within each locus and free recombination
between loci. Although these simple assumptions can
be robust to violation, including some forms of gene
flow (Heled et al. 2013) (but see Leaché et al. 2014),
researchers have begun to acknowledge that additional
processes (such as hybridization) may need to be
incorporated (Joly et al. 2009; Kubatko 2009; Chung
and Ané 2011; Yu et al. 2011; Camargo et al. 2012).
A number of simulation studies have also looked at
various facets of performance of Bayesian species tree
estimation including the influence of missing data
(Wiens and Morrill 2011), the influence of low rates
and rate variation among loci (Lanier et al. 2014)
and comparisons of performance with “supermatrix”
concatenation approaches (DeGiorgio and Degnan 2010;
Larget et al. 2010; Leaché and Rannala 2011; Bayzid and
Warnow 2013).

Although these modeling advances are exciting, in
the face of a next-generation data deluge, this study
asks and answers the following, heretofore unanswered
questions: (i) How do fully Bayesian multispecies
coalescent methods scale to data sets of hundreds of
loci? (ii) How much more accurate will phylogenetic
species tree estimates be with more sequence data?
(iii) When should one use a multispecies coalescent
approach instead of computationally more efficient
Bayesian supermatrix approaches, or summary methods
which do not use all available data? To address the
first of these questions, we investigate the computational
performance of the *BEAST implementation of the
multispecies coalescent (Heled and Drummond 2010), so
as to assess the feasibility of conducting phylogenomic
analyses using existing computational tools. To shed
light on the second question, we investigate how
estimation accuracy improves with increasing loci.

To address the final question, we investigate how
the statistical accuracy of the multispecies coalescent
compares with concatenation across a broad range of
conditions. We also investigate the statistical accuracy of
the multispecies coalescent, supermatrix and summary
methods using simulations based on two published
sequence data sets; RAD tag sequences from a study
of the Sino-Himalayan plant clade Cyathophora (Eaton
and Ree 2013), and RNA-seq assemblies from a study
of primates (Perry et al. 2012). Cyathophora, a section of
the genus Pedicularis originating in the late Miocene or
the Pliocene, is probably no older than 8 Ma (Yang and
Wang 2007) and is therefore a shallow study system. In
contrast, primates are a deep study system, as the oldest
split in this order is estimated to have occurred in the
Cretaceous around 80 Ma (Tavaré et al. 2002; Steiper and
Young 2006; Wilkinson et al. 2011).

METHODS

Using simulation, we investigated the trends in
computational performance and statistical accuracy of
the multispecies coalescent model as implemented
in BEAST 2 (*BEAST), and its statistical accuracy
relative to other methods of species tree inference. In

designing these simulation studies there were a number
of parameters to consider. The key parameters that
might determine performance of inference under the
multispecies coalescent are as follows:

n : The number of species.

ni : The number of individuals sampled per species.

nl : The number of independent loci.

ns : The number of sites in a single locus.

Ne: The effective population sizes of extant and
ancestral species.

� : The branch lengths in units of time or expected
substitutions.

Another factor which may influence *BEAST
performance is whether the molecular evolution of
each locus has been more or less clock-like. Of all these
parameters it is the number of loci nl, the number of sites
in a single locus ns, and the number of individuals per
species ni that are largely determined by experimental
design. In addition, a complete specification of a
multispecies coalescent model requires a speciation
model (parameterized model of the species tree), a
substitution model (model of the relative rates and base
frequencies), and a clock model describing the absolute
rate of evolution across the branches of each gene tree.
In the following sections we describe the choices of
parameters, models, and simulation conditions for our
computational experiments.

Species and gene trees for all experiments were
simulated using biopy (http://www.cs.auckland.ac.
nz/∼yhel002/biopy/, last accessed December 25, 2015),
which simulates gene trees contained within species
trees according to the multispecies coalescent process.
Sequence alignments were also simulated using biopy
for experiments 1 and 2, and Seq-Gen (Rambaut and
Grass 1997) was used to simulate nucleotide alignments
for experiment 3.

Experiment 1: Performance of *BEAST with Increasing
Numbers of Loci

The first set of simulations we performed was
primarily aimed at understanding the effect that
increasing the number of loci has on the computational
performance and statistical accuracy of Bayesian species
tree estimation. We simulated 100 random (rapidly
speciating) species trees of each of three different
sizes, n=5,8,13, using the birth–death process (Kendall
1948; Nee et al. 1994; Gernhard 2008). In all cases, the
speciation rate was �=1 and the extinction rate was
�=0.2 (nominally per million years). For 5-species trees
we considered ni =2,4,8, for 8-species trees ni =2,4
and for 13-species trees ni =2. For each combination
of n and ni we simulated up to 256 gene trees.
Gene alignments were simulated from these gene trees

http://www.cs.auckland.ac.nz/~yhel002/biopy/
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using an HKY substitution model (Hasegawa et al.
1985) and a strict clock. All sequences were simulated
with a substitution rate of 1% per lineage per million
years, a transition/transversion ratio � of 4, equal base
frequencies and a strict clock. For each *BEAST analysis,
the substitution rate was fixed at 1%, and a single � value
and set of base frequencies for all loci was estimated. The
locus length was 200 sites each to mimic short-read next-
generation sequence data. Finally, we drew successively
larger subsets of each group of alignments to form a set
of *BEAST analyses (Heled and Drummond 2010). We
considered increasing numbers of loci on a logarithmic
scale, that is nl ∈{2,4,8,16,32,64,128,256}.

If the effective sample size (ESS) of either the log
posterior or the age of the species tree in an analysis was
not ≥200 after the initial MCMC chain was completed,
we used the resume function in BEAST 2 (Bouckaert et al.
2014) to extend the MCMC chain from the final state of
the previous run, until sufficient samples were obtained
to achieve a minimum ESS of 200. For each combination
of nl, n and ni, MCMC chains were resumed until at
least 90 out of 100 replicates had sufficient ESS values.
All statistics and trees were logged at a sampling rate
of 1 sample per 25,000 states, and the MCMC chains
that needed extension were combined into a single long
chain. Pseudocode for the experimental protocol can be
found in Algorithm S1 in Supplementary Material on
Dryad at http://dx.doi.org/10.5061/dryad.02tf9.

ESS per hour was not calculated using the total CPU
time for the combined chain because resumed runs were
not restricted to a single type of CPU and hence were not
directly comparable. Instead, the initial MCMC chain for
each condition and replicate was restricted to a single
type of CPU (Intel E5-2680 @ 2.70 GHz), and million
states per hour of CPU time was calculated based on
the number of states and CPU time of the initial chain.
To calculate ESS per million states, the ESS of the age of
the species tree was divided by the million post-burnin
states in the combined chain. To calculate ESS per hour,
ESS per million states was multiplied by million states
per hour. All replicates were used to calculate average
ESS rates, including those with ESS values <200.

