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1  | INTRODUC TION

Squamous cancer is a common malignant oral carcinoma located 
in the epidermal or adnexal cells. To date, the treatment meth-
ods for squamous cell carcinoma mainly includes surgery, freez-
ing and radiotherapy, which can either directly remove or destroy 
tumour tissues. However, due to the non-negligible side effects, 

large wound and potential psychological disorders, the application 
of the above conventional methods could be limited. Recently, 
a simple non-invasive and simple therapeutic strategy, namely 
photodynamic therapy (PDT), has been widely applied in clinical 
cancer treatments.1,2 Generally, the toxic effect of the reactive 
oxygen species (ROS) generated by transferring energy from light 
to oxygen molecules can directly kill tumour cells through photo-
sensitizers.3 Besides, ROS can damnify the vasculature of tumour 
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Abstract
Objectives: Photodynamic therapy (PDT) is a novel non-invasive therapeutic method, 
which has been widely applied for the treatment of human oral cancers. However, 
the problems of undesirable singlet oxygen (1O2) quantum yields and long-term 
phototoxicity were inevitable during the application of traditional photosensitizers. 
Therefore, it is necessary to explore novel photosensitizers for the improvement of 
therapeutic effects. In our study, the sulphur-doped carbon dots (S-CDs) of high yield 
of singlet oxygen (1O2) were synthesized as a nano-photosensitizer for OSCC to im-
prove the PDT efficacy in clinical practice.
Materials and methods: After synthesis of the novel S-CDs, the size, morphologic 
characteristics, surface potential and yield of singlet oxygen (1O2) were determined. 
In vitro study was performed to compare the therapeutic effect as well as the bio-
compatibility of the novel S-CDs to those of 5-ALA. Besides, possible mechanism of 
action was illustrated.
Results: After synthesis of the novel S-CDs, the size, morphologic characteristics, 
surface potential and yield of singlet oxygen (1O2) were determined. In vitro study 
was performed to compare the therapeutic effect as well as the biocompatibility 
of the novel S-CDs to those of 5-ALA. Besides, possible mechanism of action was 
illustrated.
Conclusions: These data from the in vitro study demonstrated the promising safety 
profile of the low dose (nmol/L) S-CDs, which indicated the novel S-CDs could be 
used as a promising photodynamic agent for oral cancer therapy.
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parenchyma, resulting in blood supply deficiency,4,5 and further 
provoke the anti-tumour immune response further.3,6 What is 
more, even repeated use of PDT can achieve satisfactory thera-
peutic outcome without causing obvious side effects or any scar 
formation.7 Due to the superficial nature of oral and skin tumours, 
tumour tissue is located in an area that is easy to receive light, 
which facilitates the efficient implementation of PDT.7 Therefore, 
PDT has been regarded as an alternative or supplementary ther-
apeutic method of the traditional regimens for the treatment of 
superficial tumours.

Typically, PDT is a three-way process consisting of photosensi-
tizer (PS), light and molecular oxygen.8 The concentration of ROS 
directly affects the efficiency of PDT, which largely relies on the 
photo-oxidation ability of the PSs.9 Over the last few decades, 
photosensitizers in clinical use are the first and second generation 
of organic PSs have been approved for clinical use, such as hae-
matoporphyrin (Hp), photofrin and chlorin e6 (Ce6), among which 
5-aminolevulinic acid (ALA)-mediated PDT has been widely ap-
plied in clinical practice with satisfactory outcomes.8,10,11 5-ALA 
is the biological precursor of protoporphyrin IX (PpIX). Several 
previous studies12-14 have demonstrated its superiority in the 
treatment of both oral pre-cancer and oral cancer treatment since 
it induces the accumulate high concentration of PpIX in cancer 
cells. However, certain deficiencies, such as 5-ALA suffered from 
long-term phototoxicity and poor cell penetration, would lower 
the PDT therapeutic effect, thus limiting the clinical application 
of 5-ALA. Therefore, the third generation of photosensitizer came 
into being to solve the problems of the first two generations. 
Wang and his co-workers15 recently developed a nanosystem by 
combining chemotherapy with PDT for the targeted treatment of 
OTSCC, and they found that CAL-27 cells assimilated PEG linked 
haematoporphyrin (HP) and depicted high PDT efficiency through 
the target-peptide-mediated cell internalization. Although the 
PDT efficiency has been assembly promoted by using biomolecular 
modification and nano-materials technologies, certain problems, 
such as poor biocompatibility, weak selectivity and fluorescence 
quenching under light,16 are still inevitable.

