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Abstract: The taxonomy and phylogenetics of Neotropical deer have been mostly based on morpho-
logical criteria and needs a critical revision on the basis of new molecular and cytogenetic markers.
In this study, we used the variation in the sequence, copy number, and chromosome localization
of satellite I-IV DNA to evaluate evolutionary relationships among eight Neotropical deer species.
Using FISH with satI-IV probes derived from Mazama gouazoubira, we proved the presence of satellite
DNA blocks in peri/centromeric regions of all analyzed deer. Satellite DNA was also detected in the
interstitial chromosome regions of species of the genus Mazama with highly reduced chromosome
numbers. In contrast to Blastocerus dichotomus, Ozotoceros bezoarticus, and Odocoileus virginianus,
Mazama species showed high abundance of satIV DNA by FISH. The phylogenetic analysis of the
satellite DNA showed close relationships between O. bezoarticus and B. dichotomus. Furthermore, the
Neotropical and Nearctic populations of O. virginianus formed a single clade. However, the satellite
DNA phylogeny did not allow resolving the relationships within the genus Mazama. The high
abundance of the satellite DNA in centromeres probably contributes to the formation of chromosomal
rearrangements, thus leading to a fast and ongoing speciation in this genus, which has not yet been
reflected in the satellite DNA sequence diversification.

Keywords: Cervidae; comparative cytogenetics; FISH; satellite DNA; sequencing

1. Introduction

Among large mammals, Neotropical deer (Cervidae, Pecora, Ruminantia, Artio-
dactyla) [1,2] represent an interesting group of species still lacking comprehensive scientific
data. Their taxonomy has been established mostly on the basis of morphology indicating a
need for its critical revision and a future systematic research [3,4]. Neotropical deer involve
genera Pudu, Mazama, Hippocamelus, Blastocerus, Ozotoceros, and Odocoileus grouped in the
tribe Rangiferini, subfamily Capreolinae [4,5]. As in other Cervidae, a variety of karyotypes
has been observed in Neotropical deer, ranging from 2n = 70 in Mazama gouazoubira or
Odocoileus virginianus, to 2n = 32–34+ Bs in Mazama bororo [6,7]. The 2n = 70 karyotype
considered to reflect cervid ancestral karyotype has derived from the hypothetical ancestral
karyotype of Pecora (2n = 58) by six chromosome fissions [6,8,9]. However, a series of evolu-
tionary chromosome rearrangements occurred in many deer taxa, which led to a significant
diversification of their karyotypes [9]. As with the other Neotropical deer species, a rapid
karyotype evolution has been observed in Mazama americana, a taxon grouping several
cryptic species currently classified as cytotypes on the basis of their karyotype differences
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and geographical distribution and reported as M. americana species complex [4,10–12].
There is no doubt that the taxonomy and phylogenetics of the Neotropical deer would
benefit from new approaches and utilization of new molecular markers.

A useful source of information can be found in satellite DNA, which consists of rapidly
evolving, tandemly organized repetitive sequences, and might serve, to some extent, as
molecular cytogenetic marker to trace individual and species origin and phylogeny. Satellite
DNA located in centromeres and pericentromeric chromosome regions probably represents
a structure linked to centromeric functions and chromosome segregation [13–16]. However,
the functional roles of satellite DNA have not been fully elucidated yet. It is known that
despite the relative uniformity of monomer lengths within satellite DNA families, they
often show variations in sequence, copy numbers, and chromosome distribution even
among related species [13,17], which can be used in phylogenetic studies [16,18–27].

Six satellite DNA families were described in Cervidae so far, of which satI-satIV were
characterized in terms of sequence and chromosomal distribution in a number of Eurasian
and North American cervid species [24,28–34]. However, there is a complete lack of data
on satellite DNA sequences and their chromosome distribution in deer inhabiting South
America. The sole exception is O. virginianus, a species spread throughout the American
continent, in which a representative of its northern population has been under study
recently [24].

In this study, we isolated four main groups of cervid satellite DNA sequences (satI-IV)
in eight Neotropical deer species: Mazama gouazoubira, Mazama nemorivaga, Mazama nana,
Mazama bororo, M. americana, Blastocerus dichotomus, Ozotoceros bezoarticus, and O. virginianus
of South American origin. We performed intra- and inter-species comparisons of the ob-
tained satellite DNA sequences and their physical localization on metaphase chromosomes
using fluorescence in situ hybridization (FISH). We also searched the obtained sequences
for a presence of the 17-bp binding motif for the CENP-B centromeric protein. Finally, we
reconstructed phylogenetic trees of the satellite DNA sequences and compared them with
the mt-cyb gene phylogeny to infer the evolutionary relationships among Neotropical deer
species and their position within Cervidae.