The main measure of error used in this study, “relative
species tree error,” incorporates both topological and
branch length error by building on the previously
described measure “rooted branch score” (RBS; Heled
and Bouckaert 2013). Given two trees T1 and T2, the
sets of monophyletic clades c present in each tree are
defined as C1 and C2. The length of the branch which
extends rootward from the most recent common ancestor
(MRCA) of a clade is defined as b(c). Given these
definitions, the rooted branch score is defined as the sum
of all absolute differences in branch lengths b(c) between
trees T1 and T2:

RBS(T1,T2)=
∑

c∈C1∪C2

|b(1)(c)−b(2)(c)|. (1)

By convention, the branch length of a clade that is
missing from a tree is zero, so the topological error

of absent or erroneous clades will be weighted by the
true or estimated branch length respectively. We define
the relative species tree error eT to be the posterior
expectation of the rooted branch score distance RBS
between the estimated species tree T̂ and the true species
tree Ttrue, normalized by the tree length of the true
species tree Ltrue:

eT =

1
k

·
k∑

i=1

RBS(Ttrue,T̂i)

Ltrue
. (2)

This measure summarizes the error over the entire
posterior distribution by averaging the RBS for each
i posterior sample T̂i drawn from the entire set of
posterior samples of size k. We normalize by the length
of the true species tree to make the error comparable
between species trees of differing units and/or number
of species. Replicates with insufficient ESS values were
excluded when calculating average relative species
tree error, because the posterior distributions of
species trees for those replicates might be inadequately
sampled.

A post hoc analysis was performed to investigate
the residual variation in ESS rates and relative species
tree error, after accounting for the number of loci,
individuals and species in each replicate. Spearman’s
rank correlation was used to calculate correlation
coefficients between the residuals and various tree and
alignment parameters. P-values for each correlation
were computed using asymptotic t approximation, and
then corrected for multiple comparisons based on 48
tests per set of residuals (Benjamini and Hochberg
1995).

Mean population size was calculated as the mean
of all per-branch effective population sizes. Species
tree asymmetry is the variance �2

N in the number of
nodes between each tip and the tree root (Kirkpatrick
and Slatkin 1993). Mean tree height difference is the
mean difference in height between each gene tree and
the species tree. Mean deep coalescences is the mean
number of deep coalescences for each gene as calculated
by DendroPy 4.0.3 (Sukumaran and Holder 2010). The
mean parsimonious mutations is the parsimonious
(minimum) number of mutations required per site given
the true gene tree, again calculated by DendroPy. Mean
variable site count is the mean number of sites per
locus with more than one extant allele, and mutations
per variable site is the total number of parsimonious
mutations required divided by the total number of
variable sites.

Experiment 1 was performed using the Pan
cluster provided by New Zealand eScience
Infrastructure and hosted at the University of Auckland
(http://www.eresearch.auckland.ac.nz/en/centre-for-
eresearch/research-facilities/computing-resources.html,
last accessed December 25, 2015). This high performance
compute cluster provides access to Linux compute

http://dx.doi.org/10.5061/dryad.02tf9
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nodes with 2.7 and 2.8GHz Intel Xeon CPUs, and
approximately 8 GB of RAM per CPU core.

Experiment 2: Comparing a Bayesian Multispecies
Coalescent Approach with a Bayesian Supermatrix Approach

In the second set of simulations, we compare the
statistical accuracy of the multispecies coalescent to
partitioned concatenation, both as implemented in
BEAST 2. We refer to these methods as *BEAST and
Bayesian supermatrix respectively. Specifically we tested
the hypothesis that the comparative accuracy would
depend on mean branch length in coalescent units of
�(2Ne)−1.

For every combination of n=4,5,6,8 and nl =1,2,4,
we simulated species trees with a range of branch
lengths in coalescent units. In order to vary branch
lengths, species trees were simulated with expected
root heights of R= 1

2 ,1,2,4,8,16 (nominally in millions
of years) and population sizes chosen from Ne =
1
4 , 1

2 ,1 (nominally in units of million individuals),
changing the coalescent branch length unit numerator
and denominator respectively. Additional expected root
heights were included where the most accurate method
switches from *BEAST to Bayesian supermatrix, to
obtain denser sampling in that part of parameter
space.

Species trees were generated under the pure birth Yule
model (Yule 1924). The birth rate for each combination
of parameters was set to �= 1

R
∑n

k=2
1
k , that is, the

birth rate which generates trees with an expected root
height of R. These settings roughly correspond to
mammalian nuclear genes of species with an effective
population size of one-quarter, one half or one million
individuals.

A single individual per species was simulated for all
loci. We used the Jukes–Cantor substitution model (Jukes
and Cantor 1969) and a strict clock model for each locus,
but with rate variation between loci. The mutation rate
for the first locus was fixed at �0 =0.01, and the rates
for other loci drawn from the range [�0/F,�0 ×F]. We
used F=3, giving a factor of 9 between the fastest and
slowest possible rates. The rate was drawn in log space,
so there is equal density of slower and faster rates around
�0. The number of sites per alignment (ns) was fixed at
1000.

We generated 100 replicates for each combination of
n, nl, R and Ne. For each unique combination of n, R and
Ne only one set of 100 species trees was generated and
used (regardless of nl) to minimize species tree sampling
error when analyzing the effect of increasing nl. Gene
trees and extant sequences were generated separately for
each replicate and for each value of nl.

Both Bayesian supermatrix and *BEAST analyses used
a Yule prior on the species tree, with a uniform prior of
[1/100,100] on �, and a separate partition per locus each
with a strict clock model, where the clock rate of the
first partition was fixed to the truth (�0) and the other

rates were estimated. The *BEAST effective population
size hyperparameter (popMean) was given a uniform
prior in the range [ 1

5 ,5], and all population sizes were
estimated.

The Bayesian supermatrix analysis used a fixed
chain length of 4 million states, sampling every
1000 states. The *BEAST analysis used a fixed chain
length of 40 million states, sampling every 10,000
states. The ESS values of the posterior, likelihood
and prior statistics of each chain were estimated, and
replicates where the ESS was <200 for any of those
statistics were discarded. For each combination of n,
nl and method there were never more than 4% of
replicates discarded for this reason (Figure S10 in
Supplementary Material available on Dryad). As with
experiment 1, this experiment was performed using the
NeSI Pan cluster.

Experiment 3: Many-method Comparison of Species Tree
Inference using Parameters Estimated from Two

Phylogenomic Data Sets
The purpose of the third set of simulations was two-

fold: to check that the trends in statistical accuracy
observed for the first two sets of simulations held
for empirically derived simulations, and to compare
statistical accuracy across a range of species tree
inference methods. To simulate more realistic trees
and sequences, we derived a range of properties
and phylogenetic parameters from two empirical
phylogenomic data sets for use as simulation parameters.

The biallelic species tree inference method SNAPP
(Bryant et al. 2012) was used to estimate speciation
birth rates and effective population sizes because it
did not require phasing the sequence data. To estimate
base frequencies, substitution rates, between-site rate
variation, and between-locus rate variation, we used a
Bayesian supermatrix analysis with a Yule prior on the
species tree. A detailed description of sequence data
processing and SNAPP and BEAST settings is given in
Supplementary Material available on Dryad.

We simulated 100 replicates each of “deep” and
“shallow” Yule species trees of n=12 and n=8
respectively, using the inferred empirical birth rates,
with per-branch population sizes picked from a gamma
distribution of shape 2 and a mean equal to the mean
inferred population sizes. For the deep species trees we
simulated 512 gene trees, and for the shallow species
trees we simulated 4096 gene trees within each species
tree, each with two individuals per species.

For each simulated gene tree, we chose a strict
clock rate from the gamma distribution defined by
the inferred shape parameters and scale parameters.
Nucleotide sequences were simulated for every locus
using the empirically derived GTR+G base frequencies,
substitution rates, and gamma rate variation from the
applicable study. As the shallow study used 64nt
RAD tags, we picked that fixed length for sequence
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simulations based on that study. For simulations based
on the deep study, each simulated alignment length was
randomly sampled (with replacement) from the original
alignment lengths of the deep study.

Species trees were reconstructed from simulated
sequences using five different multi-locus inference
methods; *BEAST, Bayesian supermatrix, MP-EST
(Liu et al. 2010), RAxML version 8 (Stamatakis
2014), and BIONJ (Gascuel 1997). We tested *BEAST
performance given nl =1,2,4,8 for the deep study
based simulations and nl =1,2,4,8,16,32 for the shallow
study based simulations. For all simulations, we
tested the performance of Bayesian supermatrix given
nl =1,2,4,8,16,32,64,128,256,512. For the deep study
simulations we tested RAxML, BIONJ, and MP-EST with
nl =1,2,4,8,16,32,64,128,512. For the shallow study
simulations, we also analyzed nl =1024,2048,4096. Both
*BEAST and MP-EST can infer species trees utilizing
more than one individual per species, and we tested both
methods using ni =1,2.

All GTR+G rates were estimated for *BEAST and
Bayesian supermatrix analyses. For RAxML analyses,
only GTR+G substitution rates were estimated and
empirical base frequencies were used. Clock rate
distribution parameters and clock rates for each locus
were estimated for *BEAST and Bayesian supermatrix
analyses. Loci were not partitioned for RAxML analyses,
so per-locus clock rates could not be estimated
for that method. The RAxML maximum likelihood
algorithm used was “new rapid hillclimbing.” Pairwise
distances matrices calculated by RAxML were used
to generate neighbor-joining trees using the BIONJ
algorithm implemented in PAUP* version 4.0a142
(http://paup.csit.fsu.edu/, last accessed December 25,
2015). *BEAST and BEAST trees are implicitly rooted
because they are ultrametric, and RAxML and BIONJ
trees were midpoint rooted.

MP-EST uses gene trees as input data, which were
inferred using RAxML. The same settings used for
RAxML species tree inference were used for gene tree
inference, and gene trees were midpoint rooted. For each
replicate MP-EST was set to make 10 independent runs,
and the species tree with the highest pseudo-likelihood
was retained for further analysis.

The BEAST and *BEAST chains were run on the
Raijin cluster provided by the National Computational
Infrastructure (http://nci.org.au/systems-services/
national-facility/peak-system/raijin/, last accessed
December 25, 2015). This cluster provides access to
Linux compute nodes with 2.6 GHz Intel Xeon Sandy
Bridge CPUs, and 4 GB of RAM was requested per
run. Further details of BEAST and *BEAST chains
are provided in Supplementary Material available
on Dryad. RAxML and MP-EST were run on the
cluster provided by the Genome Discovery Unit of the
Australian Cancer Research Foundation Biomolecular
Resource Facility. Jobs on this cluster ran on Linux
compute nodes with a variety of Intel Xeon and AMD
Opteron CPUs, and 2 GB of RAM was requested per
RAxML or MP-EST job.

RESULTS

Experiment 1: Performance of *BEAST with Increasing
Numbers of Loci

Computational performance.— We evaluated the
scaling of computational performance of *BEAST as a
function of the number of loci analyzed. We recorded
the elapsed computational time for each replicate
analysis running in a single thread. This was then used
to calculate the effective number of samples per hour
(ESS per hour), to measure the computational effort
required to produce a sample from the posterior for a
given number of loci. The ESS per hour relationship
(Fig. 1a, S3 in Supplementary Material available on
Dryad) suggests that a power law fits the scaling of
computational performance. The linear relationship in
the log-log plot indicates that a power law fits well for
the range from 32 to 256 loci. We extrapolate that for
n=5, ni =2 and nl ≥32, ESS per hour follows a power
law with a slope and intercept of −3.06±0.04 and
16.34±0.18, respectively.

Applying this functional relationship, we could
estimate the computational cost to analyze a similar
data set with a larger number of loci. For example,
given 5 species and 2 individuals in the simulation, the
predicted ESS per hour is 0.54 for 256 genes, which
indicates it would take approximately 369 CPU hours
to attain an ESS of 200. We can therefore estimate that
a similar analysis of 1024 loci would take roughly 1064
CPU days. Nevertheless, an analysis of this size might be
achieved within 2 months by parallelizing the problem
into 20 independent MCMC chains for 2 months each
and discarding a few days of burnin from each of them,
to achieve on the order of 10 independent samples from
each chain.

Variation in ESS per hour between replicates was
observed under all tested conditions (Figure S3 in
Supplementary Material available on Dryad). The
slowest replicate relative to the median rate for any
condition was a 5 species, 2 individuals and 256
genes outlier, 94× slower than the median rate for
that combination (Fig. 1a). This replicate would require
approximately 1500 CPU days to attain an ESS of 200.
However, this was an extreme case as the next slowest
replicate for that combination was another outlier only
6.4× slower than the median rate, and would require
only 100 CPU days to attain the same ESS value.

The slope of the expected computational performance
as a function of number of loci does not vary with
the number of species or the number of individuals
(Fig. 1b), although a larger range of n and ni would need
to be examined to understand the scaling relationship
of computational performance with those quantities.
For analyses larger than 5 species and 2 individuals,
the power law range appears to begin at nl ≥16.
Combining all simulation results, a multiple linear
regression describing a response variable Y (e.g., ESS
per hour) as a function of three explanatory variables:
number of loci nl, number of species n, and number
of individuals per species ni, can be constructed

http://paup.csit.fsu.edu/
http://nci.org.au/systems-services/national-facility/peak-system/raijin/
http://nci.org.au/systems-services/national-facility/peak-system/raijin/
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(b)(a)

(d)(c)

FIGURE 1. Trends in ESS per hour and relative species tree error as a function of the number of loci. a) ESS per hour for analyses of 5 species
each with 2 individuals. Each box-and-whisker shows the variance in mixing across a hundred replicate data sets for each number of loci. b) The
median ESS per hour as a function of number of loci, with trend lines for each combination of number of species and individuals per species.
Solid shapes indicate the median value for each category, and regression lines were calculated using all replicates for each category. c) Relative
error for 5 species each with 2 individuals, with each box-and-whisker showing the variance in relative error between replicates. Numbers above
the graph area indicate how many replicates were included for each number of loci. d) The relative error in the estimated species tree as a
function of the number of loci, with trend lines for each combination of number of species and individuals per species. Solid shapes indicate the
median value for each category, and regression lines were calculated using all replicates for each category with sufficient ESS.

as follows:

log(Y)=�1log(nl)+�2n+�3ni +�. (3)

Taking the ESS per hour as the response variable,
the linear regression estimates of the coefficients are
�1 =−2.81±0.02,�2 =−0.42±0.01,�3 =−0.46±0.01, and
the intercept is �=17.98±0.13. At least within the
range of parameters examined here, it appears that
the �1 coefficient is not greatly influenced by n and ni
(Fig. 1b).

We also considered the scaling of the number of
effective samples per million states (ESS per million

states) in the MCMC analyses. This quantity is
complementary to our first result; it is easier to
investigate as it does not require running all simulations
on identical and dedicated hardware. Computational
time for methods like *BEAST is dominated by the
phylogenetic likelihood, which is calculated for all site
patterns given a proposed tree (Yang et al. 1994). Because
*BEAST infers a separate gene tree for each locus, the
time per state will be linear with the number of loci
assuming the average number of site patterns per locus is
independent of the total number of loci. This assumption
of independence holds for experiment 1 because loci
were subsetted uniformly.
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Adapting the terminology of Equation (3), the slope
of ESS per hour (�1h) will be simply related to the slope
of ESS per million states (�1s): �1h =�1s +1. However
because CPU time per site pattern depends on the
specific hardware employed, the intercept of ESS per
hour (�h) cannot be predicted from that of ESS per
million states (�s).

As expected, ESS per million states also exhibits
a power law in the number of loci (Figure S4
in Supplementary Material available on Dryad). By
assigning the ESS per million states to Y in the multiple
linear regression in Equation 3, the estimated coefficients
are �1 =−1.87±0.02, �2 =−0.28±0.01, �3 =−0.24±0.01,
and the estimated intercept is �=9.07±0.12. The
difference in slope between ESS per million states and
ESS per hour is (−1.87)−(−2.81)=0.94, very close to 1
as predicted. As with ESS per hour, observations used
for the linear regression were restricted to nl ≥32 for the
5 species, 2 individual case and nl ≥16 for other cases.

Using the example of 5 species and 2 individuals,
the slope and intercept are −1.97±0.04 and 7.86±
0.18 respectively, so the predicted ESS per million
states for 256 individuals is 0.047 (Figure S4a in
Supplementary Material available on Dryad). It would
therefore take approximately 4.3 billion states to obtain
an ESS of 200. We can extrapolate that a similar analysis
of 1024 loci would require an MCMC chain of roughly

4.3×
(

1024
256

)1.97 ≈66 billion states.

Statistical accuracy.— We also calculated the relative
error in the species tree estimate for each replicate.
For some larger analyses it was challenging to achieve
acceptable ESS values for every replicate, even with
chain lengths of several billion states and access to high-
performance computational infrastructure. To retain the
larger analyses without biasing statistical accuracy, we
excluded replicates in which the ESS of either the
log posterior or the species tree age was smaller than
200. All remaining replicates were used for a linear
regression analysis of the contribution of the number of
loci to relative species tree error. This analysis revealed
a power law relationship from 2 to 256 loci (Fig. 1c, S5
in Supplementary Material available on Dryad). Given 5
species and 2 individuals, the slope and intercept are
−0.435±0.007 and −0.889±0.026 respectively, so the
relative species tree error predicted by the power law for
256 loci is 0.037. By extrapolation, we would therefore
estimate that the relative error of a 1024 loci analysis

would decrease to 0.037×
(

1024
256

)−0.435 ≈0.020.
Linear regression analysis of relative species tree error

for all combinations of n and nl showed little variation
in the trend line slope between conditions (Fig. 1d).
By assigning the relative species tree error to Y in the
multiple linear regression in Equation (3), the estimated
coefficients are �1 =−0.433±0.003, �2 =−0.066±0.002,
�3 =−0.070±0.002, and the estimated intercept is �=
−0.481±0.022. More details for all multiple linear
regression models are available in Supplementary

Material available on Dryad. Trends in topology-only
accuracy inferred using rooted Robinson-Foulds (rRF)
scores are also presented in Supplementary Material as
Dryad, Figure S9 and Table S12 available on Dryad.

Finally, we also analyzed the number of species tree
topologies sampled in each posterior distribution. It
appears that for the analyses involving 8 and 13 species
there is a rapid reduction in the number of topologies
in the 95% credible set with increasing numbers of
loci, but it does not follow a power law (Figure S7 in
Supplementary Material available on Dryad).

Post hoc analysis of convergence and species tree error.—
Experiment 1 was designed to investigate the
relationship between the number of loci nl, number of
species n and number of individuals ni on ESS rates and
statistical accuracy. Although these variables explained
most of the variation in ESS rates and accuracy, residual
variation was present between the 100 replicates of
each combination of nl, n and ni (Fig. 1a and c).
The correlations between this residual variation and
a collection of phylogenetic statistics that could be
extracted from the simulated trees and alignments were
studied in a post hoc analysis.

The only tree or alignment statistic that was
significantly correlated with ESS per hour consistently
across all conditions was mean tree height difference
(Table 1). This statistic is the mean difference in height
between each gene tree and the species tree. The positive
correlation observed for this parameter suggests that
when gene trees are taller relative to the species tree,
the ESS rate will be higher and *BEAST will converge
more quickly.

In contrast to ESS per hour, several statistics were
consistently significantly correlated with relative species
tree error (Table 2). The height of the species tree and
the number of variable sites per locus were negatively
correlated with relative error. This result is somewhat
intuitive, as taller species trees will have longer branches
which are easier to resolve, and the number of variable
sites is an obvious proxy for the amount of information in
each locus. Relative error was positively correlated with
the mean number of deep coalescences and the number
of mutations per variable site. Those correlations suggest
that data sets with more incomplete lineage sorting will
be more difficult to resolve, and that saturated sites may
increase uncertainty.

Experiment 2: Statistical Accuracy of *BEAST Relative to
Bayesian supermatrix

To assess the statistical accuracy of the *BEAST relative
to the standard Bayesian supermatrix approach, we
conducted a simulation study where we simulated
species trees with a broad range of mean branch
lengths for varying numbers of species and loci. Gene
coalescences occur prior to species divergence times,
and the severity of this discrepancy will depend on
species tree branch lengths in units of coalescent time.
Because the multispecies coalescent accounts for this
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TABLE 1. Spearman correlation of tree and alignment parameters with ESS per hour

5n, 2ni 5n, 4ni 5n, 8ni 8n, 2ni 8n, 4ni 13n, 2ni

Species tree height 0.068 0.222∗∗∗ 0.362∗∗∗ −0.036 0.180∗∗∗ 0.120
Mean population size 0.075 −0.048 −0.086 −0.020 −0.101 0.121
Species tree asymmetry −0.238∗∗∗ −0.088 −0.045 −0.125∗ 0.013 −0.068
Mean deep coalescences −0.122∗∗ −0.225∗∗∗ −0.295∗∗∗ 0.020 −0.079 0.044
Mean parsimonious mutations 0.099 0.148∗∗∗ 0.122∗ −0.013 0.124∗ 0.074
Mean variable site count 0.088 0.228∗∗∗ 0.294∗∗∗ −0.045 0.146∗∗ 0.042
Mean tree height difference 0.246∗∗∗ 0.355∗∗∗ 0.315∗∗∗ 0.421∗∗∗ 0.340∗∗∗ 0.398∗∗∗
Mutations per variable site 0.030 −0.066 −0.123∗ 0.046 0.016 0.057

*P<0.05, **P<0.01, ***P<0.001.

TABLE 2. Spearman correlation of tree and alignment parameters with species tree error

5n, 2ni 5n, 4ni 5n, 8ni 8n, 2ni 8n, 4ni 13n, 2ni

Species tree height −0.734∗∗∗ −0.582∗∗∗ −0.330∗∗∗ −0.702∗∗∗ −0.537∗∗∗ −0.580∗∗∗
Mean population size 0.103∗ 0.078 0.006 0.118∗ 0.004 0.076
Species tree asymmetry 0.041 0.011 0.035 −0.170∗∗∗ −0.181∗∗∗ −0.050
Mean deep coalescences 0.665∗∗∗ 0.573∗∗∗ 0.273∗∗∗ 0.647∗∗∗ 0.522∗∗∗ 0.591∗∗∗
Mean parsimonious mutations −0.387∗∗∗ −0.199∗∗∗ −0.025 −0.372∗∗∗ −0.184∗∗∗ −0.378∗∗∗
Mean variable site count −0.587∗∗∗ −0.494∗∗∗ −0.242∗∗∗ −0.607∗∗∗ −0.530∗∗∗ −0.642∗∗∗
Mean tree height difference 0.194∗∗∗ 0.186∗∗∗ 0.196∗∗∗ 0.173∗∗∗ 0.207∗∗∗ 0.127∗
Mutations per variable site 0.416∗∗∗ 0.306∗∗∗ 0.152∗∗ 0.333∗∗∗ 0.220∗∗∗ 0.148∗

*P<0.05, **P<0.01, ***P<0.001.

phenomenon but the Bayesian supermatrix approach
does not, we expected the multispecies coalescent to
outperform the Bayesian supermatrix approach for trees
with shorter branch lengths.

The “species tree error ratio” eTa/eTb is a measure of the
comparative accuracy and is specified as follows, where
a is *BEAST and b is Bayesian supermatrix:

eTa

eTb

=
1
ka

·∑ka
i=1RBS(Ttrue,T̂ai)

1
kb

·∑kb
i=1RBS(Ttrue,T̂bi)

. (4)

Values below 1 indicate lower error, or equivalently
superior accuracy, when using *BEAST instead of
Bayesian supermatrix. For all numbers of species tested,
the statistical accuracy of *BEAST was superior to
Bayesian supermatrix for trees with shorter mean
branch lengths (Fig. 2). Using LOESS regression, it is
clear that as the number of loci increases, *BEAST
performance improves relative to Bayesian supermatrix
because for a given mean branch length, the species
tree error ratio decreases as the number of loci increases
(Fig. 2).

For all numbers of species and loci tested, there is a
mean branch length crossover point where for shorter
mean branch lengths, *BEAST is expected to outperform
Bayesian supermatrix, and vice versa for longer mean
branch lengths. The crossover point depends on the
number of loci; as the number of loci increases, the point
shifts right (Fig. 2), indicating that *BEAST is expected
to outperform Bayesian supermatrix for a larger range of
mean branch lengths, consistent with the general trend

of improved performance of *BEAST when increasing
the number of loci.

Within the parameter region explored in this
experiment, depending on the number of species,
loci and the effective population sizes, the crossover
point was found in the range 0.382�(2Ne)−1 to
5.416�(2Ne)−1 (Figure S11 in Supplementary Material
available on Dryad). For mean branch lengths shorter
than 0.382�(2Ne)−1, *BEAST was preferred regardless
of the parameters explored, even when using a single
locus (Fig. 2). The crossover point given a single
locus was always below 0.5�(2Ne)−1 (Figure S11 in
Supplementary Material available on Dryad) and given
longer mean branch lengths the relative performance
of Bayesian supermatrix was higher than for multi-
locus inference (Fig. 2). This implies that *BEAST is still
useful for single-locus studies of species trees with short
branches, but should be applied with caution.

Experiment 3: Inferred Parameters of Phylogenomic Data
Sets and Multi-method Comparison

Sequence data sets from two published studies were
realigned and reanalyzed to calculate their empirical
properties and phylogenetic parameters. Besides the
expected difference in speciation rate (which for
the shallow study rate was over six times faster,
corresponding to much shorter branch lengths), the
shallow plant study sequences were very AT rich,
whereas the deep primate study sequences were
moderately GC rich (Table 3). C�T substitutions were
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FIGURE 2. Species tree error ratio (*BEAST/BEAST) as a function of the average species tree branch length (in coalescent units) for trees of
4, 5, 6, and 8 species. Data points are below 1 (black line) where the *BEAST error is lower than the BEAST error, indicating that *BEAST was
more accurate than BEAST. Data points above 1 show the opposite. Only results with both mean branch lengths and error ratios between 0.1
and 10.0 are included. The red, green, and blue lines show the local regression for one, two and four locus estimates, respectively. The shaded
region indicates where the crossover point depended on the combination of simulation parameters chosen—*BEAST was always preferred for
average branch lengths shorter than this zone.

a greater proportion of all substitutions for the deep
study, but the between-site gamma rate variation was
flatter. The mean effective population size Ne of the deep
study was estimated to be only 2.4% that of the shallow
study.

