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GPS-PAIL: prediction of lysine 
acetyltransferase-specific 
modification sites from protein 
sequences
Wankun Deng1,*, Chenwei Wang1,*, Ying Zhang1, Yang Xu1, Shuang Zhang1, Zexian Liu2 & 
Yu Xue1

Protein acetylation catalyzed by specific histone acetyltransferases (HATs) is an essential post-
translational modification (PTM) and involved in the regulation a broad spectrum of biological processes 
in eukaryotes. Although several ten thousands of acetylation sites have been experimentally identified, 
the upstream HATs for most of the sites are unclear. Thus, the identification of HAT-specific acetylation 
sites is fundamental for understanding the regulatory mechanisms of protein acetylation. In this work, 
we first collected 702 known HAT-specific acetylation sites of 205 proteins from the literature and public 
data resources, and a motif-based analysis demonstrated that different types of HATs exhibit similar 
but considerably distinct sequence preferences for substrate recognition. Using 544 human HAT-specific 
sites for training, we constructed a highly useful tool of GPS-PAIL for the prediction of HAT-specