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A B S T R A C T

The analytical experiment was executed to present detailed reports on the concentration of heavy metals (nickel,
iron, zinc, manganese, chromium, lead, and cadmium) in farmed shrimp, Penaeus monodon and its concomitant
human health risks upon consumption. A total of 147 farms from six sub-districts of Khulna were selected for
sample collection and concentration of heavy metals were determined by Atomic Absorption Spectrometry (AAS)
method, following electro-thermal heater digestion. Ni and Cr were found considerably below the detectable limit
(BDL) in four sub-districts, while Cr found in shrimps from Rupsa and Paikgacha were far higher than the
maximum recommended limit defined by FAO and WHO. The average concentrations of Fe and Mn in all sub-
districts crossed the recommendations, whereas average concentrations of Zn, Ni, Cd, and Pb were within the
recommendations. Regardless of sampling site, target hazard quotients (THQ) of more than 1 contributed by Fe
confirmed higher level of hazard index (HI), indicating potential human health risk. Fortunately, no heavy metal
or their additive effect found to offer lifetime potency of carcinogenesis upon consumption of these shrimps.
Therefore, probabilistic non-carcinogenic human health risk from Fe contamination necessitates stringent
monitoring and controlling of this metal from different sources to farms.
1. Introduction

Shrimp (Penaeus monodon), rich in protein, minerals, vitamins, anti-
oxidants, essential amino acids, and unsaturated fatty acids [1, 2], is
considered as one of the most beneficial shellfish aliments for human
consumption. Bangladesh, the 5th ranked aquaculture producing country
[3], produces vast amount (0.239 million metric tons in Fiscal Year
2017–18) of shrimp each year. This huge production earns significant
amount of foreign currency (503.93 million USD in 2018) [4] by
exporting to the global markets, particularly, in the USA, Europe and
Japan [5]. Recently, ceiling concern on nutritional and medicinal values
of shrimps have made the national consumption ever increased in
Bangladesh [6].

Various types of toxicities arisen from the pollutants including heavy
metals [6, 7], microplastics [8, 9], pesticides [10, 11] etc. have made the
aquatic faunal communities one of the most unvoiced victims. Among the
pollutants, heavy metals in aquatic systems are mainly sourced from
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anthropogenic practices, including agricultural deeds, landfill erosions,
embarkation and docking activities, industrial and domestic wastewater
as well as natural processes [6, 12, 13]. In general, non-degradable heavy
metals even in trace amount can cause toxicities in aquatic ecosystems
through assimilation, deposition, or incorporation at a specific concen-
tration into abiotic components and finally, adopting the path of
bio-accumulation into aquatic animals [14]. In aquatic ecosystems, food
chain is considered as the main pathway of heavy metals accumulation
and metals can create human health hazards upon consumption of these
contaminated aquatic foods [15].

Although a number of metals are essential for living organisms, some
are highly toxic or become toxic at high concentration. Metals such as
lead (Pb), tin (Sn), nickel (Ni), cadmium (Cd), and chromium (Cr) are not
generally required for metabolic activities. Moreover, trace amount of
these heavy metals can cause toxicities to animals [16]. Besides their
carcinogenic effects, heavy metals can cause serious problems, such as
liver disorders, cardiovascular anomalies, kidney failure and death in
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case of extreme situation [17, 18]. Crossing the maximum tolerable
limits, heavy metal contamination not only constitutes significant human
health risks [6, 15] but also possesses several negative effects on natural
balances of the ecosystem [19, 20]. Considering these negative impacts
and associated health risks, heavy metal contamination is considered as
the most dangerous problem in aquatic ecosystems.