As the fourth generation of PSs, nano-photosensitive agents pos-
sess excellent characteristics of adjustable excitation and emission 
wavelength, strong anti-photobleaching ability, and good biocom-
patibility.17 Carbon-based nano-materials, such as carbon nano-
tubes,18,19 graphene20 and carbon dots,21-23 have been drawing more 
and more attention in the fields of cancer diagnosis and therapy. In 
this study, the sulphur-doped carbon dots (S-CDs)24 with a high sin-
gle oxygen quantum yield were prepared for the PDT treatment for 
oral squamous cell carcinoma. The S-CDs could automatically enter 
cancer cells and instigate potent trigger cancer cell death by light. 
Moreover, by detecting the expression of apoptotic proteins, we also 
observed that the UM1 cells treated with S-CDs had higher expres-
sion levels of apoptotic proteins compared with those treated with 
classic photosensitizer 5-ALA at the same concentration (Figure 1), 
indicating the promising application prospect of the developed na-
no-photosensitizer in the PDT treatment for oral cancer treatment.

2  | MATERIAL S AND METHODS

2.1 | Preparation and characterization of S-CDs

Sulfur-doped carbon dots were prepared via a hydrothermal pro-
cess using polythiophene (PT2) as the precursor that developed by 
Wang et al24 The detailed synthesis steps are as follows: PT2 (30 mg) 
and NaOH solution (40 mL, 0.5 mmol/L) were firstly mixed for ul-
trasound for 30 minutes, and then transferred the mixture into an 
autoclave and maintained the temperature at 170°C. After reaction 
for 24 hours, the product were purified with 0.22-µm membranes to 
remove residue and finally dissolved in water.

For characterization, atomic force microscopy (AFM, Shimadzu) 
and transmission electron microscopy (TEM, JEOL) were applied for 
investigating the morphology and dimension of S-CDs, and dynamic 
light scattering (DLS) was used for studying the size distribution. 
UV-Vis and fluorescence spectroscopy of the S-CDs were measured 
by UV-Vis spectrophotometer (Hitachi, U-3900H) and fluorospec-
trophotometer (Shimadzu), respectively. Characterization of singlet 
oxygen of S-CDs was explored by Fluorolog-3 spectrofluorometer 
(Horiba Jobin Yvon).

2.2 | Cell culture

UM1 cell line originated from a HNSCC-diagnosed patient.25,26 
These cell lines were gifts from Dr Chen (Sichuan University). UM1 
cells were incubated in DMEM, supplemented with 10% FBS, 100 U/
mL penicillin and 100  µg/mL streptomycin (GIBCO). The culture 
media was renewed twice or three times a week. Cells were put in 
incubator with temperature at 37°C and 5% CO2.

2.3 | S-CD uptake and in vitro imaging

Cell suspension was removed, density of 1 × 105/mL, from culture 
flask and then transferred to 12-well plates, and 1 µmol/L S-CDs 
were added for 0  hour, 3  hours, 6  hours, 12  hours, 24  hours and 
48  hours, respectively. The trypsin-treated UM1 cells were clus-
tered by centrifugation, and then washed with PBS and finally resus-
pended into 400 µL PBS for flow cytometry test (Attune NxT, Life). 
In addition, to observe cellular assimilation state and obtain images, 
confocal laser microscope was employed. Cells, rinsed by PBS, were 
fixed with 4% cold paraformaldehyde for 15 minutes. After three 
times' PBS rinsing, phalloidin and DAPI were used to tint the cy-
toskeleton and nucleus, respectively.

