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Abstract: An analytical TD-GC-MS method was developed and used for the assessment of 

volatile organic compounds (VOCs) released from the blood plasma of dogs with/without 

cancer. VOCs released from 40 samples of diseased blood and 10 control samples were 

compared in order to examine the difference between both sample groups that were showing 

qualitatively similar results independent from the disease’s presence. However, mild 

disturbances in the spectra of dogs with cancer in comparison with the control group were 

observed, and six peaks (tentatively identified by comparison with mass spectral library as 

hexanal, octanal, toluene, 2-butanone, 1-octen-3-ol and pyrrole) revealed statistically 

significant differences between both sample groups, thereby suggesting that these compounds 

are potential biomarkers that can be used for cancer diagnosis based on the blood plasma 

TD-GC-MS analysis. Statistical comparison with the application of principal component 

analysis (PCA) provided accurate discrimination between the cancer and control groups, thus 

demonstrating stronger biochemical perturbations in blood plasma when cancer is present. 
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1. Introduction 

A large number of biochemical reactions proceed with great accuracy inside the body of live 

organisms. Nearly all these processes that are catalyzed by enzymes are subject to carefully controlled 

regulatory mechanisms inside the cells. In a normal, healthy state, therefore, the concentration of many 

different metabolites in blood is fairly constant [1]. However, it is believed that if biochemical 

processes become defective, usually due to a disease, the concentration of normal metabolites may 

change considerably, and in some cases new, abnormal metabolites may also be generated, usually 

defined as disease biomarkers [2]. The past decade has witnessed rapid progress in the understanding 

of the molecular basis of human illness, and it is expected that cures will be found for the major fatal 

diseases, particularly cancer [3]. More than four decades ago, Jellum et al. proposed that if one was 

able to identify and determine the concentration of all metabolites excreted by the human body, 

including both high and low molecular weight substances, one would likely find that many diseases 

would consequently result in characteristic changes of the biochemical composition of the cells and 

body fluids [2]. 

Cancer (tumor) markers are substances associated with cancer and appear in the human body when 

the disease is present. Appropriate measurement or identification of biomarkers is useful in patient 

diagnosis or clinical management. Tumor markers are most often found in the blood or urine, but they 

can also be found directly in tumors or other tissues. Markers can be produced by cancer cells 

themselves, or made by the organism in response to cancer [4]. The majority of currently known tumor 

markers in humans are proteins, namely the antigens associated with specific malignancies. However, 

with the exception of prostate-specific antigen (PSA), modern tumor markers are not useful for 

screening (early detection) purposes and are mainly used for monitoring the response to therapy and 

for detection of early relapse. According to a recent review, even PSA does not have sufficient 

sensitivity or specificity; its screening does not reduce mortality rates from prostate cancer [5]. Taking 

into account the efficacy of currently used cancer biomarkers, the studies of new cancer markers are of 

great importance. 

Many research efforts are currently undertaking the search for new disease biomarkers (especially 

for cancer) among the small metabolites extracted from tissue [6], breath [7–9], breath condensate [10], 

urine [11,12], blood or other bodily fluids [13,14]. Fundamental researches also involve experiments to 

establish which volatile organic compound (VOC) can be specifically released or consumed by cancer 

cell cultures [15–17], or, alternatively, which biomarkers are released as a response to VOC  

exposure [18]. These studies are inspired by the successful results obtained in similar tests with other 

organisms such as algae [19] and bacteria [20], and their identification based on the exhaled VOC 

patterns. Non-protein markers including VOCs are usually called molecular markers, and are most 

commonly detected by hyphenated chromatographic techniques such as gas-chromatography mass 

spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS) [21], high performance 

liquid chromatography-MS (HPLC-MS) [22], HPLC with UV detection (HPLC-UV) [23], among 

others, while there have recently been many attempts to apply more simple devices such as electronic 

noses to this task [24,25]. In spite of chromatographic techniques offering a high level of specificity 

and sensitivity unrealized by spectrophotometric- and immunoassay-based methods, there are still 



Diagnostics 2013, 3 70 

 

 

many methodological problems with VOCs detection in most human samples, and most approaches 

are not the fast and simple analytical methods required by clinical practice [26,27]. 

