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Abstract

No-take marine protected areas (MPAs) are assumed to enhance fisheries catch via the
“spillover” effect, where biomass is exported to adjacent exploited areas. Recent studies in
spearfishing fisheries suggest that the spillover of gear-naive individuals from protected to
unprotected sites increases catch rates outside the boundaries of MPAs. Whether this is a
widespread phenomenon that also holds for other gear types and species is unknown. In
this study, we tested if the distance to a Mediterranean MPA predicted the degree of vul-
nerability to hook and line in four small-bodied coastal fish species. With the assistance of
underwater video recording, we investigated the interaction effect of the distance to the
boundary of an MPA and species type relative to the latency time to ingest a natural bait,
which was considered as a surrogate of fish naiveté or vulnerability to fishing. Vulnerability
to angling increased (i.e., latency time decreased) within and near the boundary of an MPA
for an intrinsically highly catchable species (Serranus scriba), while it remained constant
for an intrinsically uncatchable control species (Chromis chromis). While all of the individu-
als of S. scriba observed within the MPA and surrounding areas were in essence captured
by angling gear, only one fifth of individuals in the far locations were captured. This sup-
ports the potential for the spillover of gear-naive and consequently more vulnerable fish
from no-take MPAs. Two other species initially characterized as intermediately catchable
(Coris julis and Diplodus annularis) also had a shorter latency time in the vicinity of an
MPA, but for these two cases the trend was not statistically significant. Overall, our results
suggest that an MPA-induced naiveté effect may not be universal and may be confined to
only intrinsically highly catchable fish species. This fact emphasizes the importance of con-
sidering the behavioural dimension when predicting the outcomes of MPAs, otherwise the
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effective contribution may be smaller than predicted for certain highly catchable species
such as S. scriba.

Introduction

The implementation of marine protected areas (MPAs) is a widespread management tool for
the conservation of marine fisheries resources [1-5]. This is because the spatial protection of
marine fauna from harvesting in an MPA is thought to have multiple desirable ecological
effects. One of the most important effects is the “spillover” of larvae and adult biomass from
inside an MPA to the unprotected areas outside [6-10]. Furthermore, the spillover is expected
to not only maintain local populations at high abundance near reserves but also to preserve the
natural meta-population structure [11-13], which ultimately should contribute to the mainte-
nance of high catches and yields at broader spatial scales [10,14-16]. However, as MPAs are
rarely placed at random and the dispersal of pelagic eggs and larvae alongside stochastically
varying oceanographic conditions is commonplace in marine environments, conclusively dem-
onstrating the spillover of fish born inside MPAs has proven to be challenging [16-18]. Never-
theless, common wisdom suggests that a properly scaled and positioned MPA should result in
biomass accumulation within the reserve, which could benefit the fisheries operating outside of
the boundaries [19-21].

The behavioural dimension of fish inhabiting protected areas is a frequently ignored but
important contribution to the benefits of an MPA [22]. Specifically, exporting fish with partic-
ular behavioural types from an MPA may elevate the catchability of the subpopulation entering
the exploited sites [22]. Consistent individual variation in behaviour across multiple exploited
fish species (also known as personality or temperament) has been well documented [23,24].
Such consistent behavioural variation has both ecological and genetic causes [25,26] and has
been found to be related to vulnerability to fishing gears [27,28]. Moreover, it is well known
that species differ consistently in behavioural modes. For example large top predatory fishes
exhibit a foraging behaviour that is markedly different from the behaviour of smaller-bodied
foraging fishes [29-31]. Species or individuals within populations that take more risks should
also be more likely to be captured by a fishing gear [30]. Therefore, it is possible that the protec-
tion offered by a MPA may facilitate the spillover of highly catchable species and individuals to
surrounding sites.