2. Material and Methods
2.1. Species and Samples

Fibroblast tissue cultures prepared according to standard techniques from skin sam-
ples of eight Neotropical deer species and available at NUPECCE (Jaboticabal, Brazil)
were used in this study for DNA isolation and FISH. No animals were euthanized in this
study. The samples are listed in Table 1. To expand our knowledge on satellite DNAs in
Cervidae, we also performed an analysis of partial satIII DNA sequence in eight Old world
deer species (see Table 1) still missing data on satIII DNA sequence variability. Genomic
DNA obtained previously [24] from peripheral lymphocytes was used for the analysis.
Taxonomic nomenclature published by Groves and Grubb (2011) was used [5].
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Table 1. Species analyzed in this study.

Species Latin Name Abbr. a 2n

Brown brocket deer Mazama gouazoubira MGO 2n = 70 + B
Amazonian brown brocket deer Mazama nemorivaga MNE 2n = 69 + B

Brazilian dwarf brocket deer Mazama nana MNA 2n = 39 + Bs
Small red brocket deer Mazama bororo MBO 2n = 33 + Bs

Red brocket deer-cytotype Paraná Mazama americana MAM-PR 2n = 53 + Bs
Red brocket deer-cytotype Santarém M. americana MAM-SA 2n = 51 + Bs

Red brocket deer-cytotype Juína M. americana MAM-JU 2n = 45 + Bs
Red brocket deer-neotype from Roraima b M. americana MAM-RR 2n = 46 + Bs

Marsh deer Blastocerus dichotomus BDI 2n = 66
Pampas deer Ozotoceros bezoarticus OBE 2n = 68

White-tailed deer of Brazilian origin Odocoileus virginianus OVI 2n = 70

Red deer Cervus elaphus CEL 2n = 68
Fallow deer Dama dama DDA 2n = 68
Eld’s deer Rucervus eldii REL 2n = 58

Chinese muntjac Muntiacus reevesi MRE 2n = 46
Roe deer Capreolus capreolus CCA 2n = 70
Reindeer Rangifer tarandus RTA 2n = 70

Moose Alces alces AAL 2n = 68
White-tailed deer of North American origin Odocoileus virginianus OVI-N 2n = 70

a Abbreviation; b An animal from the region Roraima cytogenetically similar to the previously described neotype
[10] but showing a heterozygous centric fission.

2.2. Satellite DNA Isolation

Genomic DNA was obtained from fixed suspensions of cultured fibroblasts of the
available Neotropical deer using the QIAamp DNA Blood Mini Kit (Qiagen, Hilden,
Germany) after washing in PBS. Satellite DNA was isolated from the genomic DNA by
PCR amplification using previously published primer sets [24] (Table S1). SatI, satII, and
satIV DNA sequences were isolated from all Neotropical deer species. SatIII DNA was
obtained only from M. gouazoubira, and the satIII DNA internal fragment (satIII-part) was
isolated from all remaining Neotropical and Old-World deer samples available for this
study. All PCR reactions were performed using Hot Start Combi PPP Master Mix (Top-Bio,
Prague, Czech Republic) according to the manufacturer’s instructions. The obtained PCR
products were cloned into the pDrive Cloning Vector (Qiagen, Hilden, Germany). Four
different clones of each of satI, satII, satIII-part, and satIV DNA were selected in each
species on the basis of their Hae III RFLP patterns (recognition site GG*CC) and subjected
to sequencing.

2.3. Sequence Analysis

All satellite DNA sequences obtained in this study were screened for interspersed
repeats using RepeatMasker (http://www.repeatmasker.org). The GC content was calcu-
lated using DNA/RNA GC Content Calculator (http://www.endmemo.com). All satel-
lite sequences were also screened for a presence of the 17 bp CENP-B binding motif
(NTTCGNNNNANNCGGGN) and the satI for the 31-bp subrepeat unit motif [35,36] using
FIMO (version 5.1.0) software (http://meme-suite.org) [37]. The satellite DNA sequences
obtained in this study were compared to cervid satellite sequences available in the NCBI
database using BLASTN (https://blast.ncbi.nlm.nih.gov) and BLAST2 software was used
to assess the sequence homology.

