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Abstract

COVID-19 has got us to face a new situation where, for the lack of ready-to-use vaccines, it

is necessary to support vaccination with complex non-pharmaceutical strategies. In this

paper, we provide a novel Mixed Integer Nonlinear Programming formulation for fine-

grained optimal intervention planning (i.e., at the level of the single day) against newborn

epidemics like COVID-19, where a modified SIR model accounting for heterogeneous popu-

lation classes, social distancing and several types of vaccines (each with its efficacy and

delayed effects), allows us to plan an optimal mixed strategy (both pharmaceutical and non-

pharmaceutical) that takes into account both the vaccine availability in limited batches at

selected time instants and the need for second doses while keeping hospitalizations and

intensive care occupancy below a threshold and requiring that new infections die out at the

end of the planning horizon. In order to show the effectiveness of the proposed formulation,

we analyze a case study for Italy with realistic parameters.

Introduction

The ongoing COVID-19 pandemics, with its huge toll in terms of deaths and economic dam-

age, represents an unparalleled global threat to human society as a whole. As of May 2021,

reportedly more than 155 million COVID-19 cases have been identified, with more than three

million deaths [1]. To face such a threat, governments have initially reacted via non-pharma-

ceutical interventions, i.e., by enforcing strict social distancing [2–5]. Then, with an unprece-

dented effort by human society as a whole, a wide variety of vaccines have been developed in a

remarkably narrow time span [6–10]; such a rapid development has been possible also due to

the extensive reliance on bioinformatics [7] and artificial intelligence [11]. Notably, the effec-

tiveness and geographical distribution of such a plethora of vaccines has proven to be highly

heterogeneous (e.g., see [12] and references therein). Notice that, to date, no universally

acknowledged cure has been identified; the case of the debate regarding therapies based on

Remdesivir represents an illustrative example in this sense [13, 14]. Therefore, to date, the con-

trol knobs available to governments amount to just social distancing (e.g., lockdowns, limiting

affluence to shops, wearing masks, etc.) and vaccination. In the literature, optimization tools
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to face epidemics, such as OpenMalaria [15, 16] and STDSIM [17], have proved their effective-

ness in analyzing and planning illness containment [18–20].

However, in the case of COVID-19, the unavailability of reliable information with adequate

level of detail requires reliance on simpler approaches. Among several other options, SIR mod-

els [21, 22] represent a reasonable choice in terms of predictive capability and simplicity. Inter-

estingly, such models have been applied to describe different epidemics such as SARS [23]

Influenza A (H1N1) [24], Measles [25] and Hepatitis C [26]. Moreover, compartmental mod-

els in general have proven useful to model quite different epidemics scenarios e.g., Chlamydia

trachomatis, antiviral treatment in the case of HIV, nosocomial infections and transmission of

antibiotic-resistant pathogens [27]. For this reason, such model allows to understand the avail-

able degrees of freedom, i.e., the policies that can be put in place to react to the epidemics, even

in the absence of detailed quantitative predictions [28]. Indeed, several control [29–31] and

optimization [29, 32–35] approaches have been developed, based on simple epidemics models

such as the SIR. In particular, it is worth mentioning: [35], where a coarse-grained and static

optimization framework for selecting the amount of vaccines to be allocated to different popu-

lation classes with the aim of ending the epidemics is given; [36], where the authors focus on

vaccination of essential workers; [37] where the authors allocate vaccines to age classes in

order to optimize cost functionals such as deaths or hospitalization, but do not guarantee the

end of the epidemics at the end of the considered time horizon nor consider different vaccines

with different efficacies at the same time. Other examples include [38, 39], where optimization

of the supply chain underlying the vaccine delivery is considered. Notably, based on epidemio-

logical data from the UK together with estimates of vaccine efficacy, [40] provides a framework

to conduct “what if” analysis of the evolution of the disease under different interventions.

However, while being beneficial for high-level policy making, does not translate into an opera-

tive plan for the administration of pharmaceutical and non-pharmaceutical interventions.

Moreover, the workin [41] provides a model predictive approach to the problem where inter-

ventions at time t are selected based on the foreseen effect in the next future, following a

“receding horizon” approach. However, although quite detailed, the epidemics model underly-

ing such framework amounts to a single population of individuals and does not distinguish

between age classes.

To the best of our knowledge, to date no formulation is able to support the fine-grain, oper-

ative and dynamical planning of interventions, while accounting for a wide range of phenom-

ena that are peculiar of epidemics like COVID-19, e.g., different types of vaccines, the need for

a second dose, the capacity of the healthcare system in terms of regular and intensive care hos-

pitalization, the availability of vaccines in batches at selected time instants.

In this paper, we fill this gap by providing a novel optimization formulation that aims at

implementing an optimal intervention plan to fight newborn epidemics like COVID-19, i.e.,

epidemics characterized by two key factors: (i) high infection rate and (ii) high stress posed on

the healthcare system and/or society in terms of intensive care occupancy, deaths or economic

consequences. Specifically, we first develop a modified discrete-time SIR model for heteroge-

neous population classes (e.g., age or geographical classes) that accounts for the effect of social

distancing and vaccination. In more detail, we assume the ratio at which individuals in two

classes infect each other can be reduced by enforcing tailored social distancing measures.

Moreover, we consider several types of vaccines, each characterized by their efficacy as well as

the delay required for the vaccination to be effective. In this view, we assume that, after the vac-

cine takes effect, a fraction of the population becomes immune. Notice that we explicitly take

into account the possibility to plan for a first and a second dose of the vaccines.