Evidence of the aforementioned spillover of naive fish from protected to exploited sites is so
far scarce for gears other than spearfishing [22]. In the context of the exploitation of coral reef
fishes by spearfishing, it has recently been demonstrated in a series of studies that the vulnera-
bility of individuals exported from MPAs is higher than the vulnerability of individuals found
in exploited areas for some species, which supports the idea of the spillover of “naive fish” [32].
This new concept is defined as the export of highly vulnerable behavioural phenotypes from
no-take protected zones to surrounding exploited areas [32,33]. This finding has been recently
confirmed in a study by Januchowski-Hartley et al. [34] who demonstrated that for certain spe-
cies fish that were observed near MPAs allowed a closer approach by divers before initiating a
flight response compared to fish in exploited sites. These flight responses are particularly rele-
vant in the context of diving-based spearfishing, and although the reefs studied by Janu-
chowski-Hartley and co-workers were likely also exploited by other gear types, the behavioural
responses found most likely were caused by avoidance reactions to divers. Whether the
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enhanced naiveté to spearfishing of some species and individuals living close to MPAs is a
widespread pattern across fisheries systems such as hook and line (angling), is so far unknown.

In a recent study, Alds et al. [30] compared the behaviour of two small-bodied coastal fish
in the context of recreational hook and line fishing and revealed a reduction in the vulnerability
to angling in Serranus scriba at sites with an increased exploitation effort. Hence, the findings
presented by Januchowski-Hartley et al. [22] in spearfished coral reef fishes may also extend to
recreationally angled fish stocks. However, Alds et al. [30] found a reduction in vulnerability to
fishing pressure in only one of the studied fish species, the carnivorous S. scriba, but not in the
omnivorous Diplodus annularis. Similarly, the alteration of behaviour of fish observed in
response to spearfishing by Januchowsky-Hartley et al. [32,35,36] was not universal across all
coral reef species, presumably because some species were not targeted or were behaviourally or
physically uncatchable by the local fishing gears. Generally, one should expect species-specific
changes in vulnerability and naiveté along a gradient of fishing pressure from an MPA to
exploited sites.

In a recreational angling context, exploited fish species should differ in their intrinsic cath-
ability to hook and line gear for two main reasons. First, gape size plays a role in cathability
because hook, bait and lure types limit the possibility of ingestion and capture by small-bodied
individuals with small gapes [37]. Second, foraging mode and learning abilities play an impor-
tant role in the catchability. For example, omnivorous fishes feeding on non-mobile prey might
be evolutionarily adapted towards a shyer behavioural life-style, with a careful trade-off
between foraging opportunities and the risk of predation. However, carnivorous species might
be adapted to attack whenever foraging chances occur because their prey is mobile and encoun-
ters are less frequent [30]. The result should be a higher intrinsic catchability of carnivorous
species when presented with baits offered by anglers compared to omnivorous species exposed
to the same baits [30]. In addition, more aggressive, active or bold individuals have been found
more likely to be captured by angling gear [27,28,38-41], leaving behind individuals that are
intrinsically less vulnerable and harder to catch [42,43]. Therefore, it is expected that the
absence of behaviourally-selective exploitation within an MPA promotes individuals with
naive phenotypes in some recreationally exploited species. This naive biomass may spillover to
the surrounding exploited areas, as seems to occur in spear-fished coral reef species [22].

If a change in behaviour is indeed observed in an exploited species, it could be brought
about by either the above mentioned harvesting-induced evolution over generations or by
learning (both individual and social) to reduce the likelihood of future capture within a genera-
tion. The latter mechanism may be particularly pronounced in catch-and-release angling fish-
eries [44,45], and should contribute to the species-specific export of naive fish from MPAs.
Furthermore, species differ in their learning ability [46], and this is another reason to expect
differences in the intrinsic catchability of species. For example, learning to avoid future capture
has been demonstrated in piscivorous pike (Esox lucius) fished with artificial lures (although
there was no learning response with natural baits) [47,48], as well as in omnivorous fishes such
as carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss) [39,44,49]. Any ban of rec-
reational angling inside MPAs should maintain vulnerable, naive genotypes and phenotypes
via selection and learning, respectively. The strength of the effect should be species specific and
these fish may spread outside the MPA, creating a species-specific gradient of fish naiveté or
vulnerability. Considering this background, we hypothesized that recreational angling around
MPAs would benefit from the spillover of naive fish in selected fish species due to the creation
of a naiveté/vulnerability gradient. Our hypothesis should hold particularly true for those spe-
cies that are intrinsically highly catchable [32]. By contrast, intrinsically highly uncatchable
species, which show little variation in vulnerability independent of fishing site [30], should
show little or no change in vulnerability to angling in response to spatial fishing pressure.
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Materials and Methods
Ethics Statement

The study and the deployment of the underwater cameras were authorised by those responsible
for marine natural resources, the MPA, and surrounding areas in Palma Bay (Fisheries Depart-
ment of the Balearic Island) through a permit to the REC2 Project (ref: CTM2011-23835). The
study was based on observations made through underwater video recordings of wild animals
and did not imply the capture, sacrifice or experiment with animals, nor did it involve endan-
gered or protected species.