The original publication of Cyathophora sequences
and phylogeny suggested that P. rex subsp. rockii is
sister to subsp. rex and subsp. lipskyana (Eaton and Ree
2013). The most common species tree topology seen
in both SNAPP and Bayesian supermatrix posterior

distributions supports this placement (Figures S16 and
S17 in Supplementary Material available on Dryad).
The original study left open the question of P.
thamnophila monophyly but raised the possibility that
the apparent paraphyly of this species, as replicated by
our reanalysis, is an artifact of introgression (Eaton and
Ree 2013). Species trees inferred by SNAPP and Bayesian
supermatrix from reanalysis of the deep phylogenetic
study (Figure S18,S19) agreed with the accepted primate
phylogeny (Perry et al. 2012).
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TABLE 3. Experiment 3 data set properties and mean values of
inferred parameters

Phylogenetic depth Shallow Deep
Clade name Cyathophora Primates
Taxonomic rank Section Order
Sequence data RAD tag RNA-seq

In-group nS 8 12
Base frequency: A 0.290 0.266
Base frequency: C 0.212 0.240
Base frequency: G 0.204 0.263
Base frequency: T 0.294 0.231
A�C rate 0.367 0.152
A�G rate 0.940 0.694
A�T rate 0.246 0.100
C�G rate 0.305 0.155
C�T rate 1.000 1.000
G�T rate 0.353 0.127
Gamma rate variation 0.0383 0.233
Speciation birth rate 125.3 20.7
Per-branch Ne 6.35×10−3 1.53×10−4

Locus length 64nt 110–3511nt
Clock variation shape 6.22 5.15
Clock variation scale 0.173 0.195

All inferred parameters are rounded to three significant figures or one
decimal place, whichever is more precise.

Analysis of empirical-based simulations.— We
simulated species trees, gene trees, and sequences
based on the estimated parameters of both data sets
(Table 3), and refer to these simulations as shallow and
deep phylogenetic simulations respectively. The mean
branch length of the simulated shallow species trees
was 0.539�(2Ne)−1, compared with 159.8�(2Ne)−1 for
the simulated deep species trees. We computed the
relative species tree error for all *BEAST analyses of
these simulations.

The relative species tree errors for all values of nl and
ni considered were computed for both simulation types.
A power law appeared to fit the relationship between
relative error and number of loci for values of nl ≥2,
so log-log linear regression analyses were restricted to
nl ≥2. The log-log slope connecting relative error and
the number of loci appears mostly independent of ni for
shallow phylogenetic simulations. For deep simulations,
the trend lines for ni =1 and ni =2 were very close,
implying that multiple individuals did not improve
accuracy for those simulations (Figure 3).

This result is consistent with the initial set of
simulations reported in “Statistical accuracy.” However,
the log-log slopes varied substantially between *BEAST
inference of shallow and deep phylogenetic simulations.
The difference in power law exponents inferred using
multiple linear regression (Tables S13 and S14 in
Supplementary Material available on Dryad) between
shallow and deep simulations was (−0.365)−(−0.568)=
0.203.

Results from the initial simulation study, detailed in
“Computational performance,” suggest that a power law
relationship of ESS and number of loci only applies
to *BEAST analyses of 16 to 32 loci and above. As we
only inferred deep phylogenetic trees utilizing up to 8

FIGURE 3. The relative species tree error as a function of the
number of loci for empirical-based simulations. Both shallow and deep
phylogenetic simulation results are presented. Solid and hollow shapes
are the median value for each category, and regression lines were
calculated using all replicates for each category.

loci and shallow phylogenetic trees up to 32 loci using
*BEAST, we cannot make firm conclusions regarding
the scaling laws of ESS performance using this set of
simulations.

Alternative methods for multi-locus phylogenetic inference.—
The second analysis we conducted based on the
empirically derived shallow and deep phylogenetic
simulations was a comparison of common multi-locus
methods of species tree inference. This encompassed
the Bayesian multispecies coalescent (*BEAST),
Bayesian supermatrix (BEAST), Maximum-likelihood
supermatrix (RAxML), neighbor-joining (BIONJ), and
summary coalescent (MP-EST) methods. As some
methods provide only a single best tree estimate in place
of a posterior distribution of trees, we used common
ancestor summary trees (CAT; Heled and Bouckaert
2013) for *BEAST and Bayesian supermatrix analyses in
this comparison.

Based on relative species tree error, *BEAST
outperformed all other methods for any given number
of loci for the shallow simulations. The statistical
accuracy of Bayesian supermatrix, RAxML and BIONJ
all plateaued beyond 64 loci for the shallow simulations,
whereas *BEAST appears to follow a power law as
previously suggested (Fig. 4a). The statistical accuracy
of all methods improves with increasing numbers of
loci for the deep simulations, however we limited the
simulations to a maximum of 8 loci when running
*BEAST. The statistical accuracy of all methods tested
was similar up to 8 loci, but for larger numbers of loci
Bayesian supermatrix analysis was superior and BIONJ
was inferior to RAxML (Fig. 4b).

A major factor causing the poor performance of
methods other than *BEAST for the shallow simulations
is a bias when estimating pendant edge (also known as
leaf or tip) length. Although the mean bias of estimated
pendant edge length trends towards zero for *BEAST,
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(b)(a)

(d)(c)

(f)(e)

FIGURE 4. Statistical accuracy of multiple species tree inference methods as a function of the number of loci. Shallow phylogenetic simulation
results (a, c, e) and deep results (b, d, f) are both presented. Measures of statistical accuracy used here are relative species tree error a) and b)
which incorporates branch length and topological error, pendant edge length bias c) and d) which highlights biased branch lengths inferred by
noncoalescent methods at the tips of the tree, and rooted Robinson–Foulds scores e) and f) which are a purely topological measure. All solid
shapes in subfigures a–d show trimmed means (25% trim to reduce the influence of outliers), or untrimmed means for subfigures e) and f).
Vertical range lines show 95% confidence intervals for each mean, calculated by bootstrapping.
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other methods converge on a bias of approximately
350%, meaning estimated pendant edges are on average
4.5× the true length (Fig. 4c). In contrast, there is only
a small positive bias using methods other than *BEAST
for the deep simulations (Fig. 4d).