Based on the proposed variation of the SIR model, we develop an optimization formulation

that aims at planning social distancing measures and vaccinations at the level of the single day
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in order to reach the end of the epidemics and to guarantee that the state reached is robust, in

that new infections die out. In doing so, we enforce constraints accounting for aspects such as

the need of a second dose, the delayed and partial effect of multiple types of vaccines, the

requirement that congestions of the healthcare system are avoided.

Briefly, we show that the proposed formulation amounts to a Mixed Integer Nonlinear Pro-
gramming (MINLP) problem. We point out that the term MINLP is used to denote a class of

optimization problems where some of the variables being selected are constrained to be inte-

ger-valued while some other can be real-valued (i.e., Mixed Integer (MI)), the objective func-

tion and/or some of the constraints are nonlinear functions (i.e., Nonlinear (NL)). In the

context of optimization, “program” or “programming” (P) can be regarded as a synonym of

optimization problem or optimization formulation. Notably, the class of MINLP problems is

known to be computationally hard to solve (e.g., see [42]); therefore, exact solution of the

problem is a nontrivial task, thus calling for approximation strategies to be put in place.

Materials and methods

Notation

We denote vectors by boldface lowercase letters and matrices with uppercase letters and we

refer to the (i, j)-th entry of a matrix A by Aij. We represent by 0n and 1n vectors with n compo-

nents, all equal to zero and to one, respectively. Moreover, we use 0n×m, 1n×m to denote an

n×m matrix with just zero and one entries, respectively. We use square brackets to denote the

arguments of a function, e.g., we use f[x, y] to denote a function with arguments x and y. For

the sake of brevity, where understood, we abbreviate a function of one or more arguments by

f[�]. Given a vector x 2 Rn
we denote by diag[x] the n × n diagonal matrix having diag[x]ii = xi,

for all i 2 {1, . . ., n}. On the same footings, given a matrix A 2 Rn
� Rn

we denote by diag[A]

the n dimensional vector having diag[A]i = Aii, for all i 2 {1, . . ., n}. We denote by� the Hada-

mard (i.e., entry-wise) matrix product between matrices A and B with the same dimensions,

i.e., the matrix C = A� B is such that Cij = Aij Bij; analogously, the Hadamard product between

c = a� b between two vectors a,b is such that ci = ai bi. Remember that Hadamard product is

commutative; moreover, notice that a� b = diag[a]b = diag[b]a.

SIR epidemics model

In this section we briefly review the SIR Epidemics model; the interested reader is referred to

[35, 43] for further details. Let us consider a population of N individuals divided in n classes

(e.g., by age or geographical area); we denote by Nℓ the population in the ℓ-th class with

N ¼
Pn

‘¼1
N‘. Moreover, let us indicate with sℓ[t], iℓ[t], rℓ[t] the fraction of susceptible, infec-

tious and removed individuals in the ℓ-th class at time t and with s[t], i[t], r½t� 2 Rn
the stack

of such variables for all classes. In the following, we assume that s[0], i[0], r[0] 2 [0, 1]n and

s[0] + i[0] + r[0] = 1n. The SIR equations for such an heterogeneous population are given by

@ts½t� ¼ � s½t� � Bi½t�

@ti½t� ¼ s½t� � Bi½t� � g� i½t�

@tr½t� ¼ g� i½t�;

8
>>><

>>>:

ð1Þ

where B is the n × n transmission matrix, Bij being the rate at which a susceptible individual of

class i meets an infectious individual of class j and becomes infected, while the vector g 2 Rn

collects the rates γi at which infectious individuals in the i-th class are removed from the
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infection cycle. Notably, the above choice for the initial conditions guarantees that s[t], i[t],
r[t] 2 [0, 1]n and s[t] + i[t] + r[t] = 1n for all time instants t.

End of the epidemics. Within the SIR model, an epidemic ends when i[t] = 0n, i.e., when

s½t� þ r½t� ¼ 1n;

such states are also called end-of-epidemic states. At this point, let us define n = [N1, . . ., Nn]T

and let us consider the overall amount of infectious individuals I[t] = iT[t]n; we have that

@tI½t� ¼ @ti
T½t�n ¼ i½t�TðBTdiag½n�s½t� � diag½n�gÞ:

In this view, since i[t]� 0, the total number of infected individuals I[t] is guaranteed to

decrease with time irrespective of the particular value of i[t] if and only if BT diag[n]s[t] −
diag[n]γ< 0n, i.e., if and only if [35, 44]

Rs � 1n; ð2Þ

where R ¼ diagðgÞ
� 1
diag½n�� 1BTdiag½n� is linked to the next generation matrix [43] that

characterizes the stability of an end-of-epidemic state respect to infections and allows to calcu-

late the basic reproduction number R0 indicating the theoretical rate of new infections that an

infectious individual could generate.