2.4. FISH

Cloned satI, satII, satIII, and satIV DNA of M. gouazoubira were labelled with Orange-
or Green-dUTP (Abbott, Abbott Park, IL, USA) using Nick Translation Reagent Kit (Abbott)
to serve as probes for comparative FISH. FISH was performed using standard protocols [19].
Hybridization signals were examined using Zeiss Axio Imager.Z2 fluorescence microscope
(Carl Zeiss Microimaging GmbH, Jena, Germany) equipped with appropriate fluorescent
filters and the Metafer Slide Scanning System (MetaSystems, Altlussheim, Germany).

http://www.repeatmasker.org
http://www.endmemo.com
http://meme-suite.org
https://blast.ncbi.nlm.nih.gov
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Images of well-spread metaphase cells were captured and analyzed using ISIS3 software
(MetaSystems).

2.5. Phylogenetic Analysis

Multiple sequence alignments were constructed in MAFFT 7.474 [38] using the L-INS-i
algorithm [39] for each satellite sequence separately. Alignments of cervid satellite DNA
contain 1–8% of gaps [24], and gaps can influence phylogenetic reconstruction [40]. To
capture phylogenetic information in gaps, the indels in the satI-IV alignments were re-
coded to presence/absence data and used as a partition in phylogenetic reconstruction [22].
For the indel partition, gaps in a sequence were coded as 1, and all nucleotides were
coded as 0. Optimal substitution models for DNA sequences were selected with the
smart model selection algorithm 1.8.4 based on the Bayesian Information Criterion that
utilized likelihood estimation implemented in PhyML 3.3 [41,42]. The phylogenetic trees
were reconstructed in MrBayes 3.2 [43] in the partitioned analysis, capturing the DNA
sequence variation and the phylogenetic information in the indels. The Markov Chains
Monte Carlo (MCMC) were run for 2 million generations, sampled every thousandth
generation. Two runs of four MCMC were run to ascertain efficient treespace search and
check for convergence, following discarding 30% of initial samples as burn-in. The analyses
were considered converged when the average standard deviation of split frequencies was
<0.01 at the end of the run, potential scale reduction factors were ≈1.000 for each model
parameter and frequency of swaps between neighboring chains was between 0.3 and
0.7. The trees were visualized in R [44] with help from packages ape [45], treeio [46],
phytools [47], and RColorBrewer [48], where nodes with posterior probability ≥0.95 were
considered supported. The trees were rooted at midpoint.

We downloaded cervid reference sequences of the mt-cyb gene from the NCBI database
to reconstruct a phylogenetic tree from a mitochondrial marker and to compare the satDNA
and mtDNA phylogenies. The analysis was performed analogically to the analysis of
satDNA sequences, with the difference that the mtDNA marker did not contain gaps and
the phylogeny was reconstructed from a single partition containing the DNA sequences.

3. Results
3.1. Sequence Analysis

In this study, newly obtained satI, satII, satIII-part, and satIV DNA sequences were
analyzed in the Neotropical deer species including different M. americana cytotypes. The
PCR product lengths, GC content, and sequence similarities among the individual satellite
DNA clones are displayed in Table 2. Moreover, the satIII-part sequence was isolated and
analyzed in C. elaphus, D. dama, R. eldii, M. reevesi, C. capreolus, R. tarandus, and A. alces.
All satellite DNA sequences obtained in this study were deposited in the NCBI database
(accession numbers MW273496–MW273692).

Using RepeatMasker, we did not find any SINE, LINE, or LTR elements in the analyzed
satI, satII, and satIV DNA sequences. In all analyzed species, the predicted CENP-B binding
motif was detected in the satII DNA starting at position 145–148 bp (Table S2). Eighteen to
21 copies of the 31-subrepeat unit motif were revealed in the satI DNA sequences (Table 2).
The sequences of the 31-bp subrepeat unit showed a substantial intra- and interspecies
variability. A higher similarity was observed between the subrepeat sequences in a particu-
lar satI monomer position in different species than among the subrepeat sequences in the
same satI monomer. The 31-bp subrepeat sequence variance and its positions in the satI
sequence in the analysed Neotropical deer are shown in Table S3.