Being a top trencherman in aquatic food chain, shrimp is normally
more susceptible to the accumulation of heavy metals from different
sources including water, sediments, and foods [13]. Human are exposed
to heavy metals mainly through foods, including seafoods, though other
media like water, air, and soil can contribute largely [21]. Thus, toxicities
arising from the heavy metal accumulation avert the health beneficiary
aspects of shrimps, while consumers are paying more attention to the
food safety issues nowadays. Therefore, determination of heavy metal in
widely consumed farmed shrimps with its possible health risk is of prior
importance [22]. Tomediate human health risk posed by the heavymetal
contaminations, FAO and WHO defined the maximum recommended
limits for each heavy metal (Table 1). However, these recommended
values solely can't measure the probabilistic carcinogenic and
non-carcinogenic human health risks. Hence, US Environmental Protec-
tion Agency established quantitative frameworks in favor of quantifying
potential hazard index (HI) and target cancer risk (TR) posed by heavy
metals [23]. In current study, levels of heavy metals (mg/kg) in shrimps
from Khulna, a major shrimp producing hotspot of Bangladesh, were
determined by Atomic Absorption Spectrometry (AAS) method. Besides
comparing with the maximum limits recommended by FAO and WHO
[24], probabilistic HI and TR were also enumerated to interpret whether
shrimps from the study areas are safe for human consumption or not.

2. Materials and methods

2.1. Study location and ethical approval

Based on outstanding signature in shrimp production, six sub-districts
of Khulna, namely Phultola (22.9750�N 89.4583�E), Rupsa (22.8333�N
89.5833�E), Dumuria (22.8083�N 89.4250�E), Paikgacha (22.5889�N
89.3361�E), Batiaghata (22.7417�N 89.5167�E) and Dacope (22.5722�N
89.511�E) were selected for sample collection (Figure 1). Further
digestion and analysis were performed in Fish Nutrition Laboratory and
Interdisciplinary Institute for Food Security (IIFS) Laboratory of
Bangladesh Agricultural University (BAU). The Ethical committee of
Bangladesh Agricultural University Research System (BAURES)
approved the design and execution of the study.

2.2. Sample collection

Samples were collected from 147 extensive farms (24 from Rupsa, 24
from Phultola, 24 from Dacope, 25 from Batiaghata, 30 from Paikgacha
and 20 from Dumuria). After washing with distilled water, shrimps were
carried to the Fish Nutrition Laboratory for further processing in sealed,
labeled and iced condition.
Table 1. Maximum recommended limits of heavy metals for human consumption de

Heavy metals

Nickel

Iron

Zinc

Manganese

Chromium

Lead

Cadmium
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2.3. Analysis of heavy metals

2.3.1. Sample preparation
From each sample, approximately 100 g of edible muscle was taken in

a clean brown envelope and placed in a hot-air oven to dry at 105 �C for a
period of 24 h. After drying, the samples were pulverized with the help of
a grinder. Prior to use, all the glass equipment were kept in diluted HNO3
for 24 h and then washed with distilled water.

2.3.2. Electro-thermal heater digestion
After treatment with 10ml HNO3 and 5ml HClO4 solution, exactly 1 g

from each sample was digested at 80 �C for 30 min in an electro-thermal
heater (Model-VELP). The digested samples were cooled and transferred
into clean volumetric flasks. Double distilled water was added to make
each solution exactly 100 mL. Finally, Whatman Filter paper No. 42 was
used to filtrate the solutions before keeping in sealed and labeled plastic
bottles.

2.3.3. Blank preparation
Using standard procedure, a blank containing same digestion inputs

except sample was prepared to make sure that impurities or contami-
nations (if any) from the chemicals didn't bias the values [25]. The blank
value found through the analysis by AAS was subtracted from each of the
sample value to get the true value.

2.3.4. Sample analysis
A flame atomic absorption spectrophotometer (Model Shimadzu AA-

7000) was used to determine heavy metals concentration, where acety-
lene gas and air were used as fuel and oxidizer, respectively. Aspiration of
the digested samples was performed using the air acetylene flame. The
concentrations of heavy metals were determined with the support of
calibration curves relying on Beer Lambert's law [26]. Calibrations by
consecutive dilution were achieved using standard solutions as manu-
facturer's protocol. Determination was based on average values of trip-
licates for each sample. Absorption wavelengths of 228.0 nm, 217.0 nm,
213.9 nm, 279.5 nm, 232.0, 248.3, and 357.9 were maintained for
determination of Cd, Pb, Zn, Mn, Ni, Fe, and Cr, respectively. Detection
limit of the spectrophotometer is 0.01 mg/kg and the concentrations
below the limit were termed as BDL (Below detectable limit).
2.4. Data processing

After determination of heavy metals concentration, all recorded data
were collected and processed using Microsoft Excel (MS 2010) to pro-
duce graphical and tabular presentation comparing with maximum rec-
ommended limits.
2.5. Human health risk assessment

To assess the potential health risk, target hazard quotient (THQ) for
each heavy metal was calculated adopting the scientific formula (Eq. (1))
established by USEPA [27].
fined by WHO and FAO [1].