Study site and study species

The study was conducted around an MPA located at Palma Bay (Southwestern part of
Mallorca Island, NW Mediterranean; see details of this MPA in Alés and Arlinghaus [19]). The
Mediterranean Sea is a hotspot for marine biodiversity, which includes several species that are
highly vulnerable to fishing [50]. The increase in the number of MPAs in the Mediterranean
over the last two decades to counteract human-related impacts has been notable [51]. More-
over, the general importance of MPAs for ensuring the sustainability of recreational fisheries in
the Mediterranean has recently been emphasized [52], increasing the relevance of studying
how MPAs and fish behaviour interact to shape spatial gradients in vulnerability. We studied
the boat recreational angling (hook and line) fishery over Posidonia oceanica seagrass meadows
[53]. This highly popular local fishery is characterized by the exploitation of a diverse fish com-
munity for food consumption, and it is mainly composed by small-bodied coastal species with
small home ranges [54-56].

The three most frequently captured species in the recreational angling fishery are Diplodus
annularis (Sparidae), Coris julis (Labridae) and Serranus scriba (Serranidae). All of these spe-
cies were part of the experimental design presented here and had similar sizes. The different
intrinsic catchabilities of these species meant that recreational angling affects the three species
in distinct ways. With respect to S. scriba, using fishery-dependent data (i.e., experimental
hook and line angling), Cardona et al. [55] reported a negative relationship between fishing
intensity and a number of population metrics (relative abundance, biomass and average size,
see also [57]). Furthermore, Alds and Arlinghaus [19] reported a higher abundance of S. scriba
in MPAs compared to nearby areas open to fishing. These findings suggest that recreational
angling reduces the numerical abundance of S. scriba. In addition, recreational angling may
alter several key life-history traits in S. scriba, as angling has caused a shift in resource invest-
ment away from growth and towards reproduction, ultimately resulting in the downsizing of
adult body length [58]. The high intrinsic catchability of S. scriba has been attributed to a com-
bination of its high risk-taking behaviour [58] which is common for apex predators (in this
case within the seagrass habitat of P. oceanica ([59,60]), and its large mouth gape relative to
body size, which facilitates the intake of baited hooks [61]. These characteristics do not apply
to D. annularis and C. julis, which are omnivorous, are in lower trophic levels and are conse-
quently less aggressive in their foraging behaviour. Further, the smaller ratio between the
mouth gape and body size of these two species makes them intrinsically less catchable to baited
hooks for physical reasons [59,60]. There is also no evidence that recreational angling substan-
tially depletes the abundance or biomass of these two species when comparing exploited and
unexploited sites [19,55], which suggests that they either compensate for fishing mortality bet-
ter than S. scriba or are simply less catchable. Therefore, D. annularis and C. julis can be con-
sidered intrinsically less catchable than S. scriba. We also considered the case of Chromis
chromis (Pomacentridae) as a largely un-harvested control. C. chromis is an omnivorous
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micro-feeder and it is only occasionally captured by recreational anglers [53]. This species is
abundant within seagrass habitats and therefore constitutes an appropriate control species.

