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reasoned debate

The studies of visual signal transduction, or phototransduction, 
have played a pivotal role in elucidating the most general principles 
of G protein signaling, particularly in regards to the concept of signal 
amplification, i.e., the process by which activation of a relatively 
small number of G protein coupled receptors is transformed into a 
robust downstream signaling event. In this essay, we summarize our 
current quantitative understanding of this process in living rods of 
lower and higher vertebrate animals. An integration of biochemical 
experiments in vitro with electrophysiological recordings from 
intact rod photoreceptors indicates that the total number of G 
protein molecules activated in the course of a light response to a 
single photon is ~16 in the mouse and ~60 in the frog. This further 
translates into hydrolysis of ~2000 and ~72 000 molecules of cGMP 
downstream of G protein, respectively, which represents the total 
degree of biochemical amplification in the phototransduction 
cascade.

A lot has been said about the critical role that the studies of 
visual signal transduction, or phototransduction, have played 
over the past 3 decades in elucidating the most general principles 
of G protein signaling (see refs. 1–4 for recent reviews). One of 
these principles is the concept of amplification, i.e., the process 
by which activation of a relatively small number of G protein 
coupled receptors is transformed into a robust downstream 
signaling event. In the most extreme case of dark-adapted 
rod photoreceptor cells responding to single photons, a single 
activated molecule of the GPCR, rhodopsin, causes an electrical 
response sufficient to convey light absorption to downstream 
retinal neurons. While it has been recognized for decades that 
the degree of signal amplification in this cascade is exceptionally 
high, our quantitative understanding of this process in living 
rods has been achieved only recently.

Signal amplification takes place at multiple stages of the 
phototransduction cascade (Fig.  1A; reviewed in ref. 5). At 
the first step, photoexcited rhodopsin (or metarhodopsin-II, 
usually called R*) catalyzes sequential GDP/GTP exchanges on 
multiple molecules of the G protein, transducin. Each active, 
GTP-bound form of the α-subunit of transducin (Gα

t
) interacts 

with the downstream effector, cGMP phosphodiesterase (PDE; 
also known as PDE6), allowing each PDE to hydrolyze multiple 
cGMP molecules and thus producing the second amplification 

step. The resulting cGMP reduction in the photoreceptor 
cytoplasm causes a closure of the cGMP-gated cation channels 
in the photoreceptor plasma membrane, producing an electrical 
response. The latter represents yet another signal amplification 
step because cGMP gates these channels cooperatively, with a 
small fractional decrease in cGMP concentration producing 
up to a 3-fold larger relative reduction in inward current. Once 
these sequential amplification steps of the phototransduction 
cascade had become identified, a great interest of the field was 
then focused on determining how many transducin molecules 
are actually activated by a single R* and how many cGMP 
molecules are hydrolyzed by a single PDE. We refer the readers 
to a comprehensive review describing the history of these studies6 
and concentrate here primarily on our current understanding.

The ability of a single R* to activate a large number of 
transducin7 and PDE8 molecules was recognized very early. 
Perhaps the largest number was reported by Bownds and 
colleagues who showed that one R* can activate as many as 
37 000 transducin molecules in an in vitro preparation of frog 
rods.9 This represents nearly the entire transducin content of an 
individual disc, the double lipid bilayer membrane that serves 
as the principle signaling compartment in the outer segment. 
However, such high-gain transducin activation by a single R* 
occurs only if R* artificially remains active over a prolonged 
period of time, such as in in vitro biochemical assays. In contrast, 
R* in intact photoreceptors is deactivated very rapidly through 
a two-step mechanism consisting of R* phosphorylation and 
subsequent arrestin binding. Therefore, the most interesting 
and physiologically relevant question is how many transducin 
molecules are activated by a single R* under physiological 
conditions.

To answer this question, one first needs to know the rate at 
which an R* activates transducin and the average time over which 
this activation persists (i.e., R* lifetime) in a living rod. The 
most accurate measurements of transducin activation rate were 
conducted in suspensions of frog rod photoreceptor membranes 
and yielded the rate of ~150 molecules/R*/s.10 In mammals, 
this rate is estimated to be ~400 molecules/R*/s due to the 
difference in temperature.11 Mechanistically, this high rate of 
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activation is possible due to the very high density of transducin 
and PDE molecules on the disc membrane, and their high rates 
of lateral diffusion achieved by the unique lipid composition of 
photoreceptor membranes.12

The second piece that must be known in order to estimate 
the number of transducins activated by a single R* in a living 
rod is how long this R* remains active. A recent determination 
of R* lifetime was performed in living mouse rods using 
genetic perturbations to control photoresponse kinetics and 
determined to be ~0.04 s.13,14 Therefore, the total number of 
transducins activated in the course of a mouse single photon 
response is ~400 × 0.04 = 16. The lifetime of R* in amphibian 
rods is estimated to be ~0.4 s,15 so that the number of transducins 
activated by a single R* is ~150 × 0.4 = 60.