Sequence similarity among satellite DNAs of Neotropical deer, Capreolinae, and
Cervinae was compared using both sequences obtained in this study, and those available in
the NCBI database (Table 3). SatI DNA sequences showed the highest intra- and interspecies
variability. A high intra- and interspecies satellite DNA sequence similarity was observed
in satII-satIV, even when the Neotropical deer satellite DNA was compared with sequences
previously published in Capreolinae and Cervinae (Table 3).
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Table 2. Characteristics of the satI-IV sequences based on four clones of each satellite DNA analyzed in each sample of
Neotropical deer (see text for abbreviations of species names).

Species

SatI SatII SatIII SatIV

Length
(bp)

GC Content
(%)

Similarity
(%)

No. of
31–bp
Units

Length
(bp)

GC Content
(%)

Similarity
(%)

Length
(bp)

GC Content
(%)

Similarity
(%)

Length
(bp)

GC Content
(%)

Similarity
(%)

MGO 910 51 96–99 19 579–581 67 97–99 583 53–56 89–98 727 45 97–99
MNE 910–913 51–53 76–92 19 578–580 65–67 92–96 580–583 55–58 90–93 726–727 44–45 96–99
MNA 904–919 46–51 75–84 20 575–579 64–67 90–93 579–583 56–59 89–97 727–728 45–46 98–99
MBO 910–917 49–51 76–92 18 578–579 64–66 92–94 579–583 55–58 90–94 727 45 99–100

MAM_PR 904–913 47–54 75–85 19 579 65–67 94–97 579–583 56–59 90–98 727 45 98–99
MAM_SA 904–910 47–51 72–94 18 578–579 64–67 92–98 581–583 56–59 90–95 727 44–46 97–99
MAM_JU 909–917 49–53 74–94 18 579–581 66–67 92–95 578–583 56–60 90–96 726–727 45–46 96–99
MAM_RR 908–910 51–52 77–98 20 575–579 64–67 93–96 580–583 54–59 86–93 727 45 97–99

BDI 911–919 48–50 77–80 21 579–580 63–67 88–98 579–584 56 92–97 726–737 45 93–97
OBE 911–917 48–51 76–98 18 580 67–68 96–99 582–583 55–58 91–99 727 45–46 92–99
OVI 907–915 48–51 74–99 19 578–579 66–67 97–98 581–584 55–56 94–97 727 44–46 95–99

Table 3. Satellite DNA sequence similarity among Neotropical deer, Capreolinae, and Cervinae (Cervini and Muntjacini).

Species
SatI SatII SatIII–Partial SatIV

Neotropical
Deer Capreolinae Cervinae Neotropical

Deer Capreolinae Cervinae Neotropical
Deer Capreolinae Cervinae Neotropical

Deer Capreolinae Cervinae

MGO 75–99 76–81 79–83 88–99 77–97 77–84 85–99 83–95 87–93 93–99 93–96 85–97
MNE 71–99 73–89 76–83 86–99 77–97 75–84 86–99 85–98 89–93 92–99 92–96 85–97
MNA 71–99 69–80 73–83 85–97 73–95 75–82 87–99 85–98 89–94 93–99 93–96 85–97
MBO 73–99 71–80 73–83 87–97 76–95 75–82 86–99 85–98 89–94 93–99 93–96 85–97

MAM_PR 72–99 73–89 74–83 87–99 77–96 76–84 87–99 85–98 89–94 93–99 93–96 85–96
MAM_SA 72–99 72–86 74–83 87–99 76–97 74–84 87–97 84–95 88–93 93–99 93–96 85–97
MAM_JU 72–99 70–86 73–83 86–97 76–96 74–83 88–99 85–98 89–94 93–99 93–96 85–97
MAM_RR 72–99 74–88 76–83 86–97 74–96 75–83 85–97 83–92 86–93 93–99 93–97 85–97

BDI 73–95 72–80 75–83 85–98 75–97 72–84 85–93 85–92 89–94 91–98 92–96 84–96
OBE 73–96 72–81 75–83 88–98 78–97 76–84 86–97 85–92 89–94 92–97 92–96 84–95
OVI 72–92 72–87 73–84 79–98 79–98 77–85 86–98 85–95 89–93 93–98 93–97 85–97

3.2. FISH

Probes for satI, satII, satIII, and satIV DNA obtained from M. gouazoubira were used
for comparative FISH in the 11 Neotropical deer samples. The FISH results are summarized
in Table 4 and displayed in Figures 1–4.