The study area spans the MPA of Palma Bay and surrounding areas (Fig 1). This MPA
extends from the coastline to the 30 m isobath and creates a protected area for fish inhabiting
the P. oceanica seagrass of Palma Bay. All fishing activities have been regulated since 1982, albeit
they were not enforced until the late 1990s (http://dgpesca.caib.es). The MPA is composed of
two areas with different levels of protection: (1) the sanctuary area (~2 km?), where all fishing
activities are forbidden, and (2) a buffer area where both artisanal and recreational fishing are
regulated by temporal closures, rod-limits, bag limits and minimum-size limits. We randomly
generated 54 sampling sites both within and around the no-take MPA. These sites were con-
strained to be over seagrass meadows and set at an increasing distance from the centre of the
MPA (Fig 1). The distance from the sampling points to the boundary of the no-take MPA ran-
ged from -1,042 m (located inside the no-take MPA) to 10,649 m (Fig 1). The area surrounding
the MPA is highly frequented by local anglers as described in Alés and Arlinghaus [19].

Measuring naiveté in the field

To test our hypothesis, a robust measure of fish naiveté in the field was derived. Underwater
video recording has previously been used to observe the behaviour of wild marine fish around
baited hooks [62,63], and the recent miniaturization of recording devices has opened new
opportunities for testing novel behavioural hypotheses on naturally behaving fish in the wild
[64]. In this study, the latency time (LT), observed via underwater video recording, of a fish
when taking a natural bait offered on a dysfunctional hook (where the sharp end was removed)
was used as a surrogate of naiveté as in our previous work [30]. To present the bait we used a
customized device (Fig 2), which was designed to emulate the behaviour of natural baits on
small-sized hooks [54]. The experimental design was similar to the design proposed by Carter
et al. [65] for analysing the behaviour of the lizard Agama planiceps near traps and it has been
developed and calibrated to angling conditions in our study area [30]. In our case, five hooks
(size: 4; gape: 7.30 + 0.03 mm), were mounted on a 0.35 mm monofilament nylon main line
and were baited with similar-sized pieces of thawed shrimp, Penaeus vannamei (Fig 2). Thawed
shrimp is the most common bait used by local anglers. We then recorded a potential capture
by observing the intake of the experimental hooks by the focal fish.

The experimental protocol consisted of jointly deploying three different underwater cameras
at each of the 54 sampling points. The three devices were identical and were deployed at a mini-
mum distance of 50 m to each other to ensure that one device would not interfere with fish
behaviour on a nearby device. The cameras continuously recorded in full high definition mode
(30 fps and 1080 p) over the seagrass for a duration of 10 min. Due to logistical constraints, it was
impossible to sample all 54 sampling points in a single day, and we therefore stratified the sam-
pling over four days (sampling time from 9:00 AM to 1:00 PM). A different number of randomly
selected sampling points were visited each day, and the date of the sampling was considered as a
random factor in statistical analyses (see below). Sampling points were visited following a fully
randomized sequence to prevent confounding effects of the position of the sampling points, the
sampling day or any environmental variable, including distance to the MPA boundary.

Data analysis

LT was defined as the time (in seconds) elapsed between the moment that a fish of one of the
four species included in the study entered the scene until it tried to ingest the bait, which was a
behaviour clearly recognized in the videos as the fish quickly shakes its head in an attempt to
remove the bait from the hook (Fig 2). A survival analysis, which is an analysis designed to
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Fig 1. Histogram of distances to the boundary of the marine protected area (MPA) of the Palma Bay
(Mallorca Island, NW Mediterranean Sea) of the study site locations (n = 54) where the underwater
video cameras were deployed to measure the latency times. We plotted the one-dimensional distribution
of the distances considered in the study. Note that negative distances from the boundary are located inside
the no-take MPA, minimum values are -1,042 m and maximum distance 10,649 m away from the MPA’s
boundary.

doi:10.1371/journal.pone.0135348.g001

investigate the factors affecting the time at which a particular event (here taking the bait)
occurs, was used to test the hypothesis [66]. In the present case, the response variable was LT
(in seconds), which is a surrogate of fish naiveté/vulnerability and ultimately of fish survival
probability. Not all of the observed fish ingested the bait within the duration of an experimental
trial. As LT is unknown for those fish, the partially missing data were considered as right-cen-
sored observations [66]. A specific likelihood function (Cox regression) has been developed to
account for this type of right-censored data [67], which was employed in this study.

