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SUMMARY

In many tissues, homeostasis is maintained by phys-
ical contact between stem cells and an anatomically
defined niche. However, how stem cell homeostasis
is achieved in environments where cells are motile
and dispersed among their progeny remains un-
known. Using murine spermatogenesis as a model,
we find that spermatogenic stem cell density is
tightly regulated by the supply of fibroblast growth
factors (FGFs) from lymphatic endothelial cells. We
propose that stem cell homeostasis is achieved
through competition for a limited supply of FGFs.
We show that the quantitative dependence of stem
cell density on FGF dosage, the biased localization
of stem cells toward FGF sources, and stem cell
dynamics during regeneration following injury
can all be predicted and explained within the frame-
work of a minimal theoretical model based on
‘‘mitogen competition.’’ We propose that this model
provides a generic and robustmechanism to support

stem cell homeostasis in open, or facultative, niche
environments.

INTRODUCTION

The maintenance of cycling adult tissues relies on the activity of

stem cell populations. To replenish cells lost through differentia-

tion, stem cells must balance self-renewal and differentiation

(Krieger and Simons, 2015; Simons and Clevers, 2011). Such

fate asymmetry may be enforced at the level of individual cell di-

visions or may be assigned stochastically with balance achieved

only at the population level—termed ‘‘population asymmetry’’

(Klein and Simons, 2011). Traditionally, efforts to resolve the fac-

tors that control fate asymmetry place emphasis on short-range

mitogenic and anti-differentiation signals from a definitive

anatomical niche, a specialized microenvironment to which

stem cells anchor, becoming physically separated from their

differentiating progeny (Morrison and Spradling, 2008; Stine

and Matunis, 2013; Watt and Hogan, 2000). However, in some

tissues, such as mammalian blood and spermatogenesis, stem

cell maintenance is thought to take place in a ‘‘facultative,’’ or
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‘‘open,’’ niche (Morrison and Spradling, 2008; Stine andMatunis,

2013; Yoshida, 2018a), where stem cells are often highly motile

and lie dispersed among their differentiating progeny. The ques-

tion of how stem cell number is regulated in such environments is

poorly understood.

In the mouse testis, the vast stem cells that support long-term

homeostasis are included within the population of GFRa1+ sper-

matogonia, which comprise mononucleated (Asingle [As]) and

syncytial (Apair [Apr] and Aaligned [Aal]) cells (Garbuzov et al.,

2018; Hara et al., 2014; Hofmann et al., 2005). Whether the

self-renewing compartment comprises all or a subset of this

population remains unclear (Lord and Oatley, 2017; Yoshida,

2018b). Although some propose that long-term self-renewal po-

tential is restricted to a small subpopulation of GFRa1+ As cells

expressing Id4 or other markers (Chan et al., 2014; Helsel

et al., 2017), others argue that the entire GFRa1+ population

comprises a single pool in which cells interconvert between

topologically distinct states of As and Apr/Aal syncytia (Hara

et al., 2014). Nevertheless, during homeostasis, it is known that

the size of the GFRa1+ pool is kept constant through population

asymmetry, in which continuous and stochastic stem cell loss

through differentiation is locally compensated by proliferation

of neighbors (Hara et al., 2014; Klein et al., 2010; Klein and

Simons, 2011). However, the mechanisms that ensure this bal-

ance remain undefined.

In the definitive, or closed, niche environment of Drosophila

and C. elegans gonads, self-renewal-promoting signals show a

restricted distribution (Spradling et al., 2011). In mouse seminif-

erous tubules, factors known to regulate stem cell behavior (i.e.,

self-renewal-promoting glial cell line-derived neurotrophic factor

[GDNF], the GFRa1 ligand [Chen et al., 2016; Meng et al., 2000],

and differentiation-promoting retinoic acid [RA] and Wnt) are

distributed in a spatially uniformmanner around the tubule, while

showing periodic temporal variation in concert with the seminif-

erous epithelial cycle (Sato et al., 2011; Sharma andBraun, 2018;

Takase and Nusse, 2016; Tokue et al., 2017; Vernet et al., 2006;

Ikami et al., 2015; Oakberg, 1956; Yoshida, 2018a). However,

GFRa1+ cells show biased localization toward the vasculature

(arterioles and venules) and surrounding interstitium; yet the ba-

sis of this localization is unknown (Chiarini-Garcia et al., 2001;

Hara et al., 2014; Yoshida et al., 2007). Despite such a bias,

GFRa1+ cells are not clustered in defined regions but disperse

among their differentiation-primed (NGN3+/RARg+/Miwi2+) and

committed (KIT+) progeny and show persistent and activemigra-

tion on the basement membrane along and between different

vasculature-associated regions (Figures 1A–1D and S1A; Ikami

et al., 2015; Carrieri et al., 2017; Hara et al., 2014), emphasizing

the non-canonical and open nature of the niche environment in

this tissue. Strikingly, despite local fluctuations, the GFRa1+

cell density averaged over tubular segments is remarkably con-

stant both spatially (Figures 1B, 1C, and S1A; Hara et al., 2014)

and temporally (remaining constant even across the 8.6-day

seminiferous epithelial cycle; Grasso et al., 2012; Ikami et al.,

2015). This suggests that the pool size regulation of GFRa1+ cells

is achieved in a manner that stabilizes their average density.

In this study, we report on how fibroblast growth factor (FGF)

family ligands, secreted from a subset of lymphatic endothelial

(LE) cells near the vascular network of arterioles and venules

and accompanying interstitium, serve as critical extracellular

factors that regulate GFRa1+ cell density homeostasis. By

analyzing the population dynamics of GFRa1+ spermatogonia

in wild-type (WT) and mutant mice, under both normal and per-

turbed conditions, we present evidence that competition for a

limited supply of mitogens (FGFs) provides a robust and generic

mechanism to support stem cell density regulation in the open

niche environment of the mouse testis.

RESULTS

FGF5 Expression in LE Cells Near the Vasculature and
Its Mitogenic Function on GFRa1+ Spermatogonia
As a starting point, we searched for key factors that could

contribute to GFRa1+ cell regulation. Based on the biased local-

ization of GFRa1+ cells toward the vasculature and the surround-

ing interstitium (Chiarini-Garcia et al., 2001; Hara et al., 2014;

Yoshida et al., 2007), we compared gene expression profiles be-

tween tubule regions facing the interstitium with areas facing

neighboring tubules (Hara et al., 2014; Figure 2A). These regions

were collected by laser capture microdissection and processed

for cDNA microarray analysis, providing 315 candidate genes

enriched in vasculature-associated regions (Table S1). A second

screening using in situ hybridization (ISH) revealed 11 genes that

showed similar expression in large flattened cells covering the

outer surface of the tubules near the interstitium (Figures 2B

andS1B). Among these, we focused on fibroblast growth factor 5

(Fgf5), because previous studies have emphasized the role

of FGF signals in providing mitogenic and anti-differentiation

effects on spermatogenic stem cells. This has been achieved

largely in vitro by adding FGF2 to culture media, although the

molecular identity of naturally acting FGFs in vivo remains elusive

(Kanatsu-Shinohara et al., 2003, 2014; Takashima et al., 2015).

FGF5+ flattened cells covered some 60% of the surface of the

tubules, with a significant bias toward areas facing the interstitium

(Figures S1C and S1D). Apart from a few interstitial cells, FGF5

was also immunolocalized to a subset of CD34+ LE cells in the

two layers of peritubular cells. LE cells, sometimes termed specif-

ically as parietal LE cells to avoid confusion with lymphatic vessel

endothelial cells, are so designated because they cover the sur-

face of lymphatic space (Clark, 1976; Kuroda et al., 2004; Figures

2C and S1E–S1G). Across the basement membrane and myoid

cells, GFRa1+ cells showed a significant positive spatial correla-

tion with FGF5+ LE cells, and NGN3+ cells and KIT+ cells showed

weaker and no correlations, respectively (Figures 2D, 2E, and

S1J; STARMethods). FGF5expressionwasobserved throughout

the seminiferous epithelial cycle (Figure S1I).

FGF5, like FGF2, promoted the proliferation of cultured

GFRa1+ spermatogonia in a concentration-dependent manner

(Figure 2F). FGF5 also led to the upregulation of genes associ-

ated with cell cycle progression (e.g., Ccnd2 and Myc), the

maintenance of an undifferentiated state (e.g., Etv5, Id4, Shisa6,

Gfra1, and Ret; Chan et al., 2014; Garbuzov et al., 2018; Meng

et al., 2000; Tokue et al., 2017; Tyagi et al., 2009), and the

downregulation of genes associated with differentiation (e.g.,

Ngn3,Miwi2,Sox3,Rarg, andStra8; Yoshida et al., 2004; Carrieri

et al., 2017; Raverot et al., 2005; Gely-Pernot et al., 2012; Ikami

et al., 2015; Endo et al., 2015), indicating the mitogenic and anti-

differentiation effects of the factor (Figure 2G). In vivo, GFRa1+

cells expressed FGF receptors as well as high levels of genes
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upregulated by FGF5 in vitro (Figure 2H), suggesting that

GFRa1+ cells receive the FGF5 signal. Further, in culture,

CD34+ cells prepared according to Seandel et al., 2007, which

indeed expressed Fgf5, supported the proliferation of GFRa1+

spermatogonia without additional FGF in the media (Figures 2I

and S1H). Together, these findings support the idea that FGF5,
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Figure 1. Testis Anatomy and Constant

Average Density of GFRa1+ Stem Cells

(A) Anatomy of a mouse testis and seminiferous

tubules.