Modeling assumptions and limits of the SIR model. The simplicity of the SIR model

allows to design a scenario based on a limited number of parameters; it is thus one of the first

models used to understand newborn epidemics. However, SIR models can sometime oversim-

plify the complex disease process. As an example, SIR models imply “full mixing”, i.e., the

assumption that all individuals in the population are equally likely to be in contact with each

other. To this respect, the heterogeneous SIR corrects such an issue by introducing classes and

considering the heterogeneity in their contact rate. Also, we have employed a simplified SIR

model with fixed populations, although in the original formulation it could account also for

migration, births or deaths; such an approach is justified in the initial phase of an epidemic,

where the time horizon is limited and variation in population can be disregarded. When an

epidemic becomes endemic, SIR models can be easily extended to SIRS models where recov-

ered individuals can become again susceptible. Furthermore, if there is a waiting time for an

infected person to become infectious, SIR models can be extended to SEIR models by intro-

ducing an extra compartment E (i.e. “exposed”) that accounts for such an issue. In a “receding

horizon” approach, where the model parameters are periodically adjusted to reflect the evolv-

ing knowledge on the epidemic, it is reasonable to resort to the SIR model during the first

iteration, since its parameters are the simplest to estimate. Eventually, at later iterations, it is

possible not only adjust the parameters, but also to switch to more sophisticated models (SEIR

or even SEIRS if the situation becomes endemic) with the proceeding of time. Our framework

easily allows to switch from SIR to SEIR or SEIRS model just by adding extra compartments;

notice that, by defining by a[t] = i[t] + e[t] the fraction of infected (i.e., exposed or infectious)

individuals, the constrains ensuring the dampening of the epidemic for all classes (i.e.,

@a[t]<0) retain the same simple linear form of Eq (2), i.e., they depend only on the fraction of

infectious individuals [44].

Modeling interventions within the SIR model

In this section we modify the SIR model in order to explicitly account for possible interven-

tions, namely, social distancing measures (e.g., adoption of personal protection equipment

(PPE) and lockdowns) and vaccination. In view of later developments in the paper, it is conve-

nient to first express the SIR model in discrete-time form. Notice that exact discretization of a
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nonlinear differential equation

@tx½t� ¼ f ½x½t��

with constant step size Δt would be in the form

x½ðkþ 1ÞDt� ¼ x½kDt� þ
Z ðkþ1ÞDt

kDt
f ½x½t��dt: ð3Þ

However, given the complexity of the above exact method, it is convenient to consider an

approximated relation. In particular, in this paper we resort to the Euler forward approxima-

tion, i.e., we set

@tx½t�
�
�
�
�
t¼kDt

�
x½ðkþ 1ÞDt� � x½kDt�

Dt
;

thus obtaining

x½ðkþ 1ÞDt� � x½kDt� þ Dtf ½x½kDt��:

In other words, we approximate the continuous-time SIR model in Eq (1) via the following

discrete-time equations

s½ðhþ 1ÞDt� ¼ s½hDt� � Dts½hDt� � Bi½hDt�

i½ðhþ 1ÞDt� ¼ i½hDt� þ Dts½ðhþ 1ÞDt� � Bi½hDt� � Dtg� i½ðhþ 1ÞDt�

r½ðhþ 1ÞDt� ¼ r½hDt� þ Dtg� i½k�:

8
>>><

>>>:

ð4Þ

and we point out that, to avoid numerical instability as a result of the discretization, we choose

Δt = 0.01[day] for the parameters used in our case study (Other approaches allowing larger

step size without causing instability could be considered, such as Euler backward integration,

trapezoidal integration or Runge-Kutta methods; however, in this paper we opted for the Euler

forward integration for the sake of simplicity).

Let us now incorporate two different types of intervention in the above discrete-time SIR

model, accounting for the adoption of social distancing measures and for vaccination. Notably,

in the following, we consider interventions such as vaccinations and social distancing mea-

sures that are planned at the level of the single day; as discussed next, such interventions will

reflect in the discrete-time SIR model by assuming that the interventions remain constant over

the day. As a consequence, such daily interventions will be indexed on a daily basis, while the

variables in the discrete-time SIR model are indexed by hΔt. Moreover, we use the iterator k to

denote the k-th day and, where needed, with a slight abuse of notation we use the iterator k to

denote the value assumed by a variable of interest at the end of the k-th day, e.g., s[k] = s[hΔt],
with h = k/Δt, while we point out that the day corresponding to the time instant hΔt is given by

bhΔtc.
Social distancing interventions. In order to model the effect of social distancing mea-

sures in the SIR model, we observe that interventions such as lockdowns, limiting access to

shops or imposing the adoption of PPEs, has the effect to reduce the rate at which susceptible

individuals meet infectious individuals and/or become infected, modeled by the coefficients

Bij. In order to model the effect of social distancing measures at the k-th day, let us define the

social distancing intensity Eℓj[k] 2 [0, e], where e is the maximum allowed intensity and e� 1,

as the intensity of the social distancing measures put in place for the ℓ-th and j-th class, e.g.,

Eℓj[k] = 0 means no measure is implemented, while Eℓj[k] = e means the maximum effort is
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spent in avoiding contacts between the ℓ-th and j-th classes. Notice that, by definition, we have

that Eℓj[k] = Ejℓ[k]. The above social distancing intensity coefficients account for the different

strategies put in place. For instance, if the classes represent geographical regions, then a large

value of Eℓj[k] implies large limitation of moving from the ℓ-th to the j-th one, while intermedi-

ate values of Eℓj[k] could be used to model a scenario where mobility is permitted for work and

health circumstances. Conversely, if we consider age classes, then a situation where Eℓj[k] is

large for all j could be used to model age-targeted lockdowns (e.g., for the elderly people).