2.4 | Cellular organelle localization

UM1 cells after incubation with S-CDs were loaded with 
MitoTracker green (a mitochondria probe) and LysoTracker green (a 
lysosome probe), respectively. Samples were washed with PBS after 
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30 minutes incubation. Analysed photographs were taken from con-
focal laser scanning microscopy (AIR-MP, Nikon).

2.5 | Determine reactive oxygen species (ROS)

The detected green fluorescence, produced by dichlorofluorescein 
(DCF), was in accordance with intracellular amount of ROS.27 Cells 
grew in 12-well culture dishes were washed once by PBS and then 
were maintained at 37°C for 20  minutes with the participation of 
2′,7′-dichlorofluorescein diacetate (DCFH-DA) (Beyotime). Redo 
the wash process as previously mentioned and shoot DCFH fluo-
rescence intensity picture of each well on fluorescent inverted mi-
croscope (Leica DMRA2; Leica): excitation wavelength was 488 nm; 
emission wavelength was 530 nm.

Additionally, we performed flow cytometry to record ROS flu-
orescence signal of each group by cell suspension that had hatched 
with DCFH-DA detector. Every group has three accessory holes.

2.6 | Cell counting Kit-8 Assay

UM1 cell suspension, at a density of 1 × 104 per well, was cultured in 
96-well plates for 12 hours. Afterwards, S-CDs and 5-aminolevulinic 
acid (ALA) (Sigma-Aldrich; Vienna, Austria) were added into the me-
dium at concentrations of 5 nmol/L, 10 nmol/L, 50 nmol/L, 100 nmol/L 
and 500 nmol/L. After 24-hour incubation, target wells were irradi-
ated with ultraviolet light-emitting diode (LED) (S-CDs, λ  =  420  nm, 
2.8125 W, ALA, λ = 420 nm, 2.8125 W) and then cultured cells for 
another 24 hours. After washing with PBS, CCK-8 solution was put in 
each tested well to assess the viability of UM1 cells. The optical densi-
ties (OD) were measured at 450 nm after 1-hour incubation at 37°C.

2.7 | AO/PI test

Cell viability could also be detected through acridine orange-pro-
pidium iodide (AO/PI) kit.28 The UM1 cells were cultured in 12-well 
plates with the protocol described before (Western blot test). The 
AO/PI stain procedure briefly is keeping the working solution, con-
taining AO: 670 μmol/L, PI: 750 μmol/L, with cell in the dark at 4°C 
for 20 minutes and observed each well via fluorescent microscope. 
Live cells turned into green (AO), whereas the dead appeared red (PI).

2.8 | Calcium concentration (Ca2+) detection

Experimental group and cell treatment were the same as ROS assay. 
What was slightly different was that the cells were cultured with 
Fluo-4/AM (1 µmoL) (Beyotime)29 in the incubator for 30 minutes. 
When entering into cell and meet Ca2+, Fluo-4/AM would transfer to 
a strongly fluorescent compound. Subsequently, images were cap-
tured on fluorescent inverted microscope.

2.9 | Western blotting

Growth-arrested UM1 cells were divided into three groups: the 
control group, ALA (10  nmol/L) with irradiation group and S-CDs 
(10 nmol/L) with irradiation group. Then, all groups were harvested 
12 hours after the treatment. The whole-cell lysis assay kit (KeyGen) 
was used to extract proteins. Protein was denatured in sodium dode-
cyl sulphate (SDS) buffer at 100°C for 5 minutes, dissociated by 12% 
SDS-PAGE afterwards and transferred to PVDF membranes. Then, 
target proteins were incubated with the correspondent primary 
antibody Bax, Bcl-2 and caspase-3 on the first day and secondary 

F I G U R E  1   Illustration for the S-CDs 
and 5-ALA-mediated PDT in UM1 cells
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antibody (Beyotime) on the coming day. Subsequently, developer 
(Bio-Rad) was added to show the target bands. Band quantification 
was carried out with the ImageJ software.