Cancer specific VOCs extracted from human blood, serum or plasma have been found in several 

studies. Deng et al. reported the increase of heptanal and hexanal in the blood of lung cancer  

patients [19,20], and a recent approach by Xu and Wang proved that the same VOCs can be elevated in 

human serum [28]. However, to the best of our knowledge, large-scale studies in humans have not 

been conducted yet, as such studies necessitate quite strict regulatory and ethical control. 

Dog models have been employed in numerous studies as an acceptable stage of research before 

moving to human research, once the methodologies are thoroughly tested. The similarities of some 

cancers between humans and canines, such as osteosarcoma, with regard to its histology, biological 

behavior and molecular genetic alterations, suggest that dogs provide a supplementary model for the 

development, and preclinical testing of, novel therapeutics [29]. In the study of Bentley et al., it was 

shown that bone marrow-derived hematopoietic cells appear to contribute to tumor angiogenesis in 

dogs, as it has been previously reported in humans, and that the biomarkers of angiogenesis not 

specific to tumor type have great potential for the objective assessment of treatment response [30].  

A similar conclusion was made in the study of Uva et al., who compared genetic signatures of dog and 

human breast cancer samples: a close interspecies similarity in the network of cancer signaling 

circuitries in human breast cancer are largely maintained in the canine models [31]. Furthermore, many 

other studies confirm that biomarker studies in dogs are important not only for veterinary issues, but 

also for their potential value as ―bridging biomarkers‖ for human diseases [32]. 

In this study, we analyzed the VOCs that can be evaporated from the blood plasma and  

pre-concentrated in an adsorption tube with Tenax GR adsorbent when active drying with pure helium 

stream is applied. The main task was the development of a GC-MS method for recognition between the 

blood plasma VOC profiles of dogs with cancer and healthy controls. An analysis of the obtained 

chromatograms was conducted with statistical methods, particularly non-parametric tests and principal 

component analysis (PCA) in order to distinguish differences between groups. To the best of our 

knowledge, this is the first study representing TD-GC-MS analysis of dog blood plasma VOCs as 

potential biomarkers of cancer independent of the disease.  

2. Experimental Section  

Peripheral venous blood (2 mL) was obtained from 50 dogs during the routine visits to private 

veterinary hospitals. All blood samples were drawn into ethylenediaminetetraacetic acid (EDTA) 

tubes. Blood plasma was separated immediately by centrifugation for 15 min at 3,000 rpm. 0.5 mL of 

blood plasma was separated to an Eppendorf tube and refrigerated at 4 C. The described procedure is 

standard for blood plasma collection and does not assure all VOC preservation in the sample. 

However, all samples were prepared in the same way to exclude significant influence of the procedure 

on the blood plasma VOC content. Samples were processed at two sites: Department of Veterinary 

Pathology, School of Veterinary Medicine, Rakuno Gakuen University, and Fukuoka animal hospital 

(CRICS Co. Ltd.), and finally transported to the GC-MS laboratory in the University of Kitakyushu.  

In the latter site, blood plasma samples were received on dry ice and transferred directly to the freezer 

with a temperature of −20 °C. Samples were collected from 40 dogs suffering from 23 different types 
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of neoplasm, including 13 samples from dogs with solid malignant carcinoma, 9 samples—solid 

malignant sarcoma, 9 samples—hematological malignancies, 4 samples—melanoma, 1—mesothelioma, 

3—benign tumors and 1 from the dog with inflammatory lesions (suspected cancer). 10 samples were 

received from healthy dogs and used as the control group. Details of all dogs’ characteristics, such as 

breed, age, sex and tumor type, can be found in Table 1. Due to the geographical separation between 

the collection and analysis sites, there was no possibility to analyze all samples immediately after 

collection, though all samples were kept frozen and thawed directly before analysis.  

Table 1. Samples description data: number, breed, age, sexual status, type of tumor. 