Relative species tree error incorporates both
topological error and branch length error. To separate
these two components, we calculated the mean rRF score
as a measure of purely topological error—estimated
topologies more distant from the truth will have higher
rRF scores. For shallow simulations, *BEAST was the
best-performing method, and the topological accuracy
of both *BEAST and MP-EST was improved given two
individuals per species (Fig. 4e). For deep simulations,
all methods other than *BEAST and MP-EST converged
at near-zero topological error given 512 loci (Fig. 4f).
*BEAST was limited to a maximum of 8 loci, but its
performance for a given number of loci was very close
to Bayesian supermatrix. The topological accuracy of
MP-EST was inferior to all other methods analyzed.

DISCUSSION AND CONCLUSIONS

We have demonstrated by simulation that the
multispecies coalescent (as implemented in *BEAST)
can be applied to some problems involving hundreds
of loci. In order to analyze the performance of
*BEAST with hundreds of loci under various conditions,
with 100 replicates per condition and given finite
computational resources, we made choices partly based
on computational expediency. These included relatively
limited numbers of species and individuals, and
assuming a strict molecular clock. More complexity in
the sense of more parameters to estimate, for example
denser taxon sampling or relaxed clocks, would be
expected to require more computational time than the
analyses reported here.

Researchers studying the evolutionary histories of
organisms are not burdened by the need to test hundreds
of replicates across many conditions, and can therefore
conduct larger analyses using *BEAST. For example, a
recent study of Neotropical cotingas (Cotingidae: Aves)
applied *BEAST to resolve a species tree of 67 extant bird
lineages, and used a lognormal relaxed clock for each
locus with molecular rate calibrations to infer absolute
divergence times. ESS rates for all logged statistics were
greater than 200 and convergence was also confirmed
graphically, demonstrating that *BEAST can be applied
to real phylogenetic data sets with many taxa, and may
also be used with a relaxed clock (Berv and Prum 2014).

Power Laws Describe *BEAST Scaling Behavior
For the various numbers of species, individuals

and loci analyzed in this study, power laws could be
used to describe the observed trends in computational
performance of *BEAST, and in the statistical accuracy
of the fully Bayesian multispecies coalescent. In terms of

computational performance, this provides a benchmark
for the efficiency of Bayesian MCMC approaches to
inference under the multispecies coalescent. Our results
are a product of the particular algorithm design
decisions that the authors of *BEAST have made, and we
hope that power law exponents can be improved upon by
subsequent efforts to produce more efficient algorithms
for inference under the multispecies coalescent model.

In contrast, the power law that describes the decrease
in estimation uncertainty associated with inference of
the species tree with increasing number of loci is a
fundamental property of the model itself, and will hold
regardless of the details of the algorithmic approach
to inference under this model. It therefore represents
a fundamental feature of the problem of species tree
inference. With these results, it is possible to extrapolate
what one might expect to achieve by expanding data
from a small pilot study to a more comprehensive sample
of the genomic material of a set of study species or
individuals.

The decrease in relative species tree error given
different numbers of species and individuals was
investigated in experiment 1. Other phylogenetic
parameters were fixed, including the locus length,
substitution model and population size distributions.
Possibly because of this, the variation in power law
exponents was minimal. Experiment 3 in contrast
compared shallow and deep phylogenies with larger
and smaller population sizes respectively, and associated
alignments of short fixed-length loci and longer
variable-length loci respectively. Clock rate variation
and substitution model rates also differed between
conditions. Power law exponents did vary between
experiment 1 and both the shallow and deep inferences
in experiment 3; exponents were −0.433, −0.365 and
−0.568 respectively. This is important because larger
exponents imply a greater decrease in relative species
tree error, so additional loci will lead to a larger
improvement in accuracy of inferred species trees than
with a smaller exponent.

Given a hypothetical pilot study of 16 loci, it may
be of interest what the decrease in error would be for
a full study of 256 loci. Because the number of loci
in this scenario is increased 16 times, the reduction in
relative species tree error of the full study compared
with the pilot study would be 1.0−16−0.433 ≈70% if the
study is similar to experiment 1, 1.0−16−0.365 ≈64% if
it is similar to the shallow phylogenetic simulations, or
1.0−16−0.568 ≈79% if it similar to the deep phylogenetic
simulations. What these calculations should remind us
about the power law relationship is that expanding data
from 1 to 16 loci provides as great an increase in statistical
accuracy as expanding from 16 to 256 loci. That is, for
each subsequent locus added there is a diminishing
return with regards to statistical accuracy.

The power laws describing computational
performance can also be used to predict the increase
in computational time and chain length required to
achieve sufficient sampling of the posterior distribution.
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In experiment 1, the power law coefficient for the log
number of loci was −2.81 for ESS per hour and −1.87
for ESS per million states. Given the previous example
going from 16 to 256 loci, the amount of time required
for sufficient sampling of data sets similar to experiment
1 would increase by 162.81 ≈2408 times. The chain
length (number of states) required would increase by
161.87 ≈180 times.

Some residual variation in ESS rates was observed
after accounting for the number of individuals, species,
and loci in each analysis. This was unsurprising as
the operators used by *BEAST are stochastic (Höhna
and Drummond 2012), so even when applied to the
same data ESS rates are expected to vary between runs.
Consistent with this expectation, the only nonstochastic
contribution identified in our post hoc analysis was a
moderate correlation between residual ESS per hour and
the average gene and species tree height difference.

It is possible that the parameters which were kept
constant in our analysis (e.g., the substitution rate, or the
number of sites per loci, or the choice of a strict molecular
clock) may change the relationship between the number
of loci and computational performance or statistical
accuracy. Given a sequence data set with substantially
different properties from experiment 1, increasing the
number of loci might have a smaller or larger effect on
computational performance.

*BEAST Compared with Other Methods
A previous simulation study which analyzed the

scaling behavior of *BEAST and other methods used
just two species trees to report on topological accuracy
given a range (5, 10, 25, and 50) of number of loci,
and produced ambiguous results (Bayzid and Warnow
2013). Because we simulated a new species tree for each
replicate, we are able to make more general observations
regarding relative performance. As expected, the relative
performance of *BEAST is higher when branch lengths
are shorter. The relative performance of *BEAST is also
higher as the number of loci is increased (Fig. 2).

The primary measure we chose to explore statistical
accuracy, relative species tree error, incorporates both
branch length and topological error. This measure
is particularly relevant for molecular dating and
downstream analyses of macroevolution and ecology.
For example, the PDC measure of phylogenetic diversity
and the BiSSE model of binary character influence
on birth and death rates both assume accurate tree
topologies and branch lengths (Maddison et al. 2007;
Cadotte et al. 2008). When inferring species trees with
shorter branch lengths, *BEAST using tens of loci
outperformed supermatrix methods by this measure,
even when other methods were able to utilize thousands
of loci (Fig. 4a).