We used the Cox regression to describe the probability of non-capture against a set of
potential explanatory variables, including the variable of interest (i.e., distance to the boundary
of the MPA). Multiple possible confounding variables were assessed and subsequently con-
trolled in the modelling process. Although all of the experimental trials were conducted in sea-
grass meadows, we also considered the habitat as a covariate (e.g., presence of sand, rocks or
mud in the seagrass), which generated multiple combinations of habitat types. We reduced the
dimensionality of the habitat matrix using a principal component analysis (PCA, [68]) and
used the scores of the two first axes as a covariate for controlling the habitat characteristics sim-
ilar to Alds et al. [30]. Using the video footage, we also quantified the number of competitors
present by counting the number of fish belonging to either the same or other species located
within the scene at the moment that a focal fish appeared (Fig 2).

The full statistical model included five fixed variables (i.e., species, distance to the MPA,
interaction of species x distance to the MPA, habitat type and the abundance of other fishes)
and a random factor (i.e., the date effect). According to our working hypothesis we expected the
decrease in LT with increasing proximity to the MPA for the intrinsically most catchable species
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Underwater camera

Seagrass of Posidonia oceanica

Fig 2. Description of the device used to measure latency time of marine coastal fish targeted by recreational anglers. The device was composed of a
structure of stainless steel, the camera and a dipstick of 2 m length to which the fishing gear was attached (panel A). Panel B shows the underwater camera
used (Go Pro Inc., 2014). Panel C shows a scene of one of the videos obtained. The focal fish (i.e., the fish for which the latency time was measured) is
indicated in red. Blue points indicate the other fish present in the scene. The abundance of other fishes was considered as a covariate in the data analysis.
White points denote the bait. The fishing gear was maintained vertically by a float located at the upper end of the main line.

doi:10.1371/journal.pone.0135348.9002

(S. scriba) to be the greatest and the decrease in LT with increasing proximity to the MPA for
the intrinsically less catchable species (C. julis and D. annularis) to be gradual or non-existent.
The LT for the unharvested control species (C. chromis) should remain stable across all sam-
pling points. Therefore, the effect of interest for testing our hypothesis was the interaction effect
of species x distance to the MPA. We used the coxph function from the survival library of the R
package (developed by T. Therneau and T. Lumleyat; http://cran.r-project.org/web/packages/
survival/survival) to estimate the model parameters of the minimal adequate model. Stepwise
model selection was completed using Akaike Information Criterion (AAIC) through the func-
tion step of the survival library, and the predicted survivorship probability at different times was
plotted using the function survfit from the same library. To improve the visualization of the
results, we categorized the distances to the MPA as either within, close or far based on negative
distances to the boundary (i.e. within) and median based splitting of distance to define the cate-
gories close and far. Accordingly, sampling points within the MPA were located at

-729.5 + 253.5 m (average + standard deviation), close points were located at 3,669 + 1,771.4 m
(average + standard deviation), and far points were located at 8,254.8 + 1,144 m. All analyses
were run in a custom script of the R package (version, R-3.0.1, [69]).
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Results

The LT from 348 individual fish were recorded after visualizing 1,620 minutes of video images
corresponding to three 10 minute long video replicates, obtained at the 54 locations (Fig 3). For
fish that took the bait, LT varied from 1 to 181 s and was on average (+s.d.) 232 £ 255,
18.5+13.6'5,25.2 £ 20 s and 50.2 + 43.1 s for S. scriba, C. julis, D. annularis and C. chromis,
respectively (see Fig 3 for a distribution of LT values of each of the four species). Relative to the
uncatchable control species C. chromis as a baseline, the Cox regression coefficients for the LT of
the other three species were significantly smaller (Table 1). The difference in the Cox regression
coefficients with respect the control species was especially large for S. scriba, suggesting a high
catchability of this species and intermediate levels of intrinsic catchability for C. julis and D.
annularis as expected (Table 1). Neither the distance to the MPA boundary nor the density of
other fish affected LT as main effects (Table 1). However, in support of the working hypothesis
we found a significantly decrease of LT as distance to the MPA increased for the intrinsically
highly catchable S. scriba, and only a non-significant decreasing trend of the LT for the two
intrinsically less catchable D. annularis and C. julis (Table 1). The statistical support for our work-
ing hypothesis is that the interaction of S. scriba x distance to the MPA was significant (Table 1).