Healthy group n  Cancer group n 

Breed Mixed breed 2   Mixed breed 11 

 Chihuahua 2   Golden Retriever 6 

 Poodle 1   Labrador Retriever 5 

 Pomeranian dog 1   Beagle 3 

 Toy poodle 1   Miniature dachshund 3 

 Miniature dachshund 1   French Bulldog 2 

 Wire Fox Terrier 1   Shetland Sheepdog 2 

 Welsh Corgi Pembroke 1   Basset Hound 1 

     Bearded Collie 1 

     Curly Coated Retriever 1 

     English Cocker Spaniel 1 

     Pomeranian 1 

     Pug 1 

     Shih Tzu 1 

     Toy poodle 1 

Sex Female (intact) 8   Female (intact) 9 

 Female (spayed) 1   Female (spayed) 12 

 Male 1   Male (intact) 13 

     Male (castrated) 6 

Age mean ± SD 5.7 ± 3.1 years   mean ± SD 9.2 ± 2.6 years 

 median 5.3 years   median 9.5 years 

 range 2 to 13 years   range 2 to 18 years 

     Tumor type  

     Benign 3 

     (among them)  

     - mammary gland tumor 2 

     - inflammatory polyp 1 

     Malignant 36 

      (among them)  

       - solid tumor, carcinoma (10 types)  13 

       - solid tumor, sarcoma (6 types) 9 

       - hematological malignancies (2 types) 9 

       - melanoma  4 

     - mesothelioma 1 

     Other 1 

     - inflammatory lesions (susp. cancer) 1 
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Tenax GR, mesh size 60–80, pre-packed quartz glassy tubes were purchased from Japan Analytical 

Industry (JAI Co. Ltd., Japan), glassy wool was purchased from GL Sciences (Japan), and deionized 

water was obtained by reverse osmosis in Milli-Q system. In the commercial quartz tube, 20 mg of 

Tenax GR was wrapped by a ferromagnetic foil and thermal desorption of VOCs from adsorbent was 

performed by the use of Curie point effect in a JCI-22 Curie point pyrolyzer device (JAI Co. Ltd., Japan).  

A simple sampling method was applied, and includes the following steps. At first, glassy tubes are 

thoroughly washed in deionized water with sonication and dried in nitrogen. Then, small pieces of 

glassy wool are wrapped into a cleaned pyrofoil of a certain temperature, inserted into the prepared 

quartz tubes, and baked twice in the Curie point injector (heating to 150 °C followed by pyrofoil 

temperature, 280 °C heating for 15 s) for cleaning purposes. Double baking was also performed for the 

purchased Tenax GR tubes before sampling to remove the possible contaminants. When two tubes—

one with glassy wool and the other with adsorbent—were ready, blood plasma samples were thawed 

from −20 °C to the room temperature and shaken for 1 min using a mini-shaker (MS1 Minishaker,  

IKA Ltd.) at 1,400 rpm, in order to homogenize the sample. After shaking, 5 L of blood plasma was 

immediately taken by using a 25 L Hamilton syringe and transferred inside the glassy wool (scheme 

of the sample collection is shown in Figure 1). Then both tubes are connected by the use of a silicon 

tube and the blood plasma sample is dried in 50 mL/min of extra-pure helium flow for 10 min through 

the Tenax GR column. Both tubes were maintained at room temperature. As has been checked in the 

preliminary test by observing related mass changes, such procedure leads to complete sample drying. 

All samples were tested in duplicate in order to assess repeatability of the GC-MS analysis. CPI 

injection of collected VOCs into the Tenax GR column was performed at 280 °C for 15 s without 

purge or pre-heating in a JCI-22 pyrolyzer.  

Figure 1. Schematic illustration of sample preparation before injection into the  

gas-chromatograph (GC). 

 

Chromatographic analysis with mass spectrometric detection was carried out with Jms-Q1000GC 

(JEOL, Japan) GC-MS system consisted of an Agilent 7890A GC coupled to a quadrupole MS. The 

injector and ion source temperatures were kept at 230 °C. GC oven temperature was kept at 40 °C for  

3 min, increased at 3 °C/min to 110 °C where it was held for 2 min and further increased at 10 °C/min 

to 230 °C where it remained for 20 min. Extra-pure He gas (99.99995%, Air Liquid Kogyo Gas Ltd., 

Japan) was used as mobile phase at a flow-rate of 1 mL/min. The analytical capillary column used for 

separation was a DB-WAX (polyethylene glycol based high-polarity stationary phase, 30 m length, 

He inlet He outlet
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0.25 mm inner diameter, 0.5 μm film thickness, Agilent J&W, part number 19091J-413). Start cut-off 

time for MS recording was 3 min. The MS was operated in electron ionization (EI) mode at 70 eV. 