Maximum recommended limits for human consumption

1 mg/kg

100 mg/kg

100 mg/kg

1 mg/kg

0.05 mg/kg

2 mg/kg

1 mg/kg



Figure 1. Study area.
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THQ¼ED � FIR � EF � Ci

RFD �WAB � TA
� 10�3 (1)
where,
ED ¼ Exposure duration (Average life span, 72.32 years)
FIR ¼ Daily ingestion rate (2.43 gm/person/day, determined from an

online based survey with 5 thousand respondents throughout the
country)

EF ¼ Exposure frequency (365 days/year)
Ci ¼ Concentration of respective heavy metal (mg/kg)
RFD ¼ The reference oral dose in mg/kg/day (0.001 for Cd, 0.004 for

Pb, 1.5 for Cr, 0.3 for Zn, 0.02 for Ni, 0.007 for Fe, 0.14 for Mn according
to USEPA [27])

WAB ¼ Average body weight for an adult consumer (54.6 kg for
Bangladesh, according to the online based survey)

TA ¼ Average exposure time, calculated as ED � EF
The overall hazard index (HI) was calculated using following formula

(Eq. (2)) according to USEPA [27].

HI ¼THQFe þ THQZn þ THQNi þ THQMn þ THQCd þ THQPb þ THQCr (2)

Among the analyzed heavy metals, Cd, Cr, Ni, Pb were considered as
potent carcinogens. Target cancer risk (TR) posed by the determined
heavy metals was calculated according following formula (Eq. (3)) [28]:

TR¼ED � FIR � EF � Ci � CSF

WAB � TA
� 10�3 (3)
Table 2. Average concentration of heavy metals (Ni, Fe, Zn, Mn, Cr, Pb, Cd) in shrim

Sub-districts Concentrations of heavy metals (mg/Kg)

Ni Fe Zn

Rupsa BDL1 358.990 � 52.139 82.280 � 3.851

Phultola BDL 331.130 � 57.795 84.103 � 6.589

Dacope BDL 310.910 � 22.459 73.368 � 9.976

Batiaghata BDL 184.084 � 32.636 74.864 � 14.088

Paikgacha 0.080 � 0.515 219.888 � 20.795 80.678 � 6.443

Dumuria 0.042 � 0.013 211.012 � 37.813 74.464 � 4.169

1 Below detectable level.

3

The values of cancer slope factors (CSF) were adopted from USEPA
[27] (for Cd (6.3 mg/kg/day) and Pb (0.0085 mg/kg/day)) and Zeng
et al. [29] (for Ni (0.91 mg/kg/day) and Cr (0.5 mg/kg/day)).

3. Results

3.1. Heavy metals concentration

The overall finding of metal concentrations found from analyzed
shrimp samples is presented in Table 2.

3.1.1. Ni concentrations
Average Ni concentrations in the shrimps of Paikgacha and Dumuria

were found 0.080 (�0.052) mg/kg and 0.042 (�0.013) mg/kg, respec-
tively (Figure 2). Other sub-districts were reported to have Ni below
detectable level (BDL). However, recorded Ni concentration didn't cross
the recommended limits [24].

3.1.2. Fe concentrations
The highest average concentration of Fe (358.995 � 52.139 mg/kg)

was observed in the shrimps collected from Rupsa whereas the lowest
average (184.084 � 32.636 mg/kg) from Batiaghata (Figure 3). How-
ever, the average Fe concentrations determined from all sampling sites
exceeded the maximum recommended limit [24].
ps collected from six sub-districts of Khulna.