The survivorship plots aimed to visually represent the effects of the distance of the MPA on
the LT of the various species (Fig 4). These plots were consistent with the results just described
that S. scriba was the most naive species. This is indicated by the smallest LT and hence low
theoretical survival probability within and close to the MPA (Fig 4). The corresponding values
of the LT for C. julis and D. annularis close to the MPA were also small; most of the fish would
have been captured within the first minute of bait exposition (Fig 4). Conversely, the LT of C.
chromis was very long, suggesting that this species remained uncatchable to angling and that
the survivorship probability was close to 1 (full survival) even near the MPA (Fig 4). The survi-
vorship plot that corresponded to the sampling points far from the MPA showed similar trends
for all species except for S. scriba that scored second in relation to LT, just after the largely
uncatchable C. chromis (Fig 4). This indicated a low naiveté level for S. scriba in locations far
away from the MPA (Fig 4). In fact, at far locations only 20% of S. scriba in vicinity to baited
hooks may be expected to be captured, based on the results, while in areas within and close to
the MPA almost 100% of the fish may be hooked (Fig 4). In far distance sites, C. julis and D.
annularis again showed intermediate naiveté values between the highly catchable S. scriba and
the nearly uncatchable C. chromis (Fig 4).

Discussion

We found empirical evidence that fish naiveté to recreational angling gear decreases with
increasing distance from the boundary outside of a fully protected MPA. A significant relation-
ship between the LT to ingest a bait and the distance to the boundary was, however, only evident
in the intrinsically highly catchable species (i.e., S. scriba). For this species, we found a gradient
from high naiveté (short LT) at sites within and close to the MPA, to low naiveté (larger LT) at
far sites. Conversely, the other two intrinsically less catchable omnivorous species and the
largely unharvested C. chromis showed similar LT, irrespective of the distance to the MPA.
These results suggest that naive individuals of intrinsically highly catchable species are prone to
be quickly harvested at sites located near an MPA whenever fishers “fish along the line” of MPA
boundaries [70]. This fact emphasizes the importance of considering the spatial behavioural
dimension of fish when predicting the outcomes of MPAs because the effective contribution of
spillover may be smaller than anticipated for highly catchable species such as S. scriba.

Our results are consistent with recently reported findings which suggest that MPAs may
spread naive fish of some species, but not others [22]. A theoretically conceivable “spillover of
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Fig 3. Histogram of the latency times (in seconds) and sample size of the four species considered in this study.

doi:10.1371/journal.pone.0135348.g003

naive fish” from MPAs for some species is expected to be mechanistically caused by the spill-
over of behaviourally vulnerable fish [32]. Such effects, if widespread, would be very positive
from the fisher’s perspective by increasing catch rates outside the no-take areas, thereby
enhancing the benefits of MPAs for fisheries [10]. However, our results suggest that in the case
of passively operated recreational angling gears, a gradient-based pattern of fish naiveté should
only be expected in the intrinsically highly catchable species. It is also conceivable that the

Table 1. Results of the survival analysis (Cox regression model). The effects on LT (seconds) of the explanatory variables, species, distance to the
MPA and their interaction and the density of fish were retained by the AIC-based model selection. The regression coefficients (coef) of the logarithm of the
hazard ratio and its standard error (s.e.), the exponent of the coefficient for interpretation, the z-value and p-value of the minimal adequate Cox regression

model are shown.

Variable tested coef exp(coef) s.e.(coef) z-value Pr(>|2|)
C. julis 3.5360 34.34 0.9145 3.87 <0.001
D. annularis 2.3700 10.70 0.9192 2.58 <0.05
S. scriba 4.3680 78.90 0.9176 4.76 <0.001
Distance (m) -0.0001 0.9999 0.0001 -0.55 0.581
Other fish 0.0091 1.0090 0.0056 1.63 0.104
C. julis x D 0.0001 1.0000 0.0001 0.46 0.648
D. annularis x D 0.0001 1.0000 0.0001 1.01 0.314
S. scriba x D -0.0003 0.9997 0.0002 -2.00 <0.05

Concordance = 0.724 (s.e. = 0.026). R-square = 0.331 (max possible = 0.991).