Data acquisition was performed in the full scan mode from m/z = 25–310 with a scan time of 0.3 s. 

For every sample, freshly washed quartz tubes were used to avoid sample carryover and cross 

contamination. Chromatogram acquisition and tentative compound identification was done by the 

National Institute of Standards and Technology (NIST) mass spectral library search, performed using 

the JEOL (Version 1.0.3208.25600) software. 

Statistical significance was assessed with the use of non-parametric Mann-Whitney U-test for each 

compound (implemented as function of Origin 8.0 data analysis package) to compare samples from 

two different groups for independent observations (in our case different VOC concentrations were 

determined as AUC in selected ion chromatogram). PCA was conducted with Microsoft Office Excel 

add-in (XLSTAT Version 2011.4.02) and used to describe the ―total‖ difference between two groups. 

Selected ion AUCs for each VOC was used as PCA input variables. Normality tests for each compound 

distribution within two sample groups were also run using XLSTAT package. 

3. Results and Discussion 

3.1. Typical Chromatogram  

In order to determine which VOCs evaporated from the sample during drying in the stream of He 

gas, blank (or reference) chromatograms were collected and compared with those of the samples. In 

our case, blank chromatograms are obtained by TD-GC-MS analysis of the Tenax GR adsorption tube, 

after blowing He gas at the same flow rate of 50 mL/min for 10 min without sample.  

In spite of extra-pure He gas with a purity of 99.99995% being used for sample drying, various 

peaks appear on the blank chromatogram, evidencing the capture of He contaminants in the adsorbent. 

Before the analysis, all tubes with adsorbent were treated according to the procedure recommended by 

the supplier (i.e., twice time baking in the CPI device). This procedure was sufficient to clean up the 

tubes; it was further confirmed by GC-MS test. However, considering the fact that in our case the 

blank chromatogram was obtained when helium was blown through the adsorption tube for 10 min at 

50 mL/min flow, in total, contaminants from 500 mL of He could be captured. The presence of 

impurities is not seen as chromatographic peaks during the routine run (He flow-rate was 1 mL/min), 

though it looks to be pre-concentrated in the adsorption tube. Thus we consider even pure He as the 

source of the contamination, with total impurity less than 0.5 ppm according to the He provider. Other 

parts of the sample collection (silicon tubes, fittings) can also contribute to the background, so for the 

blood plasma samples comparison, VOCs found in background have been skipped from analysis. 

Blank chromatograms have been accurately assessed in order to skip the compounds that are present in 

the drying gas, i.e., peaks present in the blank with SNR > 3 were not counted. A typical 

chromatogram in the representation of characteristic ions of the VOCs released from 5 L of blood 

plasma is given in Figure 2. As given here by number labels, only 15 VOCs originating from the small 

amount of dried blood plasma samples were clearly distinguished from the background (SNR > 10). 

Taking into account reference studies and the established fact that hundreds of different chemical 

compounds are present in blood or blood plasma, our current result reveals much less, but this amount 
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is reasonable if one considers the small amount of sample used for VOC collection. Therefore, only 

VOCs with relatively high concentrations are detected, while the concentration of many other trace 

compounds lies below the detection limit of the experimental method. Nevertheless, enough data was 

collected to confirm the differences between groups.  

Figure 2. Typical (selected ions) chromatogram of volatile compounds released from 5 L 

of blood plasma during drying in pure He gas. VOCs collected in a small sorption tube 

filled with Tenax GR and subsequently thermally desorbed into the GC-MS system by the 

means of Curie point flash pyrolysis. Ions m/z = 43, 44, 56, 57, 60, 67, 72, 80, 84, 91, 104, 

105, 106, and 108 used for representation. 