Mn Cr Pb Cd

17.250 � 3.397 0.084 � 0.022 0.691 � 0.074 0.049 � 0.001

26.450 � 9.295 BDL 0.502 � 0.036 0.044 � 0.002

6.550 � 2.576 BDL 0.418 � 0.027 0.041 � 0.006

37.870 � 11.247 BDL 0.362 � 0.022 0.040 � 0.004

35.220 � 11.369 0.235 � 0.071 0.361 � 0.019 0.041 � 0.001

34.780 � 8.877 BDL 0.354 � 0.040 0.041 � 0.003
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Figure 2. Average nickel (Ni) concentrations (mg/kg) in shrimp of Khulna district compared with maximum recommended limit.
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3.1.3. Zn concentrations
The highest average level of Zn (84.103 � 6.589 mg/kg) was

observed in the shrimps of Phultola, while the shrimps from Dacope
offered the lowest average concentration (73.368 � 9.976 mg/kg)
(Figure 4). However, average Zn concentrations found in shrimps from
different sub-districts were lower than the recommendation [24].

3.1.4. Mn concentrations
Average Mn concentration was found to be the highest (37.87 �

11.247 mg/kg) in Batiaghata and the lowest (6.550 � 2.576) in Dacope
(Figure 5). The average concentrations found in all sub-districts were far
higher than the maximum recommended level of FAO and WHO [24].

3.1.5. Cr concentrations
Shrimps of Rupsa and Paikgacha were suffered from Cr contamina-

tion with an average concentration of 0.084 (�0.022) and 0.235
(�0.071) mg/kg, respectively where both values crossed the recom-
mendation. Average chromium concentrations in the rest sub-districts
were below detectable limit (Figure 6).
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Figure 3. Average iron (Fe) concentrations (mg/kg) in shrimp of
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3.1.6. Pb concentrations
The maximum average concentration of Pb (0.691 � 0.074 mg/kg)

was reported from Rupsa, while the minimum (0.354 � 0.040 mg/kg)
from Dumuria (Figure 7). However, values recorded from all sampling
sites were far below than the maximum recommended value [24].

3.1.7. Cd concentrations
The highest average Cd concentration (0.0491 � 0.001 mg/kg) was

found in shrimps from Rupsa and somewhat similar results were reported
from other sub-districts (Figure 8). However, no determined concentra-
tion crossed the maximum recommended limits defined by FAO and
WHO [24].
3.2. Human health risk assessment

Though the determined concentrations of Mn and Cr (in Rupsa and
Paikgacha) crossed the recommended values, THQ values solely for Fe
were higher than 1 in all sub-districts (Table 3). This made the HI
elevated over 1 in all sites. From spatial consideration, shrimps of Rupsa
possessed highest level of non-carcinogenic health risk, whereas
Ba aghata Paikgacha Dumuria

um recommended limit (FAO & WHO)

Khulna district compared with maximum recommended limit.
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Figure 4. Average zinc (Zn) concentrations (mg/kg) in shrimp of Khulna district compared with maximum recommended limit.
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Figure 5. Average manganese (Mn) concentrations (mg/kg) in shrimp of Khulna region compared with maximum recommended limit.
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Figure 6. Average chromium (Cr) concentrations (mg/kg) in shrimp of Khulna district compared with maximum recommended limit.
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Figure 7. Lead (Pb) concentrations (mg/kg) in shrimp of Khulna district compared with maximum recommended limit.
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Batiaghata did the lowest. No determined TR value, nor their additive
effect (TRt) exceeded the recommended value (<10�4). However,
Phultola presented the highest TR values contributed largely by Cd,
whereas Dumuria did the lowest.

4. Discussion

This study was undertaken to determine heavy metal concentrations
in shrimps collected from six sub-districts of Khulna and to assess the
probabilistic human health impacts upon consumption. According to
afore mentioned findings, Figure 2 points that Ni was considerably low
(below detectable limit) in shrimps of Rupsa, Phultola, Dacope, and
Batiaghata. Though traced in shrimps of Paikgacha and Dumuria, did not
cross the maximum recommended level (1 mg/kg) of Ni [24] and also the
value (2.5 mg/kg) determined by Vinodhini and Narayana [30] in Cyp-
rinus carpio. Another study by Rejomon et al. [31] which found Ni con-
centrations to vary between 12.12 and 13.92 mg/kg in the marine fishes
from southwest coast of India disagrees with our findings. This may be
because, Ni concentrations and their sensitivity in water fluctuates with
species, abiotic components including salinity of water, location and
industrial process around the water [32]. However, an average THQ
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Figure 8. Average cadmium (Cd) concentrations (mg/kg) in shrimp
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lower than 1 for Ni in our study areas suggests no human health concern
from Ni consideration.