Table 4. Fluorescence in situ hybridization (FISH) patterns of the MGO satI-IV probes in Neotropical deer.

Species 2n FN B SatI SatII SatIII SatIV

MGO 70 70 + all autosomes, X, Bs all autosomes, X a single autosome, weak all autosomes, X
MNE 69 72 + all autosomes, X, Bs all autosomes, X a few autosomes, weak all autosomes
MNA 39 58 + all autosomes, X, Bs, interstitial all autosomes, X, interstitial a few autosomes, weak all autosomes, X, Bs, interstitial
MBO 33 46 + all autosomes, X, Bs, interstitial all autosomes, X, Bs, interstitial a few autosomes, weak most autosomes, X, interstitial

MAM PR 53 56 + all autosomes, X, Bs, interstitial all autosomes, X a few autosomes, weak all autosomes, X, interstitial
MAM SA 51 56 + all autosomes, X, Bs, interstitial all autosomes, X, a few autosomes, weak all autosomes, interstitial
MAM JU 45 48 + all autosomes, X, Bs, interstitial all autosomes, X a few autosomes, weak all autosomes, X, interstitial
MAM RR 46 51 + all autosomes, X, Bs, interstitial all autosomes, X a few autosomes, weak all autosomes, interstitial

BDI 66 74 - all autosomes, X all autosomes, X a few autosomes, big or weak a few autosomes, big or weak
OBE 68 74 - all autosomes, X all autosomes, X a few autosomes, weak a few autosomes
OVI 70 74 - all autosomes, X all autosomes, X a few autosomes, weak a few autosomes

In general, the MGO satI and satII probe produced centromeric signals on all auto-
somes (both acrocentric and bi-armed) and on the X chromosome in all analysed Neotropi-
cal deer (Figures 1 and 2). In all animals with B chromosomes, the satI probe also marked
Bs. Moreover, the satI probe produced interstitial signals on one or more chromosomes in
M. nana, M. bororo and in all four analyzed cytotypes of M. americana. Signals of the satII
probe were also observed interstitially in M. nana and M. bororo and on B chromosomes in
M. bororo. Examples of the interstitial signals and signals on B chromosomes are displayed
in detail in Figure 2.

Using the MGO satIII probe, none or only weak subcentromeric signals were detected
in the Neotropical Cervidae. The only exception was B. dichotomus showing also large
signals on several autosomes (Figure 3).

The MGO satIV probe hybridized to large regions of centromeric heterochromatin of
all chromosomes in most Neotropical deer species and produced also interstitial signals in
M. bororo and in all M. americana cytotypes. In addition, B chromosomes were marked in
M. nana (Figures 2 and 4). A different pattern was observed in B. dichotomus, O. bezoarticus,
and the Brazilian O. virginianus, only showing very weak centromeric signals of the satIV



Genes 2021, 12, 123 6 of 17

probe on a few autosomes together with several intense signals in B. dichotomus and O.
bezoarticus.
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3.3. Phylogenetic Analysis

Together with previously published sequences, multiple sequence alignments con-
sisted of 64 to 76 satI-IV sequences and 18 mt-cyb sequences of species from the family
Cervidae (Table S4). The smart model selection algorithm suggested the GTR substitution
model for the satI and satIII alignments, K80 model for the satII, and HKY model for
the satIV and mt-cyb alignments. In all satDNA alignments, rate heterogeneity between
sites was modelled according to the Γ distribution, and in the mt-cyb according to the
proportion of invariable sites (Table S4). The satII and satIV phylogenies differentiated
currently recognized tribes, with satII sequencing supporting monophyletic groups of
Cervini, Muntiacini, Alceini, Capreolini, and Rangiferini (Figures 5B and 6B).
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Figure 5. Bayesian phylogenetic trees constructed from cervid satellite sequences. (A) SatI, (B) satII. AAL—Alces alces,
BDI —Blastocerus dichotomus, CAL—Cervus albirostris, CCA—Capreolus capreolus, CEL—Cervus elaphus, DDA—Dama dama,
EDA—Elaphurus davidianus, MAM—Mazama americana, MBO—Mazama bororo, MGO—Mazama gouazoubira, MNA—Mazama
nana, MNE—Mazama nemorivaga, MRE—Muntiacus reevesi, OBE—Ozotoceros bezoarticus, OVI—Odocoileus virginianus, REL—
Rucervus eldii, RTA—Rangifer tarandus, RTI—Rusa timorensis. Circles at nodes signify nodes with posterior probability ≥0.95
(black) and ≥0.90 (grey). Unmarked nodes were not supported.
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BDI—Blastocerus dichotomus, CAL—Cervus albirostris, CCA—Capreolus capreolus, CEL—Cervus elaphus, DDA—Dama dama,
EDA—Elaphurus davidianus, MAM—Mazama americana, MBO—Mazama bororo, MGO—Mazama gouazoubira, MNA—Mazama
nana, MNE—Mazama nemorivaga, MRE—Muntiacus reevesi, OBE—Ozotoceros bezoarticus, OVI—Odocoileus virginianus, REL—
Rucervus eldii, RTA—Rangifer tarandus, RTI—Rusa timorensis. Circles at nodes signify nodes with posterior probability ≥0.95
(black) and ≥0.90 (grey). Unmarked nodes were not supported.