(B) An image of a whole-mount seminiferous

tubule after immunofluorescence (IF), in which

positions of GFRa1+ cells are traced (magenta).

White and gray lines alongside the tubules indicate

1-mm-long segments, containing the indicated

numbers of GFRa1+ cells.

(C) Variable numbers of GFRa1+ cells contained in

a 1-mm-long segment (left) and the highly con-

stant average density over long continual seg-

ments over 10 mm (right). Horizontal lines indicate

the average values.

(D) Hierarchy (left) and interminglement (right;

a whole-mount IF of seminiferous tubules) of

GFRa1+, NGN3/RARg+, and KIT+ spermatogonia.

Scale bar, 100 mm.

produced by a subset of LE cells, contrib-

utes to the regulation of GFRa1+ cells

through mitogenic and anti-differentia-

tion roles.

FGFs Control GFRa1+ Cell Density
in a Linear Dosage-Dependent
Manner
We then investigated the role of FGF5 in

mice carrying a null allele (Fgf5�) or an

extra copy of bacterial artificial chromo-

some-mediated transgene (BAC-Fgf5Tg)

(Khoa le et al., 2016; Mizuno et al., 2011)

(Figure S2A). In Fgf5–/– -mutant testes,

expression level of Gdnf did not change

(Figure S2B). Similarly, the number and

appearance of somatic cells, including

Sertoli cells, a crucial component for

stem cell regulation (Oatley et al., 2011),

did not change (Figures S2C–S2E). How-

ever, the average density of GFRa1+

spermatogonia showed a positive and

strikingly linear correlation with Fgf5

dosage (Figure 3A). We also observed a

decrease of testis weight, an increase of

abnormal tubules missing one or more

germ cell layers, and decrease of differ-

entiating germ cells in accordance with

the decreased Fgf5 dose (Figures

S3A–S3H).

During postnatal development, FGF5

expression was found to first accumulate

in CD34+ cells, which cover the entire tu-

bule surface, at around postnatal day 3 (P3), with levels

becoming stronger around P7 and then localized to the vascula-

ture-associated regions (Figure S3I). In parallel, GFRa1+ sper-

matogonia emerged postnatally by P3, both in WT and Fgf5mu-

tants. By P7, their density became already correlated with Fgf5

dosage (Figure 3B). Notably, during adulthood (up to 10 months
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of age), GFRa1+ cell density in mutants remained stable relative

toWT; loss or excess of Fgf5 caused no progressive depletion or

accumulation of GFRa1+ cells over time (Figures 3C and S3D).

Further, after an artificial reduction of the GFRa1+ cell pool by

busulfan treatment, within 3 months, their densities recovered

to their original levels specific to the respective genotypes (Fig-

ure 3D). We concluded that these mutants sustained steady-

state spermatogenesis with different density set points of

GFRa1+ cells that correlate in amanner that depends remarkably

linearly on Fgf5 dosage.

Because Fgf5�/� homozygotes still maintain GFRa1+ cells,

we examined the involvement of other FGFs and detected

Fgf4 mRNA in a pattern similar to that of Fgf5 (Figures S4A

and S4C). We also detected FGF8 protein in rat LE cells

(Figures S4B and S4D). In common with Fgf5+/�, both Fgf4+/�

and Fgf8+/� heterozygotes showed a proportionate reduction

in GFRa1+ cell density, although homozygotes were embryonic

lethal (Figure 3E; Meyers et al., 1998; Sun et al., 2000). Remark-

ably, intercross between these mutants demonstrated that

GFRa1+ cell density also correlates linearly with the total dosage

of Fgf genes, regardless of the combinations (Figures 3E and

S4E–S4M). We concluded that multiple FGFs play key roles in

the regulation of GFRa1+ cell density. The observed dependence

of GFRa1+ cell density on total Fgf dosage indicates that FGF

signaling plays a limiting role in the regulation of spermatogenic

stem cell density.

Each GFRa1+ Cell Receives an Unchanged Level of FGF
Signal in Fgf5 Mutants
How does FGF signaling regulate quantitatively GFRa1+ cell

density? Given the mitogenic and differentiation-inhibiting func-

tions of FGF (Figures 2F and 2G), we first considered whether

GFRa1+ cells receive altered levels of FGF signal in mutants,

which in turn change their fate, resulting in altered densities. Sur-

prisingly, however, we found that the rates of proliferation, differ-

entiation (RARg+ to GFRa1+ cell ratio) and death of GFRa1+ cells

were not different between Fgf5�/�, BAC-Fgf5Tg/+, and WTmice

(Figures 3F–3H), indicating conserved fate behavior of GFRa1+
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Figure 2. Identification, Expression, and Mitogenic Function of FGF5

(A) Outline of the screening for genes preferentially expressed in the vasculature-associated region.

(B) Representative ISH images for Fgf5 (blue) in testis sections, counterstained with nuclear fast red. Asterisk, intertubular arterioles or venules.

(C) A representative IF image of a tubule periphery stained for FGF5 (green), CD34 (red), and aSMA (blue).

(D) Representative image of an intertubular region of a GFRa1-GFP mouse testis stained for GFP (green), FGF5 (magenta), and DNA (blue). Scale bars, 10 mm in

(B)–(D). Broken lines, outline of tubules (C and D).

(E) Relationship between Fgf5+ area and the position of spermatogonia. Detailed data are shown in Figure S1J.

(F) Mitogenic effect of FGF5 (red) or FGF2 (blue) on cultured spermatogonia. Fold increase in the number of germline stem (GS) cells cultured with indicated

concentration of FGF5 for 8 days. Shown in average ± SEM (n = 3 independent experiments).

(G) Effects of FGF5 on gene expression. GS cells depleted for FGF2 andGDNF for 3 days were supplemented with or without FGF5 (100 ng/mL) for 24 hr, followed

by cDNA microarray analyses.

(H) Gene expression of GFRa1+, NGN3+, and KIT+ cells in vivo, selected from our published cDNA microarray data of fluorescence-activated cell sorting

(FACS)-sorted spermatogonial fractions, normalized to the values from whole testis (Ikami et al., 2015).

(I) Amplification of GS cells co-cultured with mouse CD34+ testicular cells or mouse embryonic fibroblast (MEF) with or without FGF2.
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Figure 3. Dosage of Fgf Genes Quantitatively Determines the Density of GFRa1+ Cells

(A) Average densities ± SEM of GFRa1+ cells and representative IF images of whole-mount seminiferous tubules for GFRa1 of 2.5-month-old mice with indicated

genotypes. Scale bar, 50 mm. n, number of mice examined.

(B and C) Average densities ± SEM of GFRa1+ cells in mice with indicated genotypes during young (B) and adult (C) ages. **p < 0.05 compared to Fgf5+/+.

(D) Recovery of the GFRa1+ cell densities following busulfan treatment in adult mice with indicated genotypes. NS, not significant (t test).

(E) Relative average densities ± SEM of GFRa1+ cells in mice harboring the indicated dosages of functional Fgf5, Fgf8, and Fgf4 alleles. Results from Fgf5-Fgf8

(green), Fgf5-Fgf4 (orange), and Fgf5-Fgf4-Fgf8 (cyan) intercrosses were shown separately, given their different genetic backgrounds (Figures S5J and S5K).

(F–H) Indexes of proliferation (EdU+ and pH3+ fractions; F), differentiation (quantified as the RARg+/KIT� [zNGN3+] over GFRa1+ cell ratio; G), and death (cPARP+

fraction; H) in GFRa1+ cells of indicated mice at 2.5 months of age.

(I) Global gene expression profiles in GFRa1+ cells of 2.5-month-old Fgf5+/+ and Fgf5�/� mice, indicating some positive (red) and negative (blue) FGF5 targets

(Figure 2G). r, Pearson’s correlation coefficient.
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cells between mutants. Consistently, clonal fates of pulse-

labeled GFRa1+ cells were essentially unchanged in Fgf5�/�

mice compared to WT (Figure S4N; Hara et al., 2014). Further-

more, gene expression profiles of GFRa1+ cells were highly

conserved between Fgf5�/� and WT, showing only minimal

differences in FGF target genes (Figures 3I and S4O). These

findings support the somewhat counterintuitive conclusion

that GFRa1+ cells receive largely unaltered levels of FGF signal,

even if the FGF dose and homeostatic GFRa1+ cell density

change.