Figure 3 shows that the Fe concentrations in all shrimps were far
higher than the recommended limit [24]. The results also crossed all
other findings of 36.211 mg/kg [33] and 6.570 mg/kg [34], of 27.22
mg/kg [35], and of 8.819 mg/kg [36] in fishes from Turkey, Cambodia,
and Italy, respectively. Among heavy metals, Fe concentrations were
highest in all shrimp samples (Table 2). THQFe values more than 1
confirm that shrimps from the study areas were not safe for human
consumption. Generally, this 2nd most abundant metal [37] is accumu-
lated in shrimps from the feed fed, ground water contamination from
mining, and industrial effluents etc. Fe is necessary for binding proteins,
activation of coenzymes, and other metabolic activities in human [38].
But a number of detrimental effects are experienced due to high level of
Fe when it fails to bind proteins and thus unbound Fe become erosive to
the gastrointestinal tracts [39].

The observations on Zn are similar to various studies [39, 40, 41, 42,
43], but higher than the concentrations found in fishes from eastern
Taiwan [44], Malaysia [45], Turkey [46], and lower from south west
coast of India [31], Indonesia [47] and Iran [48, 49]. However, average
THQZn values in all sampling sites were within the recommendation.
Ba aghata Paikgacha Dumuria

um recommended limit (FAO & WHO)

of Khulna district compared with maximum recommended limit.



Table 3. Calculated target hazard quotients (THQ), hazard index (HI) and target cancer risk (TR) for each heavy metal traced from the shrimp samples.

Risk indexes Rupsa Phultola Dacope Batiaghata Paikgacha Dumuria

Target hazard quotients (THQ)

THQNi NA NA NA NA 3.24E-06 9.35E-05

THQFe 2.282 2.105 1.977 1.170 1.398 1.341

THQZn 0.012 0.013 0.011 0.011 0.012 0.011

THQMn 0.006 0.008 0.002 0.012 0.011 0.011

THQCr 2.49E-06 NA NA NA 6.96E-06 NA

THQPb 0.008 0.006 0.005 0.004 0.004 0.004

THQCd 0.002 0.006 0.002 0.002 0.002 0.002

HI 2.310 2.137 1.996 1.199 1.427 1.370

Target cancer risk (TR)

TRNi NA NA NA NA 3.24E-06 1.701E-06

TRCd 1.38E-05 3.52E-05 1.16E-05 1.18E-05 1.15E-05 1.15E-05

TRCr 1.87E-06 NA NA NA 5.22E-06 NA

TRPb 2.62E-07 1.90E-07 1.59E-07 1.37E-07 1.37E-07 1.34E-07

TRt 1.59E-05 3.54E-05 1.18E-05 1.19E-05 2.01E-05 1.34E-05

Values Exceeded recommendation are indicated as bold.
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Thus, the study can propose that shrimps from these areas were not
harmful from the consideration of Zn contamination. On contrary, this
low level of Zn, possibly sourced from feedstuff, water and sediments
may accelerate the metabolic process of cultured shrimp to favor the
growth [50].

Mn concentrations found in current study are in proximity with the
previous studies undertaken by Yilmaz [12] and Abu Hilal and Ismail
[51]. This metal, running into water from pharmaceutical, industrial, and
agricultural sources, can cause gastro-intestinal and neurological ab-
normalities to human. Besides, long term exposure of this metal may also
cause Parkinson, lung embolism, cancer, thyroid and other abnormalities
[52]. Though the concentrations, far higher than the certified level of
WHO and FAO, recommend great concern regarding the consumption of
shrimps from these areas, tolerable THQMn values allow the Mn con-
centrations and infer no possible.