As a result of the choice of Eℓj[k], we consider time-varying terms Bℓj[k] with the following

structure

B‘j½k� ¼ B‘j ð1 � E‘j½k�Þ ð5Þ

or, in a compact form

B½k� ¼ B� ð1n�n � E½k�Þ; ð6Þ

where the n × n matrix E[k] collects the entries Eℓj[k]. In other words, Bℓj[k] corresponds to the

nominal Bℓj when no intervention is implemented and reaches zero in the case of a complete

lockdown.

Vaccination. Let us now model the effect of vaccination on the discrete-time SIR model.

In particular, we assume m different types of vaccines are available and we assume each vaccine

j has an efficacy ηj 2 [0, 1] after a single dose, while after the second dose the efficacy rises to

ηj + Δηj, with Δηj 2 [0, 1 − ηj]. Notice that the second dose is not required for all types of vac-

cines; we model this aspect by resorting to a coefficient

�j ¼
1; if the second dose is required for the j� th vaccine

0; otherwise:

(

Moreover, for each type j of vaccine we assume a time window of tIj days is required for

the vaccine to take effect after the first dose, while we use wj � t
I
j to denote the time window

between the first and the second dose (if required) and tIIj to denote the time window between

the administration of the second dose and the reach of complete effect. In other words, an

administration of vaccine j on the k-th day has an initial effect on day kþ tIj and a complete

effect on day kþ wj þ tIIj , while τI, τII are the times estimated from pharmacological trials dur-

ing which vaccinated individuals are still exposed to the infection.

In order to model the effect of vaccination, let us indicate with Xℓj[k] the units of first doses

of vaccines of the j-th type that are injected to the ℓ-th class of population at the k-th day and

let X½k� 2 Nn�m be the matrix with integer entries collecting such variables. Moreover, let

Yℓj[k] denote the amount of units of second dose of vaccines of the j-th type that are injected to

the ℓ-th class of population at the k-th day.

In this view, the contribution Δrℓ[k] at day k to the number of removed individuals belong-

ing to the ℓ-th class as a result of vaccination satisfies

N‘Dr‘½k� ¼
Xm

j¼1

X‘j½k � t
I
j �Zj þ

Xm

j¼1

Y‘j½k � t
II
j �DZj;

i.e., the contribution of the j-th vaccine to Δrℓ[k] corresponds to the fraction of individuals that

were vaccinated tIj days before with the first dose of the j-th vaccine, weighted by its efficacy ηj,
plus the fraction of individuals that were vaccinated tIIj days before with the second dose of the
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j-th vaccine, weighted by the residual efficacy Δηj. In other words, Δrℓ[k] is given by

Dr‘½k� ¼
1

N‘

Xm

j¼1

X‘j½k � t
I
j �Zj þ

Xm

j¼1

Y‘j½k � t
II
j �DZj

 !

ð7Þ

where, for the sake of consistency, we assume X[�], Y[�] are zero when their argument is

negative.

Finally, we assume that

Y‘j½k� � �jX‘j½k � wj�; ð8Þ

i.e., if required (ϕj = 1), the units of second dose of the j-th type of vaccine injected at the k-th

day must not trespass the units of first dose injected χj days before; otherwise (ϕj = 0), no sec-

ond dose is considered. Notice that, being Eq (8) an inequality, the second dose is not manda-

tory, and it is possible to implement policies where only a fraction of the population receiving

the first dose receives also the second as suggested by the UK study SIREN [45].

Resulting SIR model. To conclude the section, let us show the expression of the discrete-

time SIR model where the above interventions are explicitly considered. In particular, as a

result of the social distancing intervention, matrix B is replaced by the matrix B[k] in Eq (6);

moreover, in order to take into account the effect of vaccination, we assume Δr[k] is subtracted

at each day k from the fraction of susceptible individuals, and is simultaneously added to the

removed ones, without influencing the fraction of infectious individuals. We reiterate that the

effect of the interventions at day k is mediated by the sampling time Δt; in other words, the dis-

crete-time SIR model becomes

s½ðhþ 1ÞDt� ¼ s½hDt� � Dts½hDt� � B½k�i½hDt� � DtDr½k�

i½ðhþ 1ÞDt� ¼ i½hDt� þ Dts½ðhþ 1ÞDt� � B½k�i½hDt� � Dtg� i½ðhþ 1ÞDt�

r½ðhþ 1ÞDt� ¼ r½hDt� þ Dtg� i½k� þ DtDr½k�

8
>>><

>>>:

ð9Þ

or, in a compact form

z½ðhþ 1ÞDt� ¼ f ðz½hDt�;Dr½k�;E½k�Þ; k ¼ bhDtc; ð10Þ

where z[�] = [sT[�], iT[�], rT[�]]T.

Optimization formulation

The above SIR model with explicit intervention terms is the natural cornerstone for the plan-

ning of such interventions.