This unexpected observation, as well as the linear relationship

between the Fgf dosage and GFRa1+ cell density, suggested

that the supply of FGF may be a limiting factor that is competed

for among the GFRa1+ cell population. In this case, the levels of

FGF signal received by each GFRa1+ cell would be equalized

among Fgf mutants harboring different GFRa1+ cell densities.

To develop this hypothesis, we then examined whether GFRa1+

cells consume the extracellular FGF when they receive its signal

in vivo, as this was probably the simplest form of competition

consistent with the general mechanism of FGF signal reception

by target cells (Ornitz and Itoh, 2015; Turner and Grose, 2010).

GFRa1+ Spermatogonia Consume FGF5
In general, efficient reception of FGF signal requires heparan sul-

fate (HS) proteoglycans (e.g., syndecans), whose HS chains bind

and transfer FGFs to the receptor tyrosine kinases (FGFRs) on

the target cells (Ornitz and Itoh, 2015; Turner and Grose, 2010).

Reception of FGF by these molecules is accompanied by inter-

nalization with the aid of syndecan binding proteins (SDCBPs),

transportation to multivesicular bodies, and degradation in lyso-

somes (Figure 4A; Goh and Sorkin, 2013; Hanson and Cashikar,

2012). Significant levels of mRNAs encoding these factors were

detected in GFRa1+ cells (Figures 2H and 4B). At the protein

level, FGFR2 and FGFR3 showed higher expression in GFRa1+

cells (Figures 4C, S5A, and S5B). Syndecan4 (SDC4) was de-

tected predominantly on the cell surface (Figure 4C) and in multi-

vesicular bodies (CD63+), which had been observed previously

by EM (Chiarini-Garcia and Russell, 2002; Figures 4E, S5C,

and S5D). GFRa1+ cells were also found to be rich in SDCBP

(Figures 4C and S5E). HS chains, especially those highly

sulfated, were also enriched in GFRa1+ cells, and HS was also

found over the basement membrane (Figure S5F). Thus,

GFRa1+ cells appeared to be well furnished with the reception

machinery for FGFs.

Moreover, we detected speckled FGF5 signals inside GFRa1+

cells (Figure 4D). Given the undetectable levels of Fgf5 tran-

scripts in these cells, these signals were most likely derived

from LE and interstitial cells (Figure 2B). Significant portions of

FGF5 cytoplasmic signals were co-localized with SDC4 as cyto-

plasmic puncta, on CD63+ multivesicular bodies, or on LAMP1+

lysosomes (Figures 4E and 4F). These observations indicated

that GFRa1+ cells consume extracellular FGF5, supporting the

idea that GFRa1+ cells compete for FGF. Interestingly, these fea-

tures were not restricted to GFRa1+ cells but were shared by the

entire population of undifferentiated spermatogonia, including

NGN3+ cells (Figures S5G and S5H). Together, these findings

indicate that the FGF signal is active in the interstitium-proximal

area, where GFRa1+ and NGN3+ undifferentiated spermato-

gonia may be the principal FGF target cells.

Homeostatic Stem Cell Density Regulation Follows from
a Model of ‘‘Mitogen Competition’’
To gain deeper insight into the mechanism of density regula-

tion, we developed a hypothesis based on the concentration-

dependent mitogenic and differentiation-inhibiting activity of

FGF, its supply from LE cells, and consumption by GFRa1+

cells (Figure 5A). To challenge this hypothesis, we developed

a minimal theoretical model (Methods S1), in which stem cells

(viz. GFRa1+ cells) are exposed to a steady supply of mitogens

(viz. FGF) from microenvironment (viz. LE cells), whose con-

sumption affects their fate behavior (viz. the probability to

self-renew or differentiate). For simplicity, we first focused on

the spatially averaged GFRa1+ cell density and mitogen con-

centration, returning later to consider the effect of spatial inho-

mogeneity of FGF production. The model is parameterized by

effective rate constants that reflect the timescales of (1) stem

cell proliferation and differentiation; (2) production, decay, and

consumption of mitogens; and (3) the sensitivity of cell fate

behavior to mitogen concentration (Figure 5A). Importantly,

these population-level rate constants are not equivalent to the

microscopic kinetic rate parameters; rather, they integrate the

net contribution of indirect effects on mitogen consumption

and processing, such as mitogen deposit to the basement

membrane, mitogen diffusion, spermatogonial movement, and

delays due to the successive activation of downstream targets

of the FGF receptor.

Analysis of the model dynamics showed robust convergence

to a homeostatic steady state, with a defined GFRa1+ cell den-

sity, independent of the starting condition, over a wide range of

rate parameters (Figure 5B; Methods S1). Qualitatively, when

the GFRa1+ cell density is low (cf. state ‘‘1’’ in Figure 5B), the

net rate of FGF consumption decreases, which in turn leads

to an increase of FGF concentration (cf. state ‘‘2’’). This drives

an increase in GFRa1+ cell density, as cells now tend to

proliferate rather than differentiate. When the GFRa1+ cell den-

sity becomes too large (‘‘3’’), the opposite situation prevails,

leading to a decrease of GFRa1+ cell density (‘‘4’’), which even-

tually converges to a homeostatic set point (green dot in Fig-

ure 5B). This scenario constitutes a negative feedback control

on GFRa1+ cell density, a requisite for robust homeostatic

regulation.

A key feature of this model is the emergence of a linear

correlation between the homeostatic GFRa1+ cell density and

FGF dosage (Figures 5C and 5D), as observed in Fgf mutants

(Figures 3C and 3E). Formally, this linear dependence is given

by s� = ðm� kc0Þ=k0
, where s� is the homeostatic stem cell den-

sity, m is the FGF supply rate, k is its degradation rate, c0 is the

threshold concentration at which proliferation and differentia-

tion are balanced, and k
0
is the rate of FGF consumption by

stem cells. The model also captures the counterintuitive obser-

vation that the fate behavior of GFRa1+ cells does not change

in Fgf mutants (Figures 3F–3I and S4N), a consequence of the

steady-state FGF concentration being always pinned at the

level c0, at which the increase (renewal) and decrease (differen-

tiation) of GFRa1+ cells is balanced (Figures 5B and 5E;

Methods S1). Given that GFRa1+ cells effectively compete

with each other for the limited supply of FGFs (or mitogens

more generally), we refer to this mechanism as the ‘‘mitogen

competition model.’’
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Noting that NGN3+ cells may also consume FGFs (Figures

S5G and S5H), we questioned whether this might affect the pro-

posed mechanism. To this end, we extended our model to two

stem and progenitor cell compartments (Figures 5A0 and S6B),

which both compete for the same mitogen supply. Analysis

showed that the effect of the second (progenitor) compartment

is to effectively redefine the parameters of the one-component

model, although the main features are not affected (Methods

S1). Similarly, the key properties of the model do not rely on

the premise that all GFRa1+ cells harbor self-renewing potential

(Methods S1). Moreover, the phenomenology is not affected by

the potential for ‘‘reversion’’ between the progenitor and stem

cell compartments or by the inclusion of a stem cell death,

both of which occur in homeostasis, if infrequently (Hara et al.,

2014; Nakagawa et al., 2007, 2010; Figures S6C and S6D;

Methods S1). These findings emphasize the robustness of the

mitogen competition mechanism in ensuring tissue-level stem

cell homeostasis.

Figure 4. GFRa1+ Spermatogonia Uptake and Consume FGF5

(A) A general scheme of FGF reception on target cells, adopted from Hanson and Cashikar (2012). (Republished with permission of Annual Reviews, from

Multivesicular Body Morphogenesis, Phyllis I. Hanson and Anil Cashikar, volume 28, 2012; permission conveyed through Copyright Clearance Center, Inc.)

(B) Expression of genes indicated in GFRa1+, NGN3+, and KIT+ spermatogonial fractions, selected from published cDNAmicroarray data (Ikami et al., 2015), and

normalized to the values from the whole testis.

(C and D) Representative images of GFRa1+ or GFRa1-GFP+ (cyan) cells exhibiting the speckled cytoplasmic staining of FGFR2, SDC4, SDCBP (C), or FGF5 (D)

(magenta, white arrowheads) and cell surface SDC4 staining (white arrows). Cytoplasmic SDC4 signals often form prominent clusters (yellow arrowheads).

(E and F) Representative images of SDC4+ (magenta) cells co-stained for FGF5 (green) with CD63 (E) or LAMP1 (F; cyan). FGF5+ speckles (arrows) were often

co-localized with CD63+ (arrowheads) or LAMP1+ (arrowheads) foci in SDC4+ cytoplasmic clamp. Scale bars indicate 10 mm, and the broken lines show outlines

of the tubules in (C)–(F).