 

3.2. Repeatability of Chromatograms  

The chromatograms of the several samples (five replicates) were checked for repeatability, and they 

were quite repeatable with a relative standard deviation (RSD) less than 20% for each reported 

compound. However, when the sample was assessed after a three-month interval, significant changes 

in the chromatogram were observed, and the number of compounds also decreased. This means that 

certain samples’ loss of the VOC content occurs while thawing/refreezing the sample. For instance, for 

aldehydes such as nonanal and octanal, the change of intensity with time was estimated about 30% 

after a few months and a second thawing cycle. According to the WHO regulations of blood plasma 

storage [33], fresh-frozen plasma can be stored at the temperature −20 C for at least five years without 

significant loss of integrity. However, repeated thawing and freezing may cause denaturation of plasma 

constituents. While there are no regulations regarding VOC content of blood plasma, we followed the 

WHO standards for blood plasma processing. Thus all samples in our case were analyzed within one 

month after receipt and only after first thawing. In order for correct assessment of VOCs released from 

blood plasma with the described method, the samples should be analyzed as soon as possible after 

collection, and kept in appropriate frozen conditions before analysis. Moreover, taking into account 

that the solubility of VOCs depends on the sample temperature [34], and their concentrations extracted 
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from fresh samples can differ from those frozen and thawed before analysis, we did not analyze fresh 

samples, but all samples were analyzed and compared after first thawing, i.e., after the absolutely same 

processing history. 

3.3. Compounds Released from Blood Plasma  

Based on the comparison with the blank chromatogram (helium through the Tenax GR), the 

intensity of several compounds was found much higher than in the blank, or was not present in the 

blank at all. These compounds were considered to be VOCs evaporated from the blood plasma 

samples. As already mentioned, to assure that all compounds are well detected by the described 

method, only peaks with high signal-to-noise ratios (SNR > 10) were considered. A list of the detected 

VOCs with names tentatively identified by the NIST library, main ions found in mass spectra, 

retention times, and CAS registry numbers are given in Table 2, and also indicated by numbers in the 

chromatogram in Figure 2. These VOCs were subject to comparison between the healthy and cancer 

patients groups. Several normality tests (Shapiro-Wilk, Anderson-Darling, Lilliefors and Jarque-Bera) 

were run with all samples confirming that data acquired for all compounds do not follow normal 

distributions, thereby justifying the use of the non-parametric Mann-Whitney test for significant 

differences. In spite of the certain possibility of capturing volatiles from the blood plasma samples, the 

described GC-MS method does not account for all VOCs evaporated from the samples during drying, 

because of the limited possibilities of the sorbent (adsorption properties of Tenax GR) and GC 

capillary column (chemical properties of DB-WAX). However, this combination was best available in 

the laboratory at the time of experiment. Thus, in this study, we observed only 15 VOCs clearly 

distinguishable from the background, for which comparison between both sample groups have been 

performed. All these compounds’ GC data (peak areas) was used also for PCA, considering that they 

are common volatile metabolites for the blood plasma samples independently of disease presence even 

in normal conditions. This kind of comparison will give a possibility to assess ―global,‖ general 

metabolic disturbance due to disease.  

Table 2. Volatile organic compounds, metabolites detected by the thermal desorption gas 

chromatography-mass spectrometry (TD-GC-MS) analysis of dog’s plasma samples for 

both investigated groups (identified by comparison of mass spectrum with NIST library). 

# 
Tentative 

compound name 

Main 

ion, m/z 

Retention 

time, min:sec 

CAS 

number 
Probable metabolic origin 

Significance 

test p-value 

1 Toluene 91 06:20 108-88-3 Exogenous exposure [35] 0.008 

2 Hexanal 56 08:50 66-25-1 Natural metabolites, mediators 

of oxidative stress [36] 

0.008 

3 Styrene 104 15:10 100-42-5 Exogenous exposure but also 

naturally present at few ppb 

levels [37] 

0.692 

4 Octanal 43 16:50 124-13-0 Same as #2.Hexanal 0.002 

5 5-Hepten-2-one,  

6-methyl- 

43 19:02 110-93-0 Natural VOC, exogenous [38] 0.477 

6 Nonanal 57 21:30 124-19-6 Same as #2.Hexanal 0.934 
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Table 2. Cont. 