In particular, we assume a finite-time horizon of kmax days and we consider a scenario

where at the 0-th day the epidemics is described by given initial conditions s[0], i[0], r[0] 2

[0, 1]n with s[0] + i[0] + r[0] = 1n.
The aim of the proposed formulation is to plan the different interventions to be put in place

to guarantee the reach of the end of the epidemics on day kmax, i.e., we want to enforce dynam-

ical constraints that represent the evolution of the proposed variation of the SIR model (Eq (9),

with B[k] and Δri[k] defined as in Eqs (6) and (7), respectively), together with the requirement

that the SIR model reaches the herd immunity surface. The latter requirement is equivalent to

enforcing a constraint in the form

s½kmax� þ r½kmax� ¼ 1n; ð11Þ

ensuring that an end-of-epidemic state is reached; at the same time, we want to guarantee that
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new infections die out. This requirement, as discussed above, is equivalent to enforcing a con-

straint in the form of Eq (2). Notably, B[k] is time varying; however, when the final planning

instant kmax is reached, it is reasonable to assume that non-pharmaceutical interventions are

discontinued and E[kmax] = 0n × n; thus, the conditions for avoiding epidemic overburst is

Rs½kmax� � 1n: ð12Þ

Let us now discuss the choice variables of the proposed model; specifically, the model aims

at identifying the units X[k]�0n × n and Y[k]� 0n × n of first and second doses of vaccine to be

injected on the k-th day and the intensity of the social distancing measures E[k] 2 [0, e]n × n on

the k-th day, for all k 2 {1, . . ., kmax}. Notice that, as discussed above, the latter variables must

satisfy

E½k� ¼ ET½k�; 8k � kmax: ð13Þ

Let us now focus on aspects related to vaccination. In order to plan for such intervention,

we consider a situation where vaccines become available in batches. Specifically, we assume

there are specific days k1; . . . ; kwmax
in which batches of vaccines are received, and we use

q½k� 2 Rm
to denote the vector collecting the total units of vaccines received as of day k for

each type of vaccine.

In order to guarantee that the vaccination plan is sound, we need to impose that the cumu-

lative units of vaccine that are injected as of day k do not trespass the received ones, for each

type, i.e.,

Xk

h¼0

ðX½h� þ Y½h�ÞT1n � q½k�; 8k: ð14Þ

Notice that, in order to guarantee that second doses do not trespass the first ones, we con-

sider the constraint in Eq (8); moreover, to guarantee that the overall amount of doses does

not exceed the population in each class, we consider a constraint in the form

Xkmax

k¼1

ðX½k� þ Y½k�Þ1m � n: ð15Þ

Finally, let us assume that a maximum overall number lh of daily inpatient beds, lsh of which

being intensive care inpatient beds, are available. In this view, in order to enforce that the

amount of hospitalizations and intensive care hospitalizations do not overcome the limits, we

consider constraints in the form

sThdiag½n�i½k� � lh; 8k � kmax

and

sTshdiag½n�i½k� � lsh; 8k � kmax;

where the vectors σh and σsh collect the hospitalization and severe hospitalization rates for each

class, respectively, and diag[n]i[k] is the vector collecting the population of infectious individu-

als in each class.

Let us now discuss the objective function of the proposed formulation. In particular, we

aim to minimize the cumulative intensity of the the social distancing measures over the
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considered time horizon, i.e.,

Xkmax

k¼0

Xn

‘¼1

Xn

j¼1

E‘j½k�:

Notice that, within any optimization formulation, minimizing the objective function is sec-

ondary to constraint satisfaction. Therefore, within the proposed formulation, reaching of the

herd immunity and avoiding the collapse of the healthcare system represent a priority with

respect to the minimization of the overall intensity of the social intervention. In other words,

solutions that have small objective function value but violate the constraints will be deemed

unfeasible and will be discarded by any solver. Overall, the proposed formulation consists of

the following Mixed Integer Nonlinear Programming (MINLP) problem.

min
Xkmax

k¼0

Xn

‘¼1

Xn

j¼1

E‘j½k�

subject to

ðIÞ

ðIIÞ

ðIIIÞ

ðIVÞ

ðVÞ

ðVIÞ

ðVIIÞ

ðVIIIÞ

ðIXÞ

ðXÞ

ðXIÞ

ðXIIÞ

ðXIIIÞ

ðXIVÞ

ðXVÞ

z½ðhþ 1ÞDt� ¼ f ðz½hDt�;Dr½k�; E½k�Þ; 8h � kmax=Dt

B½k� ¼ B� ð1n�n � E½k�Þ; 8k � kmax

Dr‘½k� ¼
Pm

j¼1
X‘j½k � tIj �Zj þ

Pm
j¼1
Y‘j½k � tIIj �DZj

N‘

; 8‘�n; k�kmax

s½kmax� þ r½kmax� ¼ 1n;

Rs½kmax� � 1n;

Pk
h¼0
ðX½h� þ Y½h�ÞT1n � q½k�; 8k � kmax

Pkmax
k¼0
ðX½k� þ Y½k�Þ1m � n;

Y‘j½k� � �jX‘j½k � wj�; 8k � kmax; ‘ � n; j � m

E½k� ¼ ET½k�; 8k � kmax

sThdiag½n�i½k� � lh; 8k � kmax

sTshdiag½n�i½k� � lsh; 8k � kmax

r½k�; s½k�; i½k� 2 ½0; 1�n; 8k � kmax

E½k� 2 ½0; e�n�n; 8k � kmax

X½k�;Y½k� 2 Rn�m
�0

; 8k � kmax

X½k�;Y½k� integer ; 8k � kmax:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð16Þ

In other words, constraints (I)–(III) model the requirement that the fraction of susceptible,

infectious and removed individuals evolve according to the proposed SIR model accounting

for the interventions in terms of social distancing and vaccination. Constraint (IV) accounts

for reaching an end-of-epidemic state, while Constraint (V) guarantees that new infections die

out. Constraint (VI) and (VII) guarantee that the amount of used doses of vaccine do not
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overcome the available ones or the overall population, respectively. Constraint (VIII) enforces

that the second doses (if required) are injected after the adequate time window. Constraint

(IX) prescribes that E(k) is symmetric, thus implying that the social distancing effort reducing

the influence of the i-th class on the j-th one has a specular effect on the influence of the j-th

class on the i-th one. Constraints (X) and (XI) guarantee that the regular and intensive care

hospitalizations do not overcome the maximum limit. Finally, constraints (XII)–(XV) guaran-

tee the well-posedness of the variables considered in the formulation.