Cell Stem Cell 24, 79–92, January 3, 2019 85



The Mitogen Competition Model Explains the Dynamics
of Recovery from Injury and the Biased Spatial
Localization of Stem Cells
Having established the predictive capacity of the model under

homeostatic conditions, we then questioned whether the model

could predict quantitatively the dynamics of stem and progenitor

cells during regeneration following injection of the cytotoxic re-

agent, busulfan. Analysis of the model suggested that the recov-

ery of GFRa1+ cell density following a strong perturbation from

its steady-state (viz. uninjured) value should be accompanied

by decaying oscillations (Figures 5D and 5E). This oscillatory

behavior arises due to the ‘‘inert’’ feedback between stem cell

density and mitogen concentration (Figure 5B; Methods S1):

an abrupt stem cell depletion leads to decreased FGF consump-

tion, resulting in its accumulation; hence, stem cells now receive

large amounts of FGF, leading to a bias toward proliferation

beyond that experienced at homeostasis, resulting in an ‘‘over-

shoot’’ in stem cell density. This excess results in increased

FGF consumption, which now lowers the FGF concentration,

leading to a bias toward differentiation, pushing the density

below homeostatic levels, and causing the process to restart.

Indeed, the predicted density overshoot provides the means to

challenge the alternative hypothesis that stem cell pool size

might be determined as the maximum capacity of tissue.

To test this prediction, we examined the kinetics during recov-

ery after busulfan treatment in WT animals and, indeed, found

decaying oscillations of GFRa1+ cell density that converged to-

ward the steady-state value over several months (Figure 6A)

with a profile that matched quantitatively with theory (Figure 6B).

Using the corresponding parameter fit, the model further pre-

dicted an altered oscillation amplitude for decreased FGF supply

(Figure 6B), as well as the phase shift of oscillations of the

NGN3+/RARg+ cell density (Figure 6C), supporting the integrity

of the mitogen competition model.

Finally, we questioned whether the mechanism of mitogen

competition could further explain the biased localization of

GFRa1+ (and, to a lesser extent, NGN3+) cells to FGF sources

(Figures 2D and 2E). Indeed, an extension of the model account-

ing for a spatial distribution of FGF sources and spermatogonial

motility (Hara et al., 2014) could predict the emergence of such a

bias while preserving the global characteristics of the popula-

tion-level models (Figures S6F–S6H; Methods S1). Within the

framework of themodel, localization of GFRa1+ cells to the vicin-

ity of FGF sources arises solely from their acquired bias toward

A

A’

B

D E

C

Figure 5. The Mitogen Competition Model

(A and A0) Feedback diagrams of the ‘‘mitogen competition’’ model, showing the mutual regulation of the stem cell density and FGF abundance; (A) case in which

only stem cells (‘‘S’’) consume FGF; (A0) case in which, in addition, the differentiation-destined progenitors (‘‘D’’) also consume FGF.

(B) Phase portrait showing the dynamics of stem cell density and FGF concentration in the mitogen competition model. The system possesses two fixed points: a

homeostatic state (green dot) and a loss state (red dot). For the shown parameter set, only the homeostatic state is stable, as all trajectories obtained by following

the arrows converge toward this state (e.g., the trajectory indicated by numbered dots). Here, c0 is the threshold FGF concentration at which duplication and loss

by differentiation exactly balance; the steady state is set at a stem cell density s� = ðm� kc0Þ=k 0
and c� = c0 (parameters explained in themain text). Blue dots (1–4)

are provided to explain qualitatively the model dynamics (see main text). Parameters are given in Table S2.

(C) Steady-state stem cell density as a function of the FGF supply rate. Above the critical supply rate, the homeostatic state is stable (shaded area) and the

homeostatic stem cell density depends linearly on the FGF supply rate. Below a critical supply rate, the loss state is stable (white area) and stem cell loss is

inevitable. Parameters are as in (B).

(D and E) Numerical examples of the model simulation showing the GFRa1+ cell density (D) and tissue FGF concentration (E), starting from arbitrary initial

conditions. Red, yellow, blue, and purple lines indicate different rates of FGF production (m=c0 = 0:15; 0:2; 0:25; 0:3d�1 in this order). All other parameters are given

in Table S2.
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stem cell proliferation, whereas those more remote have a

greater tendency to become lost through differentiation. In this

regard, the mitogen competition model suggests a key role for

migratory activity in combination with dynamic cell fate biases

in promoting localization, and chemo-attraction may not be

requisite to explain spatial biases.

Finally, to challenge the predicted causal relationship between

the local FGF concentration and GFRa1+ cell density, we per-

turbed the distribution of FGF by implantation of FGF5-soaked

beads alongside the seminiferous tubules for 5 days, as

Figure 6. Impact of Temporal and Spatial

Perturbations from Homeostasis

(A) Observed kinetics of the GFRa1+ cell density

following busulfan treatment in WT (left) and ex-

amples of IF images of whole-mount seminiferous

tubules stained for GFRa1 (right) at the segments

indicated by red circles in Figure S5I.

(B) Model results (curves) compared to experi-

mental measurements (dots) of the average

GFRa1+ cell density following busulfan treatment

in WT (dark blue, model fit) and Fgf5�/� (light blue,

model prediction) mice. Experimental data are

rescaled from (A).

(C) Model prediction (magenta curve) and experi-

mental measurement (dots) of the average

density of NGN3+ (in particular, RARg+/KIT�) cells
following busulfan treatment in WT. The GFRa1+

cell density is reproduced from (B) for comparison

(blue curve). Throughout, average densities ± SEM

of R4 testes at each data point are shown.

(D) In vivo transplantation of DiI-labeled/

FGF5-soaked beads into testicular interstitium.

DiI transfers to the proximal region of the host

seminiferous tubules.

(E) A whole-mount image of a part of host semi-

niferous tubules showing theGFRa1 (white) and DiI

(magenta) signals.

(E’) Trace of GFRa1+; cells in the top (E) and bottom

surfaces were projected, with enhanced DiI signal

overlain (red).

(F and G) Magnified images of the areas indicated

in (E), representing DiI-positive (F) and negative (G)

regions.

(H and I) Representative images of DiI-positive

(H) and negative (I) regions after transplantation of

BSA-soaked beads.

(J) GFRa1+ cell densities (numbers contained

in 1-mm-long segment) in DiI-positive and nega-

tive areas after transplantation of FGF5- or BSA-

soaked beads. **p < 0.05 compared to DiI-positive

areas after transplantation of FGF5-soaked beads

(t test).

Scale bars, 50 mm.

described previously (Figure 6D; Uchida

et al., 2016). Untangled tubules were

then immunostained to define the position

of GFRa1+ cells in relation to that of the

beads marked by DiI. These results

showed that the GFRa1+ cell density

was locally increased in areas proximate

to FGF5-soaked beads, but not BSA-

soaked beads, supporting the conclusion

that FGFs locally regulate GFRa1+ cell density (Figures 6E–

6J). The increased density of GFRa1+ cells in areas adjacent

to the beads paralleled an increased EdU uptake (Figures

S6M and S6N). Over longer time courses, the GFRa1+ cell

density decreased, followed by an increase of GFRa1� undiffer-

entiated spermatogonia, a trend captured by theory (Fig-

ure S6M). Indeed, this increase may explain recent reports

that, perhaps counterintuitively, associate FGF2 with the upre-

gulation of RARg and the promotion of differentiation (Masaki

et al., 2018).
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DISCUSSION

In this study, we have targeted themechanism of spermatogenic

stem cell density homeostasis in the open, or facultative, niche

environment of the basal compartment of seminiferous tubules.

Our results show that the in vivo fate behavior of GFRa1+ cells is

regulated by the mitogenic and anti-differentiation effects of

FGFs (FGF5, 8, 4, and possibly others) released from a subset

of LE, and interstitial, cells that lie in proximity to the vasculature

(Figure 7A). We propose competition for mitogens as a mecha-

nism that can explain the regulation of stem cell pool size, as

well as their bias toward the mitogen source. In this framework,

FGFs play a key role as fate determinants for which stem cells

compete (Figure 7B). Cells receiving more FGF become biased

toward proliferation over differentiation, most likely through

elevated expression of cell-cycle-promoting and differentia-

tion-inhibiting genes, as well as decreased expression of differ-

entiation genes. In contrast, cells receiving less FGF become

primed toward differentiation with opposite patterns of FGF

target gene expression. We found that a minimal model of

mitogen competition could account quantitatively for a variety

of key properties, including the dependence of the homeostatic

stem cell density on mitogen supply and the oscillatory recovery

toward steady state after drug-induced perturbation. Together,

these findings suggest that feedback through mitogen con-

sumption plays a major role in density regulation of spermato-

genic stem cells, although additional mechanisms of competi-

tion cannot be ruled out.