Our findings regarding Cr concentrations agree with the results ob-
tained from a study carried out in the Bangsi river of Bangladesh [53],
but differ from the results reported from the Kabdak river of Satkhira,
Bangladesh [54]. Articulation revealed that concentrations of Cr in shell
(1.03 mg/kg) was much higher than in tissue (0.68 mg/kg) of black tiger
shrimps of Batiaghata, while similar concentration (0.14 mg/kg) was
observed in both tissue and shell for freshwater prawn of the Bhairab
river of Bangladesh [6]. However, both findings exceed our determined
values. As feed inputs, poultry droppings and tannery wastes are
frequently used in shrimp farms in Bangladesh. These Cr-rich wastes
cause Cr uptake into shrimp body and this made the understanding
behind the Cr concentrations in shrimps of Rupsa and Paikgacha that
crossed the maximum recommended limit of WHO and FAO. Cr uptake in
human body for a long time can cause disruption of cellular integrity and
functions by damaging protein and lipid membrane [55, 56]. Fortu-
nately, THQCr values are very negligible and confirm no potent human
health risk from Cr consideration.

Ahmed et al. [57] and Sarkar et al. [6] documented Pb concentrations
of 0.51 mg/kg in freshwater prawn from the Buriganga river and
0.52–1.16 mg/kg in shrimps from Khulna-Satkhira region of Bangladesh,
respectively, which are somewhat close to our findings. Pb can cause
renal failure and liver damage [58] upon consumption of Pb contami-
nated foods and prolonged exposure may lead to mental retardation,
comma, and even death in severe cases [18]. However, far lower con-
centration than the recommendation and lower average THQPb values in
all sub-districts avoid these human health risks.
7

WHO and FAO defined 1 mg/kg as the maximum recommended limit
for Cd while 0.05 mg/kg and 0.5 mg/kg were defined by the European
Community legislation [59] and Codex Committee on Food Additives
and Contaminants [60], respectively. However, the average Cd concen-
trations determined in the current study were far below from the rec-
ommended level by FAO andWHO; and very close to the European Union
recommendation. Our result on Cd concentrations agrees with the
finding where authors determined Cd level of 0.05–0.13 mg/kg in
shrimps of Khulna- Satkhira region [6]. however, the result for shellfish
(1.51 mg/kg) from the Buriganga river [57] counters our findings. Renal
and hepatic dysfunctions may be accelerated by high dose Cd exposure
while long term exposure may obstruct bone formation, hypertensions,
tumors and even cancer in urinary bladder [6, 61]. Nevertheless, lower
THQCd values in all shrimps sampled from Khulna region deny these
health risks posed by cadmium.

An HI index of more than 1 recommends possible human health risk.
Though no other metals did, iron contributed to a THQ more than 1 and
made the hazard index far higher than the recommendation. From
induvial metal perspective, though THQ calculated from Ni, Zn, Mn, Pb,
Cr, Cd concentrations complied the human health safety issues, Fe
threatens the consumption of shrimps from these areas. Providentially,
adverse effects of iron for human health are not so serious like other
heavy metals and comprehensive actions regarding minification of its
availability in farms can improve the shrimp's quality.

Target cancer risk values augur the lifetime potency of carcinogen(s)
[22] and values greater than 10�4 are considered to exert potential
carcinogenic risks [23]. Recorded TR values for Ni, Cr, Cd and Pb,
ranging from 10�7 to 10�5, are considered acceptable. Cumulative target
cancer risk values (TRt) in all sub-districts suggest no potential risk of
carcinogenesis from these shrimps.

5. Conclusion

The study revealed that the average concentrations of Fe, Mn, and Cr
(in Rupsa and Paikgacha) in shrimps from Khulna were considerably
higher than the maximum recommended limits. Target hazard quotients
of Fe made the hazard indices more than 1 in all sub-districts. However,
risk of carcinogenesis posed by Ni, Cr, Pb, and Cd were within the
acceptable range. This can wrap a conclusion that the shrimps from these
areas can cause non-carcinogenic harm to human upon consumption.
Therefore, to ensure the food safety aspects from detrimental
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consequences of heavy metal contaminations, execution of standards in
all steps of shrimp production is obligatory.
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