7 Acetic acid 60 24:00 64-19-7 Normal metabolite [36] 0.205 

8 1-Octen-3-ol 57 24:11 3391-86-4 Natural production VOC for 

simple mushrooms [39]  

0.001 

9 2-Butanone 43 24:36 78-93-3 Natural product found in plants 

[36], potential disease marker 

0.005 

10 1-Hexanol, 2-ethyl- 57 25:51 104-76-7 Widely used fragrance ingredient, 

occurring in nature [40] 

0.852 

11 Decanal 57 25:57 112-31-2 Same as #2.Hexanal 0.131 

12 Benzaldehyde 106 26:41 100-52-7 Flavoring agent, occasionally 

found in urine [36] 

0.054 

13 Pyrrole 67 26:27 109-97-7 Naturally occurring compounds, 

could be relevant to diseases [41] 

0.029 

14 1H-Pyrrole, 3-methyl- 80 28:16 616-43-3 0.054 

15 Acetophenone 105 31:27 98-86-2 Food additive 0.441 

3.4. Influence of Demographic Variables 

Several parameters characterizing the blood plasma samples including type of disease, dog breed 

type, age and sex were also available. Separate statistical assessment was undertaken in order to check 

the influence of these variables on the obtained results, though there were no statistically significant 

correlations between these parameters and concentrations (chromatographic peak areas) of compounds 

extracted from GC-MS data (data not shown). Disease influence was not assessed due to a wide variety 

of cancer types (23 disease types for 40 samples). Detailed information about the stage of the disease 

cancer site and histology was not available for the samples, and thus simple group division—cancer vs. 

control—was used for results presentation. Thus the main comparison was done for the criteria cancer 

vs. non-cancer without accounting for other patient parameters. Considering the reference studies, such 

comparison is valid due to the possibility of the existence of the biomarkers signaling the tumor 

angiogenesis or cancer-related oxidative stress in the organism. Such biomarkers are not specific to the 

particular disease, but are more likely to provide evidence of the intensification of the vascular growth 

and development in the area of the tumor.  

3.5. Statistical Comparison of the Two Groups 

As stated previously, the non-parametric Mann-Whitney test is appropriate for assessing whether 

two independent samples of observations have different average values. It is one of the best  

non-parametric significance tests and is used similarly to the Student t-test without necessary 

requirement for samples to follow normal distribution. It was used for different variables’ (VOCs 

released from the blood plasma) comparison in cancer and control subject groups. Graphical 

distribution of concentrations for compounds with statistically significant differences (p-value < 0.05) 

from Table 2 is shown in Figure 3. From these charts, we can see that it is difficult to select volatile 

substances, which can uniquely indicate the cancer presence, from the investigated list. However, these 

differences for the respective compounds in the distribution charts are quite informative. Some of these 

compounds were already reported as potentially related to cancer in human studies. As an abnormal 
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condition in a body cancer, it leads to cellular oxidative stress, and respectively, to the emission of 

cancer-specific VOCs into the blood [25,36,42,43].  

Figure 3. Distribution charts representing the variance in healthy and cancerous sample 

groups for six common volatile metabolites released from blood plasma during drying by 

He gas, subsequent adsorption in a Tenax GR filled tube and TD-GC-MS analysis (y-scale 

showing peak area in chromatogram, points represent individual measured samples, box 

borders, respectively, 25 and 75% samples fitting). 
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The presence of several species in the blood (particularly toluene and 2-butanone) can result from 

environmental exposure; however, we did not possess the information about the sample dogs’ histories 

of exposure to any organic vapors. Even toluene is commonly reported as an exogenous compound for 

human excretions [35]; in the study of Poli et al. [44], its elevation was seen in patients with lung 

cancer in comparison with non-smoking healthy controls. On the other hand, an increase of 2-butanone 

in the breath of lung cancer patients was observed by Bajtarevic et al. [9]. In our case, however, we 

obtained the opposite result for toluene (decreases in cancer group), but the same result for the 

compound tentatively identified as 2-butanone (increased in cancer group similarly to [9]), as can be 

seen from the distribution chart in Figure 3 and from the result of the Mann-Whitney test. However, 

more detailed studies for selected disease conditions are needed to confirm the validity of all suggested 

biomarker compounds.  

Octanal and hexanal—two tentatively identified aldehyde compounds have also been often reported 

as VOC cancer biomarkers in human samples, as well as many other aldehydes [27]. In this study, both 

aldehyde compounds also show significant differences between groups: hexanal is oppositely decreased, 

while octanal is increased, similar to several human sample studies [13,27]. On the other hand, in the 

cell culture-based experiments, hexanal was found to be consumed by cancer cells in comparison with 

healthy ones [45]. Although both aldehydes were statistically different between the groups, the 

measurement of these compounds alone is unlikely to provide valuable clinical information. 