Themitogen competitionmechanism does not rely on whether

the stem cell compartment is ‘‘hierarchical’’ or whether it re-

ceives influx from a differentiating progenitor compartment via

‘‘reversion’’ or ‘‘dedifferentiation’’ (Figures S6C and S6D; Helsel

et al., 2017; Yoshida, 2018b). In this context, we found that Id4, a

proposed stem cell marker (Chan et al., 2014), was widely ex-

pressed across and even beyond the GFRa1+ cell population

both at mRNA and protein levels (Figures S7A–S7C), consistent

with La et al. (2018), although Id4+/high cells were found to be

spatially correlated with FGF5+ LE cells and the interstitium (Fig-

ures S7D and S7E; Yoshida, 2018a).

This study identifies FGF-producing LE cells as a key regulator

of spermatogenic stem cells, which work in concert with other

cells, such as Sertoli cells, myoid cells, Leydig cells, and macro-

phages (Chen et al., 2016; DeFalco et al., 2015; Oatley et al.,

2011). It is notable that LE cells express FGF5 at uniform levels

over the seminiferous epithelial cycle (Figure S1I). This contrasts

GDNF, WNT, and RA signals, which show temporal oscillation in

synchrony with the seminiferous cycle-related (and spatially ho-

mogeneous) gene expression of Sertoli cells (Grasso et al., 2012;

Ikami et al., 2015; Sato et al., 2011; Sharma and Braun, 2018; To-

kueetal., 2017; Vernet et al., 2006).Echoing this, our screeningdid

not identify genes showing vasculature-related expression in Ser-

toli cells, suggestinga separationof temporal andspatial control of

stem cells between Sertoli cells and FGF-producing LE cells,

respectively. In future studies, it will be important to understand

whether, in addition to FGFs, other signaling molecules (such as

GDNF) participate directly in stem cell regulation through the

samemechanismofmitogencompetition and, if theydo, how their

function is integrated spatio-temporally with that of FGFs.

In addition to FGF5, 8, and 4, expression of FGF2 has been

reported in the testis, although it was not detected in our ISH

(Mullaney and Skinner, 1992; Smith et al., 1989). Given the unde-

tectable mRNA level (Figures S4P and S4Q) and the reported

nuclear localization of the protein in undifferentiated spermato-

gonia (Gonzalez-Herrera et al., 2006), GFRa1+ cells may also

uptake exogenously supplied FGF2, whichmay play similar roles

in stem cell regulation to the aforementioned FGF members.

Figure 7. Proposed Stem Cell Regula-

tion in Seminiferous Tubules by Mitogen

Competition

(A) A schematic of the microenvironment regu-

lating GFRa1+ spermatogonia. In the basal

compartment of seminiferous tubules, FGFs are

produced and secreted by a subset of LE cells and

a few interstitial cells. FGFs, which have an affinity

to the basement membrane, are taken up and

consumed by motile GFRa1+ spermatogonia and

biases their fate behavior in a concentration-

dependent manner (see B). This leads to higher

local densities of GFRa1+ cells near the FGF

source (near the interstitium accompanying

arterioles or venules) compared to those distant

from the source.

(B) In the basal compartment, GFRa1+ cells

effectively compete for a limited supply of FGF.

Cells receiving larger amounts of FGF will show

higher expression of cell-cycle-promoting and

anti-differentiation genes and lower expression of

differentiation-promoting genes, tilting their fate

toward proliferation without differentiation. Cells

receiving smaller amounts of FGF will show

opposite patterns of target genes, tilting their fate

toward differentiation.
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Based on these findings, it is instructive to contrast the mech-

anistic basis of stem cell regulation in systems reliant on an open,

or facultative, niche versus those involving a closed, or definitive,

niche. In definitive niche-supported tissues, stem cells are gath-

ered to a restricted region where mitogens are concentrated so

that physical access determines stem cell pool size (Kitadate

et al., 2007; Spradling et al., 2011). In contrast, in the open

environment of the seminiferous tubules, stem cells are not

tightly linked spatially with the source of mitogen (FGFs) but

are dispersed among their differentiating progeny. Our results

show that competition for mitogens, released by somatic niche

cells, allows stem cells to ‘‘sense’’ their local density and adjust

their fate bias in response, which provides amechanistic basis to

understand the dynamics of population asymmetry (Hara et al.,

2014; Klein et al., 2010; Nakagawa et al., 2007).

A key element characterizing niche types is the effective

range of niche-derived factors (Inaba et al., 2015). Indeed, in

Drosophila testes and ovaries, diffusion of niche factors (e.g.,

bone morphogenetic protein [BMP]) is limited through their

binding to heparansulfate proteoglycans (HSPGs) so that it

only affects the cells next to the hub (Chen et al., 2011; Nakato

and Li, 2016). In the open niche environment of mouse testis,

diffusion alone may not explain the long-range effect of FGFs,

because free ligands are likely diluted out quickly from the

basal compartment by the systemic extravascular circulation.

Rather, given the affinity with HSPGs, FGFs are expected to

be immobilized (and concentrated) on the HS-rich basement

membrane (Figure S5F). However, by harboring abundant

HSPGs (e.g., Sdc4) and highly sulfated HS, GFRa1+ and

NGN3+ spermatogonia should have a high affinity for FGFs

(Figures 4C, S5D, S5F, and S5H). By up-taking FGFs from

the basement membrane, the motility of spermatogonia pro-

vides a mechanism to enhance the effective range of FGFs

into areas distant from the FGF source. Indeed, such ‘‘passen-

ger diffusion’’ associated with the stem cell motility may under-

lie the long-range effect of niche factors in other open niche-

supported systems.

In summary, we have shown how mitogen competition pro-

vides a basis to regulate stem cell density regulation in an

open niche environment. Such behavior constitutes a novel

form of ‘‘quorum sensing,’’ reminiscent of that exploited by

bacterial populations (Miller and Bassler, 2001) and ecological

systems, as it enables cells to respond to changes in the local

density of neighbors through the amount of secreted factors.

However, in contrast to mechanisms reliant on competition

for nutrients, which lead to starvation of excess populations,

here, it is the ‘‘priming’’ for different fate outcomes (viz. duplica-

tion versus differentiation) that leads to an effective population

size control. Hence, rather than playing the role of a finite

energy supply, the resource that is competed for (the mitogen)

exerts a fate control. Homeostasis through mitogen competi-

tion also shares similarities with the mutual proliferative regula-

tion of different cell types by secreted growth factors, as

recently reported for fibroblasts and macrophages (Adler

et al., 2018; Zhou et al., 2018); however, in the seminiferous tu-

bules, the LE cells provide a constant supply of the signaling

environment for stem cells, enabling them to restore and main-

tain homeostasis, even when perturbed strongly from steady

state by crisis or injury.

Finally, basedon these findings, it is useful to reflect onwhether

mitogen competition may be involved in themechanism of tissue

stem cell regulation in other contexts. In the canonical ‘‘definitive

niche’’ environment of the Drosophila testis, physical contact of

germline stem cells to a cluster of somatic hub cells provides

both local cues that orient cell division perpendicular to the hub

and access to signaling factors that maintain stem cell compe-

tence; together, these influences promote the asymmetric fate

of mitotic sisters based on their proximity to the hub (Spradling

et al., 2011). However, live-imaging assays show that a fraction

of sister pairs undergo symmetric differentiation or symmetric

self-renewal in a locally coordinated manner so that, through a

local repositioning on thehub, thenumber of stemcells thatmain-

tain access to niche-supporting signals remains constant (Sheng

and Matunis, 2011). Such stem cell renewal mechanisms may

represent an extreme limit of the mitogen competition paradigm,

where the extent of ‘‘mitogen’’ localization and degree of stem

cell motility are limited. From this perspective, the functional

behavior of the open (facultative) and closed (definitive) niche

might not be altogether distinct. Rather, they may represent the

twoextremesof a continuum, inwhich themechanismofmitogen

competition provides a unifying framework. Whether the mecha-

nism of mitogen competition can indeed serve as a basis to

explain stem cell pool regulation in a wide variety of niche envi-

ronments warrants future in-depth investigation.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Goat polyclonal anti-GFRa1 (used at 1:1000) R&D Cat#AF560, RRID: AB_2110307, Lot 0411081

Goat polyclonal anti-FGF5 (used at 1:1000) Santa Cruz Cat#sc-1363, RRID: AB_2102680, Lot C1810

Rat monoclonal anti-CD34 (RAM34) (used at 1:200) eBioscience Cat#14-0341-82, RRID: AB_467210, Lot E019241

Mouse monoclonal anti-aSMA (1A4) (used at 1:200) Sigma-Aldrich Cat#A5228, RRID: AB_262054, Lot 128K4843