2.10 | Immunofluorescence

To make an entry for antibody to go through the sample cells: fixed by 
room-temperatured 4% (w/v) paraformaldehyde for 10 minutes at the 
punctual time post-PDT, were punched by room-temperatured 0.5% 
Triton X-100 for additional 10 minutes. Primary antibodies against Bax, 
Bcl-2 and caspase-3 and secondary antibody were applied to form a 
camera-detectable fluorescent conjunction afterwards. Then after PBS 
rinsing, slides were dyed by cytoskeleton and nuclei stainer, and images 
were captured under confocal laser scanning microscope (AIR-MP).

2.11 | Statistical analysis

SPSS 18.0 provided the function of t test to tell the differences be-
tween each two groups. It is when the P value is <.05 that the variant 
would be considered significant.

3  | RESULTS

3.1 | Characterization of the S-CDs

The S-CDs were synthesized as a novel nano-photosensitizer for 
oral squamous cell carcinoma based on a polythiophene precursor 
(PT2). The AFM image displayed a sphere-like morphology, with a 
diameter of about 22.26 nm and a height of approximately 4.28 nm 
(Figure 2A). The particle size of the S-CDs was determined by the 
TEM to further study the structure, and the diameter of approxi-
mately 28 nm (Figure 2B) was consistent with the average hydro-
dynamic diameter determined by dynamic light scattering (DLS) 
(Figure 2C).

Besides, the as-prepared S-CD nano-PS possessed a positive 
potential of about 17.9 mV (Figure 2D), which is conducive to cellular 
uptake. In addition, optical characteristic examination (Figure 2E), 
indicated a broad UV-Vis absorption ranging from 360 to 600 nm. 
Meanwhile, an emission band centred at ∼600 nm was obtained, 
which can be ascribed to the sulphur doping. Furthermore, when 
the S-CDs was excited at 420 nm, the characteristic phosphores-
cence of singlet oxygen at 1275 nm can be observed from S-CDs 
(Figure 2F).

F I G U R E  2  Characterization of S-CDs: (A) AFM image; (B) TEM image; (C) dynamic light scattering; (D) Zeta potential; (E) UV-Vis and 
fluorescent spectroscopy; (F) characterized 1O2 phosphorescence emissions at 1275 nm (CH3CN-D2O mixture solvent, 15:1, V/V)
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3.2 | Cellular localization of the S-CDs

Previous reports30,31 have verified that the curative effect of PDT 
primarily relied on the cellular uptake and localization of the photo-
sensitizers. Considering the red fluorescence emission of the S-CDs 
(∼600 nm). Therefore, the uptake of S-CDs by UM1 cells was firstly 
characterized by using flow cytometry and confocal laser scanning 
microscopy. As shown in Figure A1A, during the first 24 hours of 
incubation, the red fluorescent signal of S-CDs was significantly 
increased and then slightly increased for another 48 hours, which 
was consistent with the results from flow cytometer (Figure A1B). 
Besides, the positive charge on the surface of the S-CDs yielded 
promising cell uptake. After 24 hours of incubation, the S-CDs could 
be detected in about 90% of the UM1 cells. The confocal laser scan-
ning microscopy suggested that the S-CDs were accumulated in 
both lysosomes (Figure 3A) and mitochondria (Figure 3B) after incu-
bating for 2 hours. Ten hours later, the fusion signal of red and green 
fluorescence in lysosomes was brighter, indicating that the S-CDs 
mainly accumulated in lysosomes.