If instead branch lengths are irrelevant for a study,
*BEAST still outperformed other methods for a given
number of loci when inferring the topology of shallow
species trees (Fig. 4e). However, when using thousands

of loci, other methods were able to outperform *BEAST
because *BEAST was restricted to tens of loci.

For certain species trees concatenation is statistically
inconsistent (Roch and Steel 2015) and might not
outperform *BEAST even when using thousands of
loci. For deeper phylogenetic trees, *BEAST performed
similarly to the Bayesian supermatrix method, which in
turn was superior to RAxML given larger numbers of loci
(Fig. 4b and f). Unpartitioned concatenation is known
to potentially change the branch lengths and topology
of estimated trees relative to partitioned concatenation
(Kainer and Lanfear 2015), so this difference may be
due to method configuration rather than a quality of
the statistical method employed (maximum likelihood).
Regardless, as *BEAST requires substantially more
computational time, concatenation methods may be
preferable in this case.

Multispecies coalescent methods assume free
recombination between loci, and no recombination
within loci. Short sequences dispersed throughout
a genome, including RAD tags, can be justifiably
used with coalescent methods as violations of both
assumptions are likely to be limited. However, shortcut
coalescence methods like MP-EST suffer from high
gene tree estimation error when applied to these short
sequences (Mirarab et al. 2014a; Springer and Gatesy
2016). In our study, MP-EST was inferior to *BEAST
and similar to concatenation when inferring shallow
phylogenies using short, RAD tag-like sequences
(Fig. 4e). When inferring deep phylogenies MP-EST was
inferior to both *BEAST and concatenation (Fig. 4f),
despite the longer loci used for those simulations.

Newer fast multispecies coalescent methods such
as ASTRAL (Mirarab et al. 2014b) and SVDquartets
(Chifman and Kubatko 2014) may perform better at
inferring species tree topology—the latest iteration
of ASTRAL is both faster and less sensitive to gene
tree error than MP-EST (Mirarab and Warnow 2015).
However because these methods compute unrooted
species trees without branch lengths, they cannot be
compared with other methods using relative species
tree error or rRF scores.

Practical Implications for Applied Phylogenetics
Systematists can use the results of this study as a guide

to choosing an appropriate phylogenetic method. If both
a priori estimates or boundaries of root height (clade age)
and extant effective population sizes are available for a
particular study system, and the Yule process is a good
fit for that system, an approximate estimate of branch
length in coalescent units can be made before selecting
a particular method.

Previous work has shown that the expected mean
branch length of a Yule tree is equal to 1/2� (Steel and
Mooers 2010). Under the Yule model this value is related
to the expected root height:

1
2�

= R
2(Hn −1)

, (5)
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where R is the expected root height and Hn is the nth

harmonic number (where n is the number of species).
The expected branch length b̄ in coalescent units of
�(2Ne)−1 is therefore:

b̄= 1
2�

· 1
2Ne

= 1
4

· R
Hn −1

· 1
Ne

. (6)

The mean root height of the shallow simulations was
0.01315, and the mean of the reciprocal extant population
sizes 1/Ne was 302.05. The approximate branch length in
coalescent units based on these averages is:

b̄= 1
4

· R
Hn −1

· 1
Ne

= 1
4

· 0.01315
Hn −1

·302.05=0.578. (7)

This approximate value is quite close to the sample
mean of simulated branch lengths; 0.539�(2Ne)−1. Based
on the results of experiment 2, this value of b̄ is towards
the lower bound of the crossover zone, and *BEAST will
be preferred under most conditions (Fig. 2). As with
experiment 1, parameters which were kept constant may
move this crossover point to be more or less favorable to
*BEAST.

The results of experiment 3 will inform researchers
with access to phylogenomic data in the order of
hundreds or thousands of loci on how to select an
appropriate inference method. If branch lengths are at
all important, either for reporting divergence times or
for downstream analyses which require a species tree,
using a subset of loci with *BEAST will be superior
to using all loci with other methods tested for shallow
phylogenies (Fig. 4a). If instead only the topology of the
species tree is of interest, concatenation methods may
be superior to fully Bayesian multispecies coalescent
methods like *BEAST until improvements can be made
to their computational performance (Fig. 4e and f).

Open Questions in Phylogenomic Inference
Our results point to a number of areas for further

research into the performance of species tree inference.
When using a single locus for species tree inference,

experiment 2 shows Bayesian supermatrix analysis
outperforming *BEAST for trees with longer branch
lengths. This may be due to the population size
priors used in *BEAST. However, our many-method
comparison shows similar performance for both
methods given species trees with long branch lengths.
Because deep phylogenetic trees from experiment 3 were
longer than the longest trees from experiment 2, this may
point to a zone of intermediate branch lengths where
*BEAST performs poorly given a single locus.

For all simulations we assumed a constant rate
of speciation, however many lineages of life have
undergone rapid radiations. It may be that when
inferring species trees of clades containing ancient rapid
radiations the performance of phylogenetic methods
is closer to the shallow simulations than the deep

simulations, and hence *BEAST becomes the preferred
method.

Sequence alignments were generated and subsetted
uniformly for all simulations regardless of the number of
loci used for each analysis. In practice, researchers may
reasonably choose longer, more informative loci when
subsetting phylogenomic data sets for use with methods
like *BEAST which are computationally intensive. This
may improve the relative performance of *BEAST
given a subset of the most informative loci relative to
supermatrix or summary methods using thousands of
loci.

However, whole proteins and transcripts can span
genomic regions hundreds of thousands of nucleotides
long, so recombination within loci will be common.
The use of whole proteins or transcripts with coalescent
methods has been dubbed “concatalescence” to reflect
this violation (Gatesy and Springer 2013, 2014). If these
long sequences are instead split into their constituent
exons, the assumption of free recombination between
loci may be violated due to short intronic distances.
Further studies are needed to resolve which violation
is less harmful to statistical accuracy.

Conclusion and Future Directions
The multispecies coalescent is applicable to a wider

range of conditions than has been suggested by more
limited simulation studies. Our results confirm that
the multispecies coalescent is especially suited to
the estimation of shallower evolutionary relationships.
We have also demonstrated that scaling of *BEAST
to problems involving hundreds of loci is feasible,
however very long chains and/or crude parallelization
approaches need to be employed.

We anticipate that the increasing availability of
phylogenomic sequence data will motivate further
improvements to the computational efficiency of fully
Bayesian inference under the multispecies coalescent
model, which should allow for analysis of hundreds or
even thousands of loci across tens or hundreds of species.
These improvements will need to scale efficiently on
many-core systems such as cluster supercomputers, as
such systems offer vastly greater computing power than
any desktop workstation.
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