The two remaining tentatively identified compounds (1-octen-3-ol and pyrrole) revealing statistical 

difference have rarely been reported as disease biomarkers. However, they can be relevant to the 

biological processes [39,41]. 

Principal component analysis is a useful statistic approach to reduce total variability in the data to 

more informative principal components and can be used to investigate recognition between the samples 

with or without cancer. The data of six significantly different compounds observed for 50 samples in two 

groups were used as independent variables for PCA. The result of PCA is shown in Figure 4(a) for the 

first two principal components accounting for 67.7% of total variability of metabolites. As it can be 

seen from Figure 4, complete recognition between the control and cancerous groups was not achieved 

by PCA treatment of the obtained TD-GC-MS data. However, the PCA points related to the healthy 

samples (except for one sample) can be certainly grouped on the background of much wider distribution 

of the cancerous samples. This result is most likely significant evidence of biochemical changes in the 

blood plasma composition due to disease progression. Only one sample is significantly different from 

others in the healthy group; it possessed the VOC features that are also observed in cancerous samples, 

though it is probably related to some other condition and not to cancer. The obtained result confirms 

general molecular cancer markers that can be found in the literature, i.e., there is strong evidence of 

cancer-related VOCs present in dogs with cancer plasma samples. However, no compounds have been 

found that can be used as pure, diagnostic decision-making cancer biomarkers. It is very important to 

continue this activity with variation in sample collection, preparation, data analysis, etc., in order to 

confirm which compounds can serve as potential cancer biomarkers and proceed to the clinical trials 

with larger populations. 
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Figure 4. (a) PCA of the PC1 and PC2 values (F1 and F2) resulting from statistical analysis 

of the abundance of volatile organic compounds determined by TD-GC-MS analysis of dog 

plasma samples, using volatile compounds observed in both healthy and cancer samples. 

(b) loading chart indicating the contribution of the variables in total variability of first two 

principal components (F1 and F2). 
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The current TD-GC-MS study aimed to investigate the biochemical perturbation of the blood 

plasma induced by cancer in dog samples in comparison with normal control subjects. Our study 
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without peak validation by standards—several VOCs demonstrated statistically significant difference 

in the two groups. Due to the variety of samples in respect to cancer type, it is at present difficult to 

claim the compounds specific to a certain disease. Additional investigations are needed in more narrow 

groups, preferably ones with the same disease and dog breed; this would clarify if the disease-specific 

VOC biomarkers could be found in blood plasma. However, tentative VOCs reported in our study can 

be considered as non-specific cancer biomarkers of cancer-related conditions, for example, enhanced 

angiogenesis or oxidative stress usually taking place in an organism with a tumor. Heterogeneity of the 

study population supports this conclusion. 

Variance between both sample groups showed statistically significant difference for six peaks 

(tentatively identified by NIST library VOCs: hexanal, octanal, toluene, 2-butanone, 1-octen-3-ol and 

pyrrole) released from blood plasma during the drying process, with a level of significance p < 0.05. 

However, none of the detected VOCs can be used as a single diagnostic predictor—even an account of 

all the significant factors does not lead to the clear group separation when using PCA.  

Certain features of cancer and control sample distribution, namely, a much wider spread of data 

points related to the cancer samples in comparison with the relatively grouped healthy samples, 

concludes the evidence of the altered VOC production by an organism affected by cancer.  

Obtained results demonstrate that the described TD-GC-MS technique can be developed as an 

alternative tool for the characterization of the metabolic perturbation in blood plasma samples to 

provide recognition and prognosis of cancer diseases; however, proper identification by standards and 

quantitative validation of all results should be first conducted. Additionally, the usage of dog samples 

could provide an alternative analytical methodology before investigating human samples that are often 

stricken by regulatory and ethical issues. To the best of our knowledge, our current work is the first 

investigation of VOC cancer biomarkers in dogs, providing approximate identification based on the 

cancer/cancer-free criteria. However, considering the aforementioned limitations, this preliminary 

result should be verified by a larger study. 
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