doi:10.1371/journal.pone.0135348.1001
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Fig 4. Predicted survivorship from the Cox regression. The panel (A) shows a box-plot of the distribution
of distances to the boundary for sampling points within (up), close (mid) and far (lower) to the MPA. The
vertical red dashed line indicates the boundary of the MPA. The panel (B) shows the predicted survivorship
probability (y-axes) as a function of latency time (LT) (x-axes, in seconds) for the four species considered: C.
julis (orange), D. annularis (red), C. chromis (yellow) and S. scriba (blue). The lower-left, lower-mid and the
lower-right panels correspond to sampling point locations within, close and far to the MPA, respectively,.
Solid lines indicate the expected survivorship probability and dashed lines the 5% confidence intervals. Note

that S. scriba shows different survivorship (~naiveté) pattern depending on the distance to the boundary of
the marine protected area (MPA).

doi:10.1371/journal.pone.0135348.9004

benefits of a potential spillover of naive fish would only be experienced at very short distance
to the MPA, particularly when fishing intensities are high.

In addition, the species-specific nature of distance-based naiveté found in our work and in
related studies for spearfishing [32] suggests that many species will not show a vulnerability
gradient at all but will have consistently low levels of vulnerability in protected and unprotected
sites (see also [30]). One of the main predictors of intrinsic catchability at the species level is
the position in the food web. Species located at higher trophic levels are not only more
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intensively targeted by anglers [36], but they may also be behaviourally characterized by very
high vulnerability to angling, due to greater mobility or larger aggression levels compared to
low trophic level fishes [30,71]. In the P. oceanica seagrass meadows ecosystem, S. scriba (the
carnivorous species) is one of the species located at high trophic levels [60]. By contrast, D.
annularis, C. julis and especially C. chromis are species positioned lower in the food web
because they mainly forage on sessile, benthic, or small pelagic food sources [60]. Although our
sample size for the carnivorous feeding guild is essentially restricted to one species, we tenta-
tively suggest that exporting naive individuals outside of MPAs could be more pronounced in
carnivorous species and that these species should be intrinsically more catchable to recreational
angling. Testing this hypothesis with a larger sample of feeding guilds constitutes an important
research avenue for the future.

The mechanisms behind the enhanced naiveté of S. scriba living within or near MPAs are
twofold, because it may involve an evolutionary response, a learning-based adaptation within
the realm of behavioural plasticity, or both [72]. Any behaviourally-selective fishing will
enhance the survival probability of genetically determined, low vulnerability phenotypes out-
side protected areas, which will reduce the naiveté of fish to fishing gears and also increase
their average timidity levels as an evolutionary response [30,34,58]. Previous research in other
species has shown that vulnerability has a genetic basis in largemouth bass (Micropterus sal-
moides) and carp [39,42]. It is hence possible that evolutionary changes may have played a role
in explaining the reduction in vulnerability in S. scriba. The second mechanism focuses on the
ability of fish to modify their behaviour after learning from previous encounters with predators
(which includes fishing gear) [39]. Deviations from normal behaviour that reduce hooking pro-
pensity have been well documented in range of freshwater recreational fisheries
[39,44,47,49,73]. There is evidence that such learning depends on the foraging mode, where it
is more pronounced in omnivorous fishes [46]. However, a reduction in vulnerability to
angling has also been reported for strictly piscivorous pike exposed to heavy fishing pressure
[48,74], particularly when exposed to artificial lures [47]. Therefore, the gear-avoidance
observed in S. scriba outside the MPA might also be caused by learning from previous hooking
events or by observing other individuals being harvested [30]. Collectively, fish inhabiting pro-
tected areas should eventually display an increased naiveté to fishing gears because of these two
mechanisms—reduced strengths of selection by fishing gear and learning in areas that are safe
from human-induced predation risk. However, whether this increased naiveté is caused by an
evolutionary change or (plastic) learning can not be unequivocally answered with our experi-
mental design. Further research is needed to investigate the main cause that generates the pat-
terns we observed here for S. scriba. One way to do this could be through rearing individuals
from different sites under controlled conditions in laboratory environments, followed by the
measurement of the vulnerability of the offspring to separate genetic from plastic responses.