In satI phylogeny, a monophyletic relationship of satellite sequences was supported
for Cervini, Alceini, and Capreolini, however Rangiferini and Muntiacini were polyphyletic
(Figure 5A). The Neotropical deer satI sequences were diverged and formed three deeply
differentiated lineages (Figure 6A). Clones from multiple species (M. americana, M. nemori-
vaga, M. bororo, M. nana, O. bezoarticus, B. dichotomus) were represented in more than one
lineage. In M. americana, clones from all sampled regions were present in all three lineages.
The first lineage included Mazama, Odocoileus (both populations), and Holarctic Rangifer in
incomplete sorting of sequences at the species level, and the lineage formed a sister rela-
tionship to Capreolus and Muntiacus. The second Neotropical deer satI lineage consisted of
Mazama, Ozotoceros, and Blastocerus as a sister group to two Muntiacus satI sequences. SatI
clones from M. gouazoubira all belonged to the second lineage. The genera of Neotropical
deer grouping in the third satI lineage were also Mazama, Ozotoceros, and Blastocerus, but
no clear sister relationship was identified in the satI phylogeny (Figure 6A).

Neotropical deer formed a single supported lineage in the satII sequences with sup-
ported monophyly of Odocoileus, Ozotoceros, and Blastocerus (Figure 6B). The latter two taxa
formed a paraphyletic sister relationship with respect to Mazama. Notably, BDI_clone3
formed a long branch at the base of Neotropical Rangiferini. Similar relationships were
retrieved in the satIV phylogeny, but additional clones from all Neotropical genera grouped
within the Mazama lineage (Figure 6B).

Low divergence in satIII-part (Table 3) resulted in incomplete lineage sorting in
Neotropical deer and a polytomy at the deep divergence of Cervidae (Figure 6A).
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The mt-cyb phylogeny showed monophyletic groups representing the tribes Rangiferini
and Cervini (Figure S1). Muntiacini were sister to Cervini, and Capreolini and Alceini
diverged rapidly close to the root of the tree. In Neotropical deer, mtDNA phylogeny did
not support monophyly of Mazama similarly as was shown in the satDNA trees. Instead,
Mazama were paraphyletic, with M. nana, M. bororo, and M. americana forming a single lin-
eage sister to O. virginianus, and M. gouazoubira and M. nemorivaga forming an unresolved
group with B. dichotomus and O. bezoarticus (Figure S1).

4. Discussion
Sequence Comparisons

Cervidae is a diverse group of species distributed in Eurasia and North and South
America. Among them, Neotropical deer species have still been understudied in terms
of current taxonomy and phylogenetic relationships [49]. In this study, we performed a
comparative sequence and FISH analysis of the four main cervid satellite DNA families
(satI-IV) isolated from a variety of Neotropical deer species, including several specific
cytotypes.

Our sequence comparisons revealed close relationships among the studied Neotropical
deer in satII, satIII and satIV DNA that also showed a high similarity to satellite DNA
sequences available in the NCBI database for other species of Capreolinae. Regarding
satI DNA, it showed the highest intra- and interspecific variability indicating a fast satI
sequence evolution at the time of early divergence of the Capreolinae subfamily. The
satI and satII monomer lengths were comparable to previously studied Capreolinae [24].
However, the number of the 31-bp satI internal subrepeat units was lower in the studied
Neotropical deer than in other Capreolinae, and closer to that published in Cervini [24].
The general occurrence of this subrepeat throughout many bovid and cervid genomes [21,
24,28,50] indicates its possible biological function. This suggestion is also supported by
the interspecies similarity in the 31-bp subrepaeat sequences at the individual positions of
the satI DNA monomers. This sequence might form a part of a 3D structure involved in
protein or siRNA binding during heterochromatin formation, cell division, or transcription
regulation. However, further studies are needed to elucidate its functions.