3.3 | Promising PDT efficacy of the S-CDs

In PDT, ROS could directly or indirectly damage cellular constituents 
through reacting with biological molecules, which plays a vital role in 
inducing cell apoptosis.32 Thus, the production of ROS that triggered by 

S-CD-mediated PDT was examined with the DCFH-DA fluorescence 
assay. Bright green fluorescence was observed in the UM1 cells receiv-
ing S-CD-mediated PDT, while no obvious green fluorescent signal 
was discovered in the groups receiving S-CDs or 5-ALA without light 
irradiation as well as the group that merely received culture medium 
(Figure 4A). Among the UM1 cells that were administrated with 5-ALA 
with light irradiation, only a faint green fluorescence can be detected 
(Figure 4B). The results demonstrated that the capability to generate 
singlet oxygen of the S-CDs was higher than that of the 5-ALA, and 
the S-CD-mediated PDT had the highest singlet oxygen yield, which 
was further confirmed by the flow cytometry results. As shown in the 
Figure A2, the purple solid line represented the group receiving the 
S-CDs in the presence of light, which shifted significantly to the right 
compared with the other five groups. The bar chart presented the sta-
tistical analysis of the flow cytometry result and showed that the group 
receiving the S-CDs in the presence of light (green bar) had the highest 
average fluorescence intensity generated by ROS among the six groups, 
which was in line with the former flow cytometry results.

Moreover, CCK-8 assay was applied to determine the cytotoxic-
ity and PDT efficiency when the S-CDs was applied to perform PDT 
against UM1 cells. As illustrated in Figure 4C, a decrease in cell viabil-
ity was observed in the cells receiving S-CDs of 10 nmol/L-100 nmol/L 
without the presence of light (grey bars), suggesting a low cytotoxic-
ity. However, this trend changed when the concentration reached 
500 nmol/L. The cell receiving 5-ALA without light irradiation demon-
strated similar cell viability down-regulation at the concentration of 

F I G U R E  3  S-CD major location—lysosome: (A) Confocal fluorescence images of UM1 cancer cells treated with S-CDs (red), where the 
lysosome was shown in green (LysoTracker). (B) Confocal fluorescence images of UM1 cancer cells treated with S-CDs (red), where the 
mitochondria were shown in green (MitoTracker). Scale bars are 25 μm All the measurements depicted were conducted in triplicate
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500 nmol/L (Figure 4D), suggesting low cytotoxicity. The viability of the 
UM1 cells receiving no effective agent with the presence of illumination 
was significantly dropped (Figure 4C,D, red bar, first column), which in-
dicated the blue light itself could have certain effects on UM1 viability. 
Under illumination, as soon as cellular uptake of the S-CDs occurred, 
the cell viability was immediately decreased, and the trend was consis-
tent along with the increasing of S-CD concentration (5 nmol/L, 20%, 
100 nmol/L, 5%) (Figure 4C), while the 5-ALA group presented similar 
cell viability as the illumination-only group (Figure 4D).

Besides, AO/PI assay was used to further evaluate the high photo-
sensitive oxidation capacity of the S-CDs. The nucleic-acid-highly-af-
finitive AO penetrated membrane, causing a green fluorescent signals. 
While the PI only stained the DNA and the RNA of dead/dying cells 
with red fluorescence. As shown in Figure A3, the S-CD group with 
light exposure experienced cell morphology change from spindle-like 
(control group) into round, and some of them even scattered into frag-
ments forming red luminous points of varied sizes. In the 5-ALA group 
with light exposure, only slightly scattered red fluorescence could be 

detected and no drastic appearance change was observed in cell mor-
phology, which was coincided with the CCK-8 results.

3.4 | S-CD mediated cell apoptosis

To further emphasize the perfect PDT performance of S-CDs for 
oral squamous cell carcinoma, the detailed intracellular responses to 
S-CD-mediated PDT were discussed. Firstly, as PDT treatment could 
raise the concentration of calcium (Ca2+) in cytoplasm, resulting in 
cell death,33,34 the alteration in Ca2+ level during light exposure was 
evaluated by using Fluo-4 AM (a Ca2+ probe). As illustrated in Figure 
A4, the green fluorescence in S-CD-treated group with light irradia-
tion was more remarkably than the control groups, while only a faint 
green fluorescent signal was detected in the group receiving 5-ALA-
mediated PDT, indicating larger amount of Ca2+ entered into cells 
after the S-CD mediated PDT treatment. While for 5-ALA-mediated 
PDT, only a faint green fluorescence was visible.