Naiveté of fish measured through flight initiation distance in the case of spearfishing or LT
in the case of recreational angling with natural baits may be interpreted as a measure of bold-
ness [30,75], which is defined as risk-sensitive foraging [76]. Human disturbances and past
fishing can be conceptualized as a form of predation risk [32,74,77]. Hence, a fish’s readiness to
accept the closeness of a diving human and the attraction to a baited hook in the presence of
noisy angling boats may represent boldness as a personality trait. Unfortunately, our measure
of LT is not sufficient for defining it as a personality trait because repeatability and the consis-
tency of individual differences across time or contexts was not assessed, which is a precondition
to interpret a particular behaviour as a personality trait [78]. However, previous research in S.
scriba [30,58] has reported that individuals living in low exploitation sites or inside an MPA
forage more intensively in the presence of risk than those located outside an MPA. Boldness is
related to an individual’s foraging capability in the presence of risk and, thus may be related to
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individual growth and productivity [79]. As a result, the individuals inhabiting sites close to or
inside MPAs should be more productive with regards to biomass production than shy individ-
uals outside of an MPA unless density-dependent food limitation associated with larger overall
biomasses in an MPA areas overrides any behaviourally-based increased foraging propensity.
We have previously shown that S. scriba inhabiting an MPA attain larger final body sizes than
those inhabiting exploited areas [58]. This could be a either a life-history adaptation to size-
selective harvesting and high fishing pressure outside of the MPA or link between boldness and
productivity, or both.

The increased vulnerability (or decreased naiveté) to the recreational fishing gear with
increasing proximity to the MPA observed in S. scriba could have implications for the relation-
ship between catch rates and fish abundance [30]. Hilborn and Walters [80] developed the idea
of hyperdepletion as a mechanism that would explain why catch rates decline more rapidly
than fish abundance. Whenever fish become less vulnerable in response to increasing exploita-
tion, hyperdepletion may occur unless effort by more skilled anglers or schooling overrides any
behaviourally-based decoupling of the catch rate and abundance, which in turn may lead to
hyperstable catch rates [81]. Although hyperdepletion might occur more commonly in intrinsi-
cally highly catchable species than it was previously believed, few mechanistic studies have
described the possible behavioural processes that can cause this outcome [30]. Our results pro-
vide a possible explanation for the mismatch between catch rates and abundance in selected
species, and suggests that a decline of the catch rate with respect to distance to the MPA is pos-
sible in some species such as S. scriba [30]. Hence, spatial variation in fishery-dependent catch
rate data has to be expected and accounted for in fishery-dependent stock assessments that col-
lect data over wide spatial scales. More studies such as the present one are needed to fully
understand the magnitude of such a sampling bias and its implications for stock assessments.
Before this research becomes available, one should be careful when inferring spillover trends
from catch-rate dependent data collected from recreational angling, spearfishing, trapping or
longlining because the reduced naiveté with increasing distance to the fully protected MPA is
aloso expected to occur for some species.

We conclude that spillover of naive individuals from MPAs previously reported for spear-
guns is expected to occur also in some species targeted by recreational angling. However, the
exportation of naive individuals and hence biomass is not generalizable across species. This
effect should be particularly evident in species that are intrinsically more catchable to fishing,
such as carnivorous species. The spillover of naive individuals for these highly catchable species
may also be less relevant than expected when fishing pressure at the boundaries of a MPA is
high. Any local enhancement of catch rates can nevertheless provide a direct benefit to recrea-
tional fisheries because catch rates positively influence angler satisfaction in recreational fisher-
ies [82,83]. In addition, any systematic changes in vulnerability will undermine a stock
assessment based on fishery-dependent data as it would result in hyperdepletion where catch
rates are decoupled from the underlying abundance [30]. We therefore recommend that to
avoid sampling bias, a combination of fishery-dependent and independent data are best for
assessing the abundance of exploited fishes. Fish behaviour plays a key role in determining and
modulating the impact of fishing on wild populations [84], and the incorporation of the beha-
vioural dimension on the spillover of a MPA should, therefore, improve the predicted benefits
of MPAs at larger spatial and temporal scales.
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