Let us now consider the second amplification step in 
phototransduction, which arises from high rate of cGMP 
hydrolysis by activated PDE. This enzyme is among a 
handful of the most efficient enzymes whose k

cat
/K

m
 ratios 

exceed 108 M-1∙s-1. Measurements in frog rod photoreceptor 

membranes revealed that each catalytic subunit of PDE is 
characterized by the k

cat
 of ~2200 s-1 and the K

m
 of ~10 µM. 

Assuming that free cGMP concentration in the dark-adapted 
amphibian rod is 4 μM16 and the average lifetime of activated 
PDE is 2 s,15,17 we calculate the total number of cGMP molecules 
hydrolyzed by one activated PDE as ~1200. Combined with 
transducin activation gain, this calculation demonstrates that 
activation of single rhodopsin results in the hydrolysis of ~72 000 
molecules of cGMP. For mouse rods with ~10-fold shorter lifetimes 
of both R* and activated PDE,13,18 corresponding calculations 
yield ~2000 molecules of cGMP hydrolyzed downstream from 
a single R*.

In terms of generating the single photon response, it is critical 
to consider not just the degree of biochemical amplification, 
but also the spatiotemporal dynamics of cGMP concentration 
changes, which was recently investigated for mouse rods.14,19 The 
authors concluded that fewer than 10 transducins are active at 
any given time (Fig. 1B) and the change in cGMP concentration 
is sufficiently spread along the axis of the rod outer segment 

Figure 1. Signal amplification in rod phototransduction. (A) Three distinct biochemical stages amplify the signal generated by a single activated rho-
dopsin molecule, R*: (1) high rate of transducin activation (Gαβγ); (2) high rate of cGMP hydrolysis by each activated PDE molecule; and (3) cooperative 
gating of the cGMP-sensitive ion channels by cGMP. (B) The time course of the electrical response to a single photon (thick gray trace) is compared with 
the time course and number of the active transducin-PDE complexes (thin black trace). (C) The spatial profile of the change in cGMP concentration rela-
tive to its dark level, at 3 times indicated at the time points in panel B. A schematic representation of the rod cell is shown beneath the graph. Note that 
the number of active transducin-PDE complexes at any time is quite small (Panel B) and the relative change in cGMP is likewise rather modest. Panel A is 
adapted with permission from ref. 2; panel B is adapted with permission from ref. 14.
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(Fig. 1C), so there is no local saturation of the signal. The latter is 
important because it ensures that full amplification available from 
the cooperative gating of the cGMP-gated channels contributes 
to the electrical response. An additional new insight from these 
studies is that the size of the photoresponse is determined by 
interplay between signal amplification and powerful feedback 
regulation of cGMP synthesis by Ca2+-dependent guanylate 
cyclase, thoroughly described in preceding studies (reviewed in 
refs.20, 21). Cyclase feedback serves to attenuate responses driven 
by longer-living R*s to a greater extent than those driven by 
shorter-living R*s, ultimately yielding responses with stereotyped 
time courses and amplitudes.19 This is thought to provide the 
visual system with more reliable single photon detection.

Another interesting feature of rod photoreceptors is that 
bright light causes a massive translocation of transducin from 
the light-sensitive outer segment compartment to the rest of the 
cell.22 This reduces transducin activation rate and the overall gain 
of phototransduction, which may spare the rod from excessive 
signaling under conditions when visual input is dominated by 
cones. Recent literature suggests that transducin translocation 

may also serve to prevent adverse effects of constant exposure 
to bright light and thus be neuroprotective (reviewed in refs. 2, 
23–26).

In summary, vertebrate phototransduction remains a 
beautiful model system for understanding G protein signaling 
under physiological conditions. However, it is fairly unique 
in regards to the high speed and gain of G protein activation 
by a GPCR. Most other G protein pathways have a far lower 
gain and sometimes even a one-to-one correspondence between 
a GPCR and its activated G protein. Ultimately, the degree of 
signal amplification in any pathway is determined by the cellular 
context in which it functions.
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