F I G U R E  4  S-CDs (40 nmol/L) have higher PDT efficiency than 5-ALA (40 nmol/L): (A) Fluorescent images of ROS generated during 
S-CD-mediated PDT (scale bars are 25 μm). (B) Fluorescent images of ROS generated during 5-ALA -mediated PDT (scale bars are 25 μm). (C) 
Cell Counting Kit-8 to evaluate the cytotoxicity of different concentration of S-CDs with and without illumination. (D) Cell Counting Kit-8 to 
evaluate the cytotoxicity of different concentration of 5-ALA with and without illumination. All the measurements depicted were conducted 
in triplicate. Data are presented as mean ± SD (n = 3). Statistical analysis: *P < .05. **P < .01. ***P < .001
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In addition, studies have shown that ROS induced cell apopto-
sis through mitochondrial apoptotic pathway, causing the change of 
Bcl-2 family proteins (such as Bcl-2 and Bax), followed by activation 
of caspase.35-37 To further trace the high therapeutic efficiency of 
S-CDs at biomolecular level, Western blots and immunofluorescence 
analysis were employed to investigate the Bcl-2, Bax and caspase-3 
(apoptosis-related protein) after S-CD-mediated PDT. As shown in 
Figure 5A, the Western blot demonstrated a decreased relative flu-
orescence intensity of Bcl-2 in the group receiving S-CD-mediated 
PDT. Meanwhile, reversed trends were observed in terms of the Bax 
and caspase-3 proteins.

The confocal laser microscopy image revealed similar observa-
tion. In the group receiving S-CD-mediated PDT, the fluorophore in-
tensity of the Bcl-2 was the faintest among the three study proteins 
(Figure 5D), while the fluorescent signals of Bax and caspase-3 were 
significantly stronger than those of the control group (Figure 5B,C). 
With respect to 5-ALA at the same concentration, the fluorescent 
intensities of Bax and caspase-3 were weaker, but the signal of Bcl-2 
was stronger than that of the S-CD group. The results further con-
firmed the high PDT efficiency of S-CDs.

4  | DISCUSSION

In our study, the novel sulphur-doped carbon dots (S-CDs) were syn-
thesized as a nano-photosensitizer to concur the limitations of tra-
ditional photosensitizers in curing oral cancer, including undesirable 

singlet oxygen (1O2) quantum yields and long-term phototoxicity. The 
well-dispersed S-CDs possessed a broad absorption (360-600 nm) 
companied with red light emission, which was in favour of the ap-
plication in real-time cell imaging and photodynamic therapy for su-
perficial malignant diseases. From the perspective of in vitro studies, 
the flow cytometry and laser confocal microscopy results showed 
that 90% of the UM1 cells could uptake the S-CDs after 24 hours of 
incubation, and it was speculated that the positive charge on the sur-
face of the S-CDs greatly contributed to cell uptake, lying foundation 
for the initiation of further therapy.

Besides, the in vitro PDT simulating experiments were performed 
by using CCK-8 and ROS probe (DCFH-DA). The higher killing rate 
and reactive oxygen species production in the group receiving 
S-CD-mediated PDT indicated that the S-CDs possessed higher 
photo-oxidative activity than 5-ALA at the same concentration. The 
yield of singlet oxygen was also significantly improved, which could 
be due to the effect of heavy atom doping. Besides, the study of cel-
lular organelle localization of the S-CDs showed that the nano-pho-
tosensitizer initially entered into both lysosomes and mitochondria, 
and then mainly accumulated in lysosomes. Meanwhile, the higher 
singlet oxygen yield of the S-CD nanoparticles in mitochondria and 
lysosome may contribute to the associated release amount of cal-
cium (Ca2+) from internal stores to cytoplasm in the group receiving 
S-CD-mediated PDT, ulteriorly initiating cell apoptosis.