Rabbit polyclonal anti-GFP (used at 1:400) Thermo Fisher Cat#A-11122, RRID: AB_221569, Lot 1828014

Rat monoclonal anti-GFP (used at 1:300) Nacalai Tesque Cat# 04404-84, RRID: AB_10013361

Rabbit monoclonal anti-RARg (used at 1:200) Cell Signaling Technology Cat#8965, Lot 1

Goat polyclonal anti-c-Kit (used at 1:400) R&D Cat#AF1356, RRID: AB_354750

Rat monoclonal anti-c-Kit (used at 1:200) BD Cat#553355, RRID: AB_394806

Rabbit polyclonal anti-SOX9 (H-90) (used at 1:200) Santa Cruz Cat#sc-20095, RRID: AB_661282, Lot E1412

Rabbit polyclonal anti-CSF1R (used at 1:200) abcam Cat#ab183316

Rabbit monoclonal anti-StAR (used at 1:200) Cell Signaling Technology Cat#8449, RRID: AB_10889737, Lot 1

Rabbit polyclonal anti-phospho-Histone H3 (Ser10) (used

at 1:300)

Millipore Cat#06-570, RRID: AB_310177, Lot 2664259

Rabbit polyclonal anti-Cleaved PARP (D214) (used

at 1:200)

Cell Signaling Technology Cat#9544, RRID: AB_2160724, Lot 4

Mouse monoclonal anti-FGF8 (used at 1:1000) Kyowa Hakko Kirin Cat#KM1334, Lot KM1334-2

Rabbit polyclonal anit-FGFR2 (used at 1:200) abcam Cat#ab10648, RRID: AB_297369, Lot GR19748-1

Rabbit polyclonal anti-SDC4 (Syndecan4) (used at 1:2000) abcam Cat#ab24511, RRID: AB_448112, Lot GR5827-3

Rabbit polyclonal anti-SDCBP (Syntenin) (used at 1:2000) abcam Cat#ab19903, RRID: AB_445200, Lot GR592112-1

Rat monoclonal anti-CD63 (NVG-2) (used at 1:200) BD Cat#564221, Lot 4076990

Rat monoclonal anti-LAMP1 (1D4B) (used at 1:200) Santa Cruz Cat#sc-19992, RRID: AB_2134495, Lot L2313

Rabbit polyclonal anit-FGFR3 (used at 1:200) abcam Cat#ab10651, RRID: AB_297372, Lot 888076

Rabbit monoclonal anit-Id4 (used at 1:2000) Cal Bioreagents Cat#M106, RRID: AB_1151797

Rat monoclonal anti-ECAD (used at 1:2000) TaKaRa Cat#M108

Rat monoclonal anti-CD9 conjugated by Alexa Fluor 647

(used at 1:2000)

Biolegend Cat#124809, RRID: AB_1279319

Rat monoclonal anti-c-Kit conjugated by PE/Cy7 (used

at 1:2000)

Biolegend Cat#135111, RRID: AB_2131136

Rat monoclonal anti-ECAD conjugated by PE (used

at 1:2000)

This study N/A

Mouse monoclonal anti-NAH46 conjugated by Alexa

Fluor 647

This study N/A

Mouse monoclonal anti-HepSS1 conjugated by Alexa

Fluor 488

This study N/A

Chemicals, Peptides, and Recombinant Proteins

Recombinant Human FGF-5 R&D Cat#237-F5, Lot GQ2312021

Recombinant Human FGF-basic PeproTech Cat#100-18B, Lot 121008

Bovine albumin MP Biomedicals Cat#810661

Fluoro-KEEPER Antifade Reagent Nacalai tesque Cat#12593-64

Hoechst33342 Thermo Fisher Cat#H3570, Lot 23363W

Bouin’s solution MUTO PURE CHEMICALS Cat#3314-2, Lot 170228

Schiff reagent Wako Cat#193-08445, Lot LKP7191

Hematoxylin MUTO PURE CHEMICALS Cat#2104-2, Lot 160107

Eosin Wako Cat#051-06495, Lot LKQ2516

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Shosei

Yoshida (shosei@nibb.ac.jp).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
The following mice were as previously described: Fgf5– (Fgf5go-moja/Utr), BAC-Fgf5, Fgf4flox, Fgf8–, Ngn3-Cre, Gfra1-GFP, and

Ngn3-GFP. The background of Fgf5–, Gfra1-GFP, Ngn3-GFP, BAC-Fgf5, and the control wild-type mice was C57BL/6 (Japan

SLC, Japan CLEA), while Fgf8– mice was maintained in a CD-1 background. Fgf4 and Fgf8mutants were obtained from the Mutant

Mouse Regional Resource Centers. Intercross between Fgf5 and Fgf4 or Fgf8mutants were done following the mating scheme (Fig-

ures S5J and S5K). Busulfan (10 mg/kg) was intraperitoneally injected to adult mice (2.5–4 months old) as described previously. All

animal experiments were conducted with the approval of The Institutional Animal Care and Use Committee of National Institutes of

Natural Sciences, or institutional committees for animal and recombinant DNA experiments at the Research Institute, Osaka

Women’s and Children’s Hospital.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Vybrant CM-DiI cell-labeling solution Thermo Fisher Cat#V-22888

Affi-Gel Blue Media BIO-RAD Cat#153-7302, Lot 64035867

Laminin, mouse BD Cat#354232, Lot A1741

Critical Commercial Assays

Click-iT EdU Alexa Fluor 594 or 647 Imaging Kit Thermo Fisher Cat#C10339 or C10640

HistoGene LCM Frozen Section Staining Kit Thermo Fisher Cat#KIT0401

RNeasy micro kit QIAGEN Cat#74004

DIG RNA Labeling Kit Roche Cat#1175025

Superscript III first strand synthesis system Thermo Fisher Cat#18080051

THUNDERBIRD SYBR qPCR Mix TOYOBO Cat#QPS-201

RNAscope Fluorescent Multiplex Detection Reagents Advanced Cell Diagnostics REF 320851, Lot 15127A

Lipofectamine 3000 Transfection Reagent Thermo Fisher Cat#L3000-015

Dual-Luciferase Reporter Assay System Promega Cat#E1960, Lot 0000144524

Deposited Data

Microarray data This study GEO: GSE118846

Experimental Models: Organisms/Strains

Mouse: Fgf5– (Fgf5go-moja/Utr):C57BL6J (Mizuno et al., 2011) N/A

Mouse: BAC-Fgf5:C57BL6J (Khoa le et al., 2016) N/A

Mouse: Fgf4flox (Sun et al., 2000) N/A

Mouse: Fgf8–:CD-1 (Meyers et al., 1998) N/A

Mouse: Ngn3-Cre:C57BL6J (Yoshida et al., 2004) N/A

Mouse: Gfra1-GFP:C57BL6J (Uesaka et al., 2007) N/A

Mouse: Gfra1-CreERT2:C57BL6J (Uesaka et al., 2007) N/A

Mouse: CAG-CAT-GFP:C57BL6J (Kawamoto et al., 2000) N/A

Mouse: Ngn3-GFP:C57BL6J (Yoshida et al., 2004) N/A

Oligonucleotides

Primers for qRT-PCR, Table S3 N/A

Probe-Mm-Fgf5 Advanced Cell Diagnostics P/N 417091, L/N 14070A

Probe-Mm-CD34-C2 Advanced Cell Diagnostics P/N 319161-C2, L/N 14062A

Probe-Mm-Des-C3 Advanced Cell Diagnostics P/N 407921-C3, L/N 14070A

Recombinant DNA

FANTOM clones, Table S1 DNAFORM N/A

e2 Cell Stem Cell 24, 79–92.e1–e6, January 3, 2019

mailto:shosei@nibb.ac.jp


METHOD DETAILS

Immunofluorescence (IF)
Whole-mount IF of seminiferous tubules and IF on testis cryosections (10mm-thick) were performed as previously described (Hara

et al., 2014; Nakagawa et al., 2010; Tokue et al., 2017). The following antibodies were used: anti-GFRa1, anti-FGF5, anti-CD34,

anti-aSMA, anti-GFP, anti-RARg, anti-c-Kit, anti-SOX9, anti-CSF1R, anti-StAR, anti-pH3, anti-Cleaved PARP, anti-FGF8, anit-

FGFR2, anti-SDC4, anti-SDCBP, anti-CD63, anti-LAMP1, anti-FGFR3, anti-ID4. All secondary antibodies were Alexa Fluor conju-

gated from Life Technologies and used at 1:300 dilutions. Anti-NAH46 and anti-HepSS-1 antibodies (Seikagaku) were directly

labeled with Alexa Fluor 488 5-SDP ester (Molecular Probes, A30052) and Alexa Fluor 647 NHS ester (Molecular Probes,

A20006), respectively, as follows. Conjugation reaction was performed by mixing antibody solution (1.0 mg/ml in PBS) and 1/50 vol-

ume of the reactive dye (10 mg/ml) and incubating for 1.5 h at room temperature under dark conditions. Unconjugated dye was

removed by gel filtration using Bio-Spin 6 Tris Columns (#732-6227; Bio-Rad) to collect the labeled antibody as a flow-through

fraction. The nuclei were stained with hoechst33342 (Life Technologies). Slides were mounted in Fluoro-KEEPER Antifade Reagent

(Nacalai). Observations andmeasurements were performed using anOlympus BX51 upright fluorescencemicroscope equippedwith

a DP72 CCD camera, a Nikon A1r confocal system, or a Leica TCS SP8 confocal system.