Approximation strategy. Notice that the proposed formulation amounts to a Mixed

Integer Nonlinear Programming problem. In particular, we observe that the model requires a

nontrivial amount of variables and constraints (i.e., O(max{n/Δt, n2, nm}) for each day of plan-

ning. Moreover, we observe that the problem is nonconvex (i.e., considering the nonlinear

equality constraints corresponding to the SIR model as two inequality constraints, there is

no way both are convex). However, since the units of vaccines involved in the planning are

expected to be large, it makes sense to attempt to reduce complexity by considering a continu-

ous relaxation, i.e., dropping integrity constraints. However, also in the case of a convex objec-

tive function and a continuous relaxation, the problem has high chances to be NP-Hard (e.g.,

see [46, 47]), thus calling for approximated solutions.

In this paper, our strategy to calculate an approximated solution is to resort to an approxi-

mated solver. In fact, we observe that s[�], i[�], r[�], Δr[�] are actually functions of the variables

E[k], X[k], Y[k], even though it is nontrivial to express this dependency in a closed form.

Therefore, our strategy is to consider only the variables E[k], X[k], Y[k] and to express the con-

straints and the objective function in an algorithmic way, resorting to an approximated solver.

Specifically, we use the MIDACO optimization software which implements an extension of

the evolutionary Ant Colony Optimization meta-heuristic [48] and which has been developed

especially for highly non-linear real-world applications. See [49, 50] for a focus of the perfor-

mance of MIDACO software with respect to the state of the art.

Note that the suggested strategy is independent of a particular solver, but the non-convex

nature of the optimization problem suggests an evolutionary approach, like genetic algorithms

[51]. Furthermore, the dimensionality of the resulting MINLP in the next case study is very

large-scale, consisting of 76650 decision variables and 18295 constraints, and therefore

requires a solver that can handle such dimensionality. Finally, we point out that, since in our

implementation we chose to evaluate the variables s[�], i[�], r[�], Δr[�] as a function of the vari-

ables E[k], X[k], Y[k], a positive consequence is that the step size Δt used to discretize the SIR

model has no effect on the overall number of choice variables, which is one of the major

sources of complexity for the solution of MINLP formulations (e.g., see [52]).

Computational setting

The optimization with MIDACO was conducted on an Intel1Xeon1CPU E7 2860 @

2.27GHz. The CPU runtime for the optimization was fixed to five days. All MIDACO parame-

ters were used by their default values, that means that a feasiblity accuracy of 0.001 was used

for all individual constraints listed in Eq (16).

Results

In this section, we test the effectiveness of the proposed formulation by considering a case

study with realistic parameters consistent with the current COVID-19 pandemics and relative

vaccines. Specifically, we focus on Italy and we identify the optimal vaccination policies over a

one-year time horizon, considering 15 age classes (see Table 1) and three types of vaccines.

Specifically, Table 2 reports the information regarding the efficacy ηj, the delay required to

PLOS ONE Dynamical intervention planning against COVID-19-like epidemics

PLOS ONE | https://doi.org/10.1371/journal.pone.0269830 June 14, 2022 10 / 21

https://doi.org/10.1371/journal.pone.0269830


appreciate the effect of the first dose tIj , the delay between doses χj, the efficacy of the second

dose Δηj and the delay required to appreciate the effect of the second dose tIIj . The fictional vac-

cines considered mimic real vaccines, and the parameters are estimates based on data in [53–

55]. Notably, we assume that the three considered types of vaccine are available only in

batches, at specific time instants and in limited amount for each batch, as summarized in

Table 3. For simplicity, it is assumed that at regime batches reach between six million and nine

million of doses per trimester; such figures are consistent with what has been planned and

deployed in Italy [56].

Moreover, we consider a scenario where only a small fraction (i.e., 0.01%) of the age class in

thee range 35 − 39 years is initially infected and we assume the maximum daily inpatient beds

are lh = 1000, while the maximum daily intensive care inpatient beds are lsh = 100.

Notice that, for the sake of simplicity, we allow vaccination for all age groups, even though

Italian regulation does not yet allow COVID-19 vaccination under the age of 5.

Parameter tuning

In order to tune our formulation, we consider the country contact matrix K (see Fig 1), as esti-

mated in [57] for Italy. In particular, only physical contacts have been considered. Notice that

the element Kij of a contact matrix from [57] can be considered proportional to the probability

that an individual in the i-th age class meets an individual in the j-th; thus, B = Λ� K where

Table 1. Population in the different age classes (Source: [60]). COVID-19 hospitalization, severe hospitalization and death rates as of April 2021 (source: [59]).