To further trace the therapeutic efficiency of the S-CDs at 
biomolecular level, the apoptosis-associated-proteins—Bcl-2, 
Bax and caspase-3 as well as Ca2+, were investigated after the 

F I G U R E  5  S-CDs involved photodynamic therapy lead to cell apoptosis: (A) Expression of Bcl-2, Bax and caspase-3 determined by 
Western blotting. (B, C, D) After exposure with visible light and S-CDs and 5-ALA (40 nmol/L), immunofluorescent images of UM1 cells (Bcl-
2, Bax and caspase-3: red, nucleus: blue, cytoskeleton: green). Scale bars are 25 μm
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administration of S-CD-mediated PDT by using immune fluo-
rescent staining and Western blot analysis. Firstly, the Fluo-4 
AM analysis indicated that the green fluorescent signal of the 
S-CD-mediated PDT group was brighter than that of the 5-ALA-
mediated PDT group, suggesting the high photosensitive oxidation 
capacity of nano-photosensitizer. Secondly, among the UM1 cell 
receiving S-CD PDT treatment, the Bcl-2 protein level was obvi-
ously decreased, while the level of Bax was significantly up-reg-
ulated. Therefore, we inferred that the minimum dosage S-CDs 
provoked apoptosis of UM1 cells via up-regulating the caspase-3 
and Bax and decreasing the Bcl-2 level during the PDT. However, 
controlled investigations with 5-ALA at the same concentration 
induced minimal activation of the mitochondria apoptosis path-
way. We expect this material could be used in bioimaging, targeted 
drug delivery and photodynamic therapy.

In conclusion, the novel S-CDs were synthesized as a na-
no-photosensitizer for oral squamous cell carcinoma therapy, 
which was proved to have satisfactory cell internalization ability 
and self-luminous, and depicted low cytotoxicity without the pres-
ence of light irradiation. Under the condition of light irradiation, 
the S-CDs may act as a more effective nano-weapon for anticancer 
therapy compared with traditional PS 5-ALA. The high therapeutic 
efficiency of the nano-structure was speculated to be realized by 
generating high rate of 1O2, inducing acute stress response and 
Ca2+ influx, and thereafter the overexpression of caspase-3 and 
Bax proteins as well as the down-regulation of Bcl-2 protein were 
triggered. Hence, the newly developed S-CDs might be a promis-
ing alternative photosensitizer for the treatment of oral-maxillofa-
cial carcinoma by using PDT.
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APPENDIX 

F I G U R E  A 1  UM1 cellular uptake of S-CDs. (A) Treated UM1 with S-CDs for 0, 6, 24 and 48 h (1 µmol/L). Immunofluorescence images 
(S-CDs: red, cytoskeleton: green). Scale bars are 25 μm. (B) Cellular uptake of S-CDs by flow cytometry. Data are presented as mean ± SD 
(n = 3)

F I G U R E  A 2   In vitro PDT performance 
of S-CDs (40 nmol/L): (A) Flow cytometry 
chart of ROS generated during S-CD-
mediated PDT. (B) Bar chart of ROS 
generated during S-CD-mediated PDT



     |  11 of 11LI et al.

F I G U R E  A 3  The (AO/PI) fluorescent 
intensity changes after PDT medicate 
S-CDs (40 nmol/L) treatments. 
Immunofluorescence images (AO: green, 
PI: red). Scale bars are 75 μm

F I G U R E  A 4  The Fluo-4 AM 
fluorescent intensity changes after 
PDT + S-CDs (40 nmol/L) treatments. 
Immunofluorescence images (Hoechst: 
blue, Fluo-4 AM: green). Scale bars are 
25 μm