Clonal fate analysis of GFRa1+ cells
Fgf5+/+ or Fgf5–/–; GFRa1-CreERT2; CAG-CAT-GFP mice were injected intraperitoneally with 0.25 mg of 4-hydroxytamoxifen per

individual (sigma). After the tamoxifen treatment, the testes were removed and analyzed by IF, as described previously (Hara

et al., 2014).

Bead preparation and transplantation
Affi-Gel blue beads (Bio-Rad) were soaked in a solution of recombinant FGF5 proteins (0.1 mg/ml) or 0.1% BSA (bovine serum

albumin; 0.1 mg/ml) for 1 h at room temperature according to (Uchida et al., 2016). To mark the tubular wall adjacent to the trans-

planted beads, some beads were immersed in DiI (0.83 mg/ml; Thermo Fisher Scientific) solution for 15 min. For transplantation,

the soaked beads were transplanted into the testicular interstitium (1 or 2 beads [one per site] were separated with appropriate

intervals) via vitrified micro-capillary under a dissecting microscope.

Laser capture microdissection
Freshly isolated testes from 8 weeks-old C57BL/6 mice were cryosectioned with 7mm-thick sections, placed on slides, fixed, and

stained with HistoGene before collection of the areas of interest using PixCell IIe (ArcturusXT), according to the manufactures’ pro-

tocol. The obtained tissue fragments were proceeded for cDNA microarray gene expression analysis.

cDNA microarray gene expression analysis
From tissue fragments collected by laser microdissection, RNA was purified using RNeasy micro kit (QIAGEN) and processed for

two-round amplification to prepare fluorescence-labeled probes as described. Briefly, in the first round, RNA samples were

reverse-transcribed with T7-(dT)24 primer and made double-stranded, followed by cRNA synthesis using MEGAscript T7 kit

(Ambion). After quality checked with an Agilent 2100 Bioanalyzer, cRNA was reverse-transcribed into ds-cDNA, and subjected to

Cy3-labeled cRNA synthesis (Agilent Technology) by T7 reaction. From other materials (i.e., tissues, sorted cells, or cultured cells),

RNA purification and preparation of Cy3-labeled cRNA probes were performed as described. Hybridization, scanning and data

analysis were done as described. Briefly, Cy3-labeled probes were fragmented and hybridized to an Agilent whole mouse genome

4x44K or 8X60K array (Agilent Technology). Then, the image data was obtained using a G2505C scanner (Agilent Technology),

analyzed using a Gene Spring software (Silicon Genetics). Data correction was performed with the threshold raw signals set to

1.0, percent shift to the 75th percentile as normalization algorithm, and no baseline transformation.

in situ hybridization (ISH) of histological sections
315genes that showedhighenrichments to vasculature-associated regionsover tubule-bounding regionswere selectedbasedon the

microarray data above. dsDNA fragments containing full length sequences of these transcripts were amplified from FANTOM clones

(DNAFORM) using the primers of M13_Forward: CGACGTTGTAAAACGACGGCCAGTG and M13_Reverse: AGCGGATAACAATTT

CACACAGGAAAC. Then, digoxigenin-labeled antisense RNA probes were synthesized using DIG RNA Labeling Kit (Roche) and pro-

cessed for in situ hybridization on paraffin embedded sections, according to a protocol described previously (Yoshida et al., 2001).

ISH of dispersed testicular cells
ISH of dispersed single cells was carried out using an RNAscope Fluorescent Multiplex Kit (Advanced Cell Diagnostics). Freshly iso-

lated testis from 8 weeks-old C57BL/6 mice were processed to generate cell suspensions of the interstitial cells and the peritubular

cells on the seminiferous tubules by pipetting. The cell suspension was applied to MAS-GP-coated slide glass (Matsunami) and

employed for detection of Fgf5, Cd34 and Des RNA using each specific target probe and HybEZ Hybridization system (Advanced

Cell Diagnostics).
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RT-qPCR
Total RNA was extracted form samples (tissues, sorted cell or cultured cells) using RNeasy kits (QIAGEN), reverse-transcribed using

Superscript III first strand synthesis kit (Life Technologies), and processed for RT-qPCR using a LightCycler 480 system (Roche) with

gene-specific primers (Table S3).

FACS
For microarray analysis, GFRa1+, NGN3+ and KIT+ cell fractions were sorted by FACS, as described previously (Ikami et al., 2015;

Tokue et al., 2017). The GFRa1+ fraction was collected fromGfra1-GFPmice as the GFP+ fraction, and the NGN3+ and KIT+ fractions

were collected from Ngn3-GFP mice as GFP+/KIT– and GFP+/KIT+ fractions, respectively, using an EPICS ALTRA instrument

(Beckman Coulter). The data of FACS and the microarray were partly published previously (Ikami et al., 2015; Tokue et al., 2017),

with the data-set deposited in the GEO (GSE75532). In Figure 3I, GFRa1+ cells were collected from 2.5 months-old-adult Gfra1-

GFPmice in wild-type and Fgf5–/– backgrounds in the samemanner to (Ikami et al., 2015; Tokue et al., 2017). In Figure S7, spermato-

gonial fractions were sorted from Gfra1-GFPmouse testicular cell suspension, based on CD9, ECAD, KIT and GFP staining, using a

FACSAria II cell sorter (BDBiosciences). Anti-ECAD antibodies were conjugatedwith PE by R-Phycoerythrin AffiniPure Fab Fragment

Goat Anti-Rat IgG (Jackson ImmunoResearch).

In vitro culture of spermatogonia
Germline Stem (GS) cells derived from the C57BL/6 x ICR intercrossed mice were maintained according to (Tokue et al., 2017). For

the quantification of mitogenic effect of FGF2 or FGF5, 23 104 GS cells per well of 12-well plate were cultured in the respective con-

centration of FGF2 or FGF5 in supplement with 10 ng/ml GDNF. After 8 days, the cell numbers were counted (n = 3 independent ex-

periments). For the gene expression analysis, GS cells were depleted for FGF2 and GDNF for 3 days, and then supplemented with or

without FGF5 (100 ng/ml) for 24 hours, followed by cDNA microarray analyses. For the co-culture with CD34+ cells or MEF, GS cells

were cultured in supplement with GDNF, and with or without FGF2. The passage was performed every 6 days.

Culture of CD34+ cells
Primary testicular cells expressing CD34 were prepared from 8 wk-old mice referring to (Seandel et al., 2007), which designated

these cells as mouse testicular stromal, or MTS, cells. Seminiferous tubules were collected from detunicated testes and minced.

The tissue was washed and then enzymatically dissociated with agitation at 37 �C in a buffer containing collagenase, hyaluronidase,

andDNase I. The resultant cell suspension (non-filtered) was collected, plated in dishes coatedwith gelatin in a 50:50mixture of alpha

MEM/StemPro-34 (Thermo Fisher Scientific) supplemented with 20% FBS and expanded over two to five passages. Cells were then

cryopreserved or plated in 12-well plates coated with gelatin, and treated with mitomycin-C for 3 h, before use for co-culture with

GS cells.

Luciferase assay
Transient transfection of GS cells cultured in 48-well plates coated with laminin (BD Biosciences) was performed using Lipofect-

amine-3000 (Thermo Fisher Scientific), and the culture medium was changed after 24h. Analyses were performed 24h post-medium

change with or without FGF2. The luciferase activity of cell lysates was measured using a Dual-Luciferase assay system and a

GloMax 20/20n luminometer (Promega). The activity of the firefly luciferase reporter pGL4-Ngn3 was normalized to that of Renilla

luciferase expressed from co-transfected pGL4.7 plasmid as described (Tokue et al., 2017).

Copy number determination of the BAC transgene
Genomic DNA was extracted from tail clips of WT and mutant mice according to a standard protocol, including phenol-chloroform

extraction after lysis in buffers containing Proteinase K. To quantify the BAC transgene including the Fgf5 gene (Figure S2A), the real

time TaqMan PCRmethod using universal Probe Library probes (Roche) and gene-specific primers was used (Table S3). Copy num-

ber of Fgf5 was determined using Ppia as a standard.