Age Class Population Hospitalization Severe Hospitalization Death

00–04 2645566 10.7% 0.31% 0.10%

05–09 2769974 10.7% 0.31% 0.10%

10–14 2932459 5.81% 0.23% 0.10%

15–19 2968742 5.81% 0.23% 0.10%

20–24 3041263 6.28% 0.32% 0.10%

25–29 3281737 6.28% 0.32% 0.10%

30–34 3531873 8.84% 0.77% 0.14%

35–39 3877837 8.84% 0.77% 0.14%

40–44 4387315 11.97% 1.91% 0.26%

45–49 5060898 11.97% 1.91% 0.26%

50–54 5068741 16.86% 3.59% 0.57%

55–59 4869741 16.86% 3.59% 0.57%

60–64 4102571 27.33% 6.79% 2.73%

65–69 3554615 27.33% 6.79% 2.73%

70+ 10297032 34.70% 3.27% 14.80%

https://doi.org/10.1371/journal.pone.0269830.t001

Table 2. Efficacy of the vaccines considered in the proposed case study. Vaccine A mimics BNT162b2 (Pfizer &

BioNTech); vaccine B mRNA-1273 (Moderna) and vaccine C ChAdOx1 nCoV-2019 (University of Oxford/AstraZe-

neca). The source for the estimates are: [53–55].

Vaccine A Vaccine B Vaccine C

Efficacy (1st dose) ηj 0.89 0.89 0.70

Delay for effect (1st dose) tIj [days] 15 15 15

Delay between doses χj [days] 28 28 84

Efficacy (2nd dose) Δηj 0.06 0.05 0.20

Delay for effect (2nd dose) tIIj [days] 15 15 15

https://doi.org/10.1371/journal.pone.0269830.t002
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Λij is the probability that a contact between i and j results in an infection. In this case study, we

will use a constant Λij = λ; analogously, we will use a constant γ.

To fix the parameters, we will consider a basic reproduction number (i.e., the potential

number of new infected generated by one case) R0 = 3—a value that has been estimated for

COVID19 in France [58]. Since for an heterogeneous compartmental model of the form of Eq

(1) the role of the basic reproduction number is played by k R k [22, 43], we can rescale λ to

obtain a basic reproduction number equivalent to the observed one:

l ¼
gR0

k K k
;

Table 3. Units of Vaccines of each type that are assumed to become available in batches at specific days.

Day Vaccine A Vaccine B Vaccine C

0 500000 500000 500000

30 500000 500000 500000

60 1000000 1000000 1000000

90 2000000 2000000 2000000

120 2000000 2000000 2000000

150 2000000 2000000 2000000

180 2000000 2000000 2000000

210 2000000 2000000 2000000

240 2000000 2000000 2000000

270 3000000 3000000 3000000

300 3000000 3000000 3000000

330 3000000 3000000 3000000

https://doi.org/10.1371/journal.pone.0269830.t003

Fig 1. Elements of the matrix K of physical contacts among age classes in Italy (source: [57]). For the sake of

readability, the colors of the cells corresponds to ln(Kij).

https://doi.org/10.1371/journal.pone.0269830.g001
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i.e.,

k R k¼k ldiagðgÞ� 1
diagðnÞ� 1KT

diagðnÞ k¼ R0: ð17Þ

The other parameters required to tune the proposed model are the rates of hospitalization,

of severe hospitalization, and of death; such parameters can be found in the ECDC ninth risk

assessment update for COVID-19 in the EU/EEA and the UK [59] and are reported in Table 1.

Experimental results

Let us now discuss the experimental results from the computational point of view. Fig 2 shows

the results of MIDACO in terms of objective function value and overall violation of the con-

straints, plotted against the number of candidate solutions evaluated by MIDACO. As shown

by the figure, we observe that a feasible solution is obtained in about 6 × 106 evaluations. As

for the objective function, we observe that while the solution is infeasible there is a relevant

reduction over time; in particular, we reach a steady solution after about 9 × 106 evaluations.

Overall, these results suggest the reach of a local minimum.

Having discussed the computational aspects, let us now focus on the structure of the found

solution.

Figs 3–6 report the structure of the interventions encoded by the found solution. Specifi-

cally, according to Fig 3, it can be noted that the the social distancing measures are initially

quite intense, and only at the end of the planning horizon there is a partial reduction. Fig 4

shows how vaccine usage is distributed based on the type of vaccine. According to the figure,

there is no noticeable difference; this is likely the effect of the scarcity of vaccines in our sce-

nario. Moreover, Fig 5 (as well as Fig 6, where the same data is aggregated and smoothed to

improve readability) shows that, in the early stages of the planning, due to the scarcity of vac-

cines, there is a preference for vaccinating individuals in the age range 20–69 years over young

and elderly people; notably, such an age range receives a more or less steady amount of vac-

cines over time. This stems from the fact that, as discussed above, in the proposed formulation

the objective of minimizing the intensity of the social distancing is secondary to constraint sat-

isfaction, i.e., less restrictive social distancing measures can be considered only if they allow

Fig 2. Objective function value and overall constraint violation for the solution found using MIDACO, plotted

against the number of candidate solutions evaluated.

https://doi.org/10.1371/journal.pone.0269830.g002
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Fig 3. Intervention plan corresponding to the found solution in terms of the intensity of social distancing

measures plotted against time.

https://doi.org/10.1371/journal.pone.0269830.g003

Fig 4. Intervention plan corresponding to the found solution in terms of the units of the different types

administered for each day.

https://doi.org/10.1371/journal.pone.0269830.g004

Fig 5. Intervention plan corresponding to the found solution in terms of the units of vaccines administered to the

different age classes for each day.

https://doi.org/10.1371/journal.pone.0269830.g005
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the reach the herd immunity and prevent the collapse of the healthcare system. In other words,

candidate solutions where strict social distancing was released earlier than the identified solu-

tion have been discarded by the solver due to some violation of the constraints.