The highest GC content and the presence of the CENP-B binding motif, known to
be associated with the centromeric function [51,52], were detected in the satII DNA in all
studied Neotropical deer. These findings support the previously published hypothesis that
satII DNA might represent the most important satellite DNA family in Cervidae [24] but
the satII DNA significance has yet to be confirmed by functional studies. The sequence
of the 17-bp CENP-B motif was identical throughout most analyzed Neotropical deer
samples indicating a high level of conservation. The most common CENP-B motif sequence
detected in this study (TTTGGAGGCAGGCGGGG) contained the published human core
recognition sequence (NTTCGNNNNANNCGGGN) [53] with one nucleotide difference
(C-G substitution). However, three different one-nucleotide substitutions from the deer
core sequence were revealed in M. bororo, indicating a surprising CENP-B motif variance in
this species that probably originated during its separate evolution.

In Cervidae, satI and satII DNA sequences are highly abundant, occupying 2–35% of
the genomic DNA [33]. On the other hand, low copy numbers of satIII and satIV DNA not
detectable by FISH were previously reported in many deer species [24]. In this study, we
also observed significant differences in the abundance of the satellite DNA families by FISH.
The high copy numbers of satI and satII DNA, reflected by large hybridization signals,
were in contrast to very weak satIII signals only present on one or a few chromosomes
in all studied species except B. dichotomus. Regarding satIV DNA, there were significant
differences in its abundance between O. virginianus, B. dichotomus and O. bezoarticus on
one side, and species of the genus Mazama on the other, the latter showing large satIV
DNA blocks. The observed interspecies differences in the satellite DNA abundance at the
relatively high sequence similarity of the repeat units can be related to the satellite DNA
evolution. It is generally accepted that satellite DNAs are formed by a fast amplification of
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monomers existing in ancestral genomes [54]. As suggested by a library model, related
species share a common collection of satellite DNAs, which vary in their abundance, with
specific sequences being differentially amplified in individual species [55–57]. Satellite
DNA arrays are probably formed by a mechanism of rolling circle replication with sub-
sequent further amplification by unequal crossing over [58–61]. The existing sequences
are then diversified by mutations, which spread through the genome by mechanisms of
concerted evolution, leading to the formation of species- and chromosome-specific satellite
sequences [13,62–64]. Accordingly, interspecies differences in satellite DNA abundance and
sequences were found to be highly consistent with species phylogeny [16,22,24,56,63,65].

In this study, the satII DNA sequence phylogeny well corresponds to the mtDNA (mt-
cyb gene) phylogeny (Figure S1) and the published taxonomic divergences in Cervidae [24].
The satII phylogeny differentiated the currently recognized tribes, suggesting monophyletic
origin of Cervini, Muntiacini, Alceini, Capreolini, and Rangiferini. In Neotropical deer,
O. bezoarticus was closely related to B. dichotomus, and both Neotropical and Nearctic
populations of O. virginianus formed one lineage without defined intraspecific relationships.
SatII and satIV sequences of Mazama showed unresolved relationships both at the level
of species differentiation as well as at the genus level. Incomplete lineage sorting of
Mazama species with respect to other Neotropical deer consistently occurs in satellite DNA
(this study), mtDNA phylogenies (Figure S1 and [66,67]), and even with the molecular
and morphological data combined [68]. Neotropical deer, as descendants of Nearctic
ancestors that arrived to South America during the Great America Biotic Interchange
between late Miocene and late Pleistocene [69], diverged in an explosive radiation, forming
morphologically well-defined but genetically unresolved genera. As in other Neotropical
mammals, morphological convergence in genetically diverged taxa could be attributed to
ecological adaptations to specific niche partitioning in newly colonized regions [70,71]).
In this study, the explosive radiation in Neotropical deer can be best observed in the satI
sequence phylogeny. At least four distinct lineages first began to diverge at the time of the
split of Capreolinae. Genera Rangifer, Capreolus, and Alces each retained one lineage of satI
sequences, but in Neotropical deer, satI sequences diversified three times independently.