QUANTIFICATION AND STATISTICAL ANALYSIS

Histology, evaluation of degenerating tubules, and measurement of the tubule area
Testes of WT andmutant mice were fixed with Bouin’s fixative and processed for paraffin-embedded section preparation (7mm thick)

and hematoxylin and eosin staining, according to standard procedures. The percentage of degenerating seminiferous tubules was

calculated based on the cross sections of seminiferous tubules (n > 200) that appeared on one transverse section for each testis. In

normal (WT) mouse testes, four generations of germ cells, each synchronously progressing through spermatogenesis, form cellular

associations of fixed composition (called seminiferous epithelial stages). Chronological sequence of these stages represents the

periodic change of seminiferous epithelium, known as ‘‘seminiferous epithelium cycle.’’ In the testes of Fgf mutants, a few tubule

cross-sections lacked one or more out of the four germ cell layers, which was defined as ‘‘degenerative tubules’’ in this study.

The area of the cross sections of seminiferous tubules were measured (n = 255 and 195 tubule sections in WT and Fgf5–/– mice,

respectively). The round shape tubule cross sections were photographed under bright-field illumination, then measured the areas

by a CellSens Standard software of an Olympus BX51 microscope.
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Counting the density of GFRa1+ or RARg+ cells
The densities of GFRa1+ or RARg+ cells were measured on immunofluorescenced whole mount seminiferous tubules or cryo-sec-

tions of the testes. Figures 1C, 3A, right, 6A, 6B, 6J, S2E, S6M, and S6N were counted by the whole mount seminiferous tubules. For

counting the cell density in 1 mm tubule length, the 1mm tubule length was measured, then the GFRa1+ cell number was counted by

an Olympus BX51 fluorescence microscope equipped with a DP72 CCD camera or a Leica TCS SP8 confocal system. For counting

the GFRa1+ cell density in > 10 mm tubule length, the GFRa1+ cell number in long continual segments over 10 mmwas counted. The

total length of counted tubule segments were 105mm (Figure 1C), 140mmofBAC-Fgf5Tg/+, 78 mm of Fgf5+/+, 94 mm of Fgf5–/–mice

(Figure 3A right), 122 mm (day10), 105 mm (day15), 94 mm (day20), 90 mm (day25), 160 mm (day30), 103 mm (day40), 100 mm

(day50), 90 mm (day60), 100 mm (day80), 73 mm (day110) of WT mice (Figure 6A), and 61 mm (day0), 106 mm (day10), 116 mm

(day15), 86 mm (day20), 91 mm (day25), 102 mm (day30), 104 mm (day40), 109 mm (day50), 104 mm (day60) of Fgf5–/– mice (Fig-

ure 6B) after busulfan treatment. In Figure 6J, the total lengths of counted tubule segments were 46 mm (+DiI in FGF5 beads),

79 mm (–DiI in FGF5 beads), 17 mm (+DiI in BSA beads), 17 mm (–DiI in BSA beads). In Figure S2E, the densities of GFRa1+ and

SOX9+ cells were counted in total 14- and 18-mm tubule segments of WT and Fgf5–/– mice. In Figures S6M and S6N, the GFRa1+

or RARg+ cell densities were counted in the following segments, 53 mm (day0), 32 mm (day3), 28 mm (day6), 29 mm (day9),

30mm (day14), 39 mm (day20), 21mm (day30). The densities of GFRa1+ or RARg+ cells were counted in the cryo-sections at Figures

3A left, 3B–3H, 6C, S2D, S3D, S3H, S4I, S4J, S4M, S6K, and S6Lwere counted by the cryo-sections. For counting the cell density per

tubule section, theGFRa1+ or RARg+ cells permore than 150 tubule sections per testes (NR 3mice) were counted byOlympus BX51

microscopy.

To assess whether spermatogonia are distributed uniformly, randomly or in a clustered fashion, we performed a statistical test,

comparing the homeostatic frequencies of spermatogonial unit numbers in bins of 1mm length along the tubule axis to a Poisson

distribution with the samemean (Figure S1A). A standard c2-test yielded a p value smaller than 10�5, indicating a significant deviation

from spatial randomness. Furthermore, a variance-to-mean ratio of the bin population of ðhn2i � hni2Þ=hniz3 indicated that sper-

matogonial units were more clustered rather than random or uniform. However, we could not detect any spatially regular patterns

associated with this clustering.

Measurement of Fgf5 RNA-positive cells on tubule circumference
Testicular sections were stained for Fgf5 by in situ hybridization. The tubule cross sections were photographed under bright-field

illumination, then measured the Fgf5–positive signals on tubule circumference.

Measurement of FGF5-positive signals adjacent to interstitial area or tubule bounding area
Testicular sections were double stained for FGF5 and CD34 by IF. The tubule cross sections were photographed under a confocal

microscope (Nikon A1r). The data were then analyzed to determine whether the FGF5-positive or -negative signals distributed in

the interstitial-tubule or tubule-tubule bounding regions, and then measured their lengths of FGF5- and CD34-double positive or

FGF5-negative and CD34-positive, respectively.

Scoring the distribution of GFRa1+, RARg+, KIT+ and ID4+ spermatogonia for Fgf5–positive area
Testicular sections were stained for Gfra1 or Fgf5 by ISH, or RARg, KIT, or ID4 by IHC. All the tubule cross sections were photo-

graphed. The spatial correlation with Fgf5–positive signals was judged from whether the distributions ofGfra1, RARg or KIT-positive

spermatogonia were adjacent to Fgf5+ signals on the adjacent section. When their spermatogonia were (or were not) adjacent to

Fgf5+ signals, they were categorized as ‘‘positive’’ (or ‘‘negative’’). When their spermatogonia were partially adjacent to Fgf5+ signals,

they were categorized as ‘‘boundary.’’ The category of ‘‘boundary’’ was estimated as an intermediate between ‘‘positive’’ and

‘‘negative,’’ and then the each ‘‘boundary’’ parameter was assigned to 0.5 of ‘‘positive’’ and 0.5 of ‘‘negative’’ in the determination

whether the spermatogonia distributions were adjacent to Fgf5 mRNA in the category between positive or negative for the calcula-

tion. Then, expected positive numbers were calculated assuming their non-biased distributions, and the ‘preferences’ (actual pos-

itive cell number/expected positive cell number) were determined; these were statistically evaluated by chi-square test between the

actual and expected cell numbers adjacent or not to Fgf5+ area. For each data point, more than 40 seminiferous tubule cross-sec-

tions in 3 testicular slices were examined. The data were then analyzed to determine whether the distributions ofGfra1, RARg, KIT or

ID4-positive spermatogonia were adjacent to Fgf5+ signals on the adjacent section. Statistical evaluations were performed as

explained below, using the data of the Gfra1-positive spermatogonia as an example. The 3 testis specimens used for analyses

contained 91 cross-sections of the seminiferous tubules in total, and 121 Gfra1-positive spermatogonia were observed. These

121 spermatogonia were classified as ‘‘positive’’ or ‘‘negative’’ for adjacent to Fgf5+ signals on the adjacent section. The lengths

of the circumference of the tubule cross-sections were also summarized according to their levels of ISH staining of Fgf5. Then,

the expected numbers of Gfra1-positive spermatogonia in the category of positive or negative area were calculated on the basis

of the null hypothesis: the Gfra1-positive spermatogonia evenly distribute without bias. The expected numbers of Gfra1-positive

spermatogonia were obtained by multiplying the total number ofGfra1-positive spermatogonia by the percentage of tubule sections

in the category. The preferences of positive cells in each category were calculated as the ratio of the observed number of positive

cells in each category to the expected number in the same category. Thus, a preference of 1 indicates that the actual number of

Gfra1-positive cells is the same as expected, i.e., a non-biased distribution. Values greater or smaller than 1 suggest preference

or avoidance, respectively. The differences between the observed and expected numbers of Gfra1-positive spermatogonia were
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statistically evaluated by chi-square tests. The P-value (0.00002) was small enough to reject the null hypothesis and indicated a

non-random distribution of Gfra1-positive spermatogonia. This was also true for RARg but not KIT-positive spermatogonia, whose

P-values were 0.00052 and 0.13494, respectively.

Scoring the distribution of GFRa1+ and ID4+ spermatogonia for the interstitium or tubule-tubule bounding area
Testicular sections were stained for GFRa1 and ID4 by IF. The tubule cross sections were photographed by Nikon A1r confocal

system. The spatial correlation was judged from whether the distributions of GFRa1 or ID4-positive spermatogonia were adjacent

to the interstitium or tubule bounding region. When their spermatogonia were partially adjacent to the intermediate area between

the interstitium and the tubule bounding region, they were categorized as ‘‘boundary.’’

DATA AND SOFTWARE AVAILABILITY

The accession number for the microarray data reported in this study is NCBI GEO: GSE118846.
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