Fig 7 shows the evolution of the proposed SIR model accounting for the effect of social dis-

tancing and vaccines, as a result of the interventions planned within the found solution. It can

be noted that, due to the strict social distancing measures, only a small fraction of the popula-

tion becomes infected, with a noticeable peak for the age class in the range 10 − 14 years in cor-

respondence to the softening of the lockdown measures (i.e., around day k = 320). Notice that

the fraction of susceptible individuals is slowly eroded due to vaccination, while the fraction of

removed has a consequent slow growth due to the resulting immunization.

Fig 6. Intervention plan corresponding to the found solution in terms of the units of vaccines administered to the

different age classes for each day. The plot aggregates the age classes into the young (0–19 years), middle-age (19–69

years) and elderly (�70 years) macro-classes. To improve readability, data has been smoothed using a 30-day moving

average filter.

https://doi.org/10.1371/journal.pone.0269830.g006

Fig 7. Evolution of the proposed SIR model accounting for the effect of social distancing and vaccines, based on

the found solution. The first, second and third row of plots correspond to the fraction of susceptible, infected and

removed individuals, respectively, while the k-th column of plots corresponds to the k-th age class.

https://doi.org/10.1371/journal.pone.0269830.g007
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Fig 8 breaks down the social distancing measures by age class; it can be noted that most

of the considered time horizon all age classes are strongly restrained in their interaction.

Then, around the end of the planning horizon the lockdown is significantly lifted for the

age class in the range 10–14 years (from which the peak in the infected fraction of this age

class).

Finally, Fig 9 shows the results of the planning in terms of deaths, hospitalization and inten-

sive care occupancy. It can be noted that the solution found corresponds to a situation where

the capacity in terms of regular and intensive care beds is not reached, thus avoiding the col-

lapse of the healthcare system.

Fig 8. Intensity of lockdown within the found solution for the different age classes and for selected days over the

considered time horizon. The intensity is shown with a blue to yellow scale, where blue represents no social distancing

and yellow a complete lockdown.

https://doi.org/10.1371/journal.pone.0269830.g008

Fig 9. Deaths, hospitalizations and intensive care occupancies corresponding to the found solutions, plotted for

each day.

https://doi.org/10.1371/journal.pone.0269830.g009
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Conclusion

In this paper we develop a fine-grained model to support the plan for intervention in order to

contrast newborn epidemics. The proposed approach is particularly suitable for infections like

the ongoing COVID-19 epidemic, characterized by high infection rate and able to pose the

healthcare system and society under stress in terms of intensive care occupancy, deaths or eco-

nomic consequences. Moreover, the approach allows to plan interventions that blend large-

scale non-pharmaceutical interventions along with the pharmaceutical ones. Specifically, we

build up the planning on two two main types of intervention, namely, non-pharmaceutical

(essentially social distancing measures) and vaccination. In order to model the effect of such

interventions, we develop a variation of the SIR epidemics model with heterogeneous popula-

tion; specifically, we assume social distancing intensity to reflect into a reduction of the infec-

tion rates, while vaccination to have a partial and delayed immunization effect. Notably, we

consider several population classes, several vaccines with different efficacy and with partial

and delayed effect, the possibility of a second dose, the availability of vaccines in batches, the

need of reaching the herd immunity and the requirement to avoid congestions in the health-

care system. Interestingly, besides representing a detailed, day-to-day planning, the proposed

approach also provides useful insights from the clinical and policy-making point of view. In

fact, the plan identified by the proposed methodology suggests that, initially, the scarcity of

vaccines should be faced by enforcing a strict social distancing, and that vaccination priority

should be given to the elderly and “middle-age” population over the younger one. The pro-

posed model exhibits a nontrivial degree of complexity, and the identification of efficient

approximated ways to solve it represents a challenging task. Yet, the proposed model repre-

sents a remarkably descriptive framework, and future work will be mainly devoted to incorpo-

rate other important perspectives for policy and decision makers, such as geographical [61],

economical [62] and logistic aspects [63], social equity in the vaccine distribution [64], and

skepticism of the population towards vaccines [65].

A last envisaged research perspective is related to the time duration of the planning. In fact,

due to the change of the overall epidemiological or pharmaceutical situation, a yearly time

horizon could be deemed excessively long; yet, the reach of the herd immunity requires a suffi-

ciently wide time frame. To this end, a viable future work direction is to adopt a “receding

horizon” perspective [41, 66], where the model is updated after a given period of time (e.g.,

one month or three months) and a new planning is executed starting from the epidemiological

situation at that time. In particular, as new evidence regarding the prevalence of new strains is

gathered, the model could be updated (e.g., changing the basic reproduction number [67, 68],

adding new compartments such as the fraction of asymptomatic individuals [69, 70], consider-

ing re-infections [71], etc.). Moreover, as new vaccines are developed (or discontinued, as in

the case of the Vaxzevria vaccine in Italy [72]) and their effectiveness is better assessed with

respect to the circulating variants of the virus, the model can be updated accordingly (e.g.,

requirement of a booster dose, change in effectiveness, change in the time between doses, etc.).

In other words, while the proposed methodology could be considered an open loop approach,

we foresee its extension to a closed loop approach. This, of course, raises interesting research

questions about the trade-off between the frequency of the update and the computational

demands that will be addressed in future work.
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