The presence of genomic satellite DNA arrays can facilitate the formation of chro-
mosome rearrangements and thus karyotype and species evolution [29,72,73]. The deer
chromosome evolution from the ancestral karyotype (2n = 70) was driven by centric and
tandem fusions at the simultaneous reduction in the chromosome number [9]. Moreover,
the existence of centric fusion polymorphisms previously described in the genus Mazama
indicate that chromosome fusions represent an important source of the recent and ongoing
karyotype evolution of this taxon [74–76]. Despite the predominantly peri/centromeric
location of the satellite DNA, we also observed interstitial satI, satII, and satIV FISH signals
in Mazama species with highly reduced chromosome numbers (M. nana, M. bororo, M. amer-
icana cytotypes). Similar finding of interstitial satellite DNA signals at the tandem fusion
sites, and even their co-localization with telomeric sequences was previously reported in
muntjacs [30,32,77–79].

In M. americana, a multiple sexual system resulting from evolutionary X-autosomal
fusions was previously described [12,80]. Among deer, the XY1Y2 system was found also
in the genus Muntiacus [81,82]. It is known that sex-autosomal translocations are usually
associated with a disturbed process of X chromosome inactivation and with a meiotic
disruption [83–85]. However, heterochromatin blocks intercalated between the gonosomal
and autosomal parts of the rearranged sex-autosomes can serve as effective barriers for
spreading of somatic X-chromosome inactivation in females and for regulation of meiotic
processes in males [86–88]. In our study, the presence of intercalated heterochromatin in
the X-autosomal fusion region suggested by a distinct DAPI band was proved by detection
of satI, less frequently satII and satIV hybridisation signals in all M. americana cytotypes. As
discussed in the previous paragraph, also these interstitial satellite DNA signals probably
map to a historical fusion site and represent former centromeric heterochromatin of the
autosome fused to the ancestral X chromosome.
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Another interesting karyotype feature of Mazama species analyzed in this study is the
presence of B chromosomes [7,12,75,80]. B chromosomes are supernumerary, mitotically
unstable chromosomes that were described in some animal, plant, and fungal species [89].
Their numbers vary in different individuals and even individual cells of the organism,
and, despite a presence of duplicated coding genes detected in Bs in some species [90,91],
their biological function is unknown. A recent study based on comparative FISH and
next-generation sequencing of B chromosomes in two deer species, Capreolus pygargus
(Capreolini) and M. gouazoubira (Rangiferini) demonstrated an independent origin of B
chromosomes in these species, and their different evolutionary history [92]. In all animals
carrying B chromosomes in our study, the Bs showed FISH signals of the satI DNA probe.
The independent divergent lineages observed in Neotropical deer in the satI phylogeny
might be attributed to satI sequences on the B chromosomes. Moreover, the satII DNA
signals were detected on Bs in M. bororo. This might indicate either an independent origin
or a more primitive stage of the B chromosomes in M. bororo, which have not yet led to an
evolutionary satII DNA sequence degeneration in this species.

5. Conclusions

The Neotropical deer species show high intra- and interspecies satellite DNA sequence
similarities indicating close evolutionary relationships. The high satellite DNA abundance
probably stands behind the cervid karyotype differentiation driven by centric and tandem
fusions at the simultaneous reduction of the chromosome number.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
425/12/1/123/s1: Table S1. Primers and annealing temperatures for satellite DNA isolation. Table
S2. Positions and sequences of the CENP-B binding motif in individual satII DNA clones. Table
S3. The 31-bp subrepeat sequence variance and its positions in the satI DNA sequence. Table S4.
Multiple sequence alignment composition and selected substitution models of cervid satellite and
mitochondrial sequences. Figure S1. Bayesian phylogenetic tree constructed from cervid mt-cyb
sequences. AAL—Alces alces, BDI—Blastocerus dichotomus, CAL—Cervus albirostris, CCA—Capreolus
capreolus, CEL—Cervus elaphus, DDA—Dama dama, EDA—Elaphurus davidianus, MAM—Mazama
americana, MBO—Mazama bororo, MGO—Mazama gouazoubira, MNA—Mazama nana, MNE—Mazama
nemorivaga, MRE—Muntiacus reevesi, OBE—Ozotoceros bezoarticus, OVI—Odocoileus virginianus, REL—
Rucervus eldii, RTA—Rangifer tarandus, RTI—Rusa timorensis. Circles at nodes signify nodes with
posterior probability ≥0.95 (black) and ≥0.90 (grey). Unmarked nodes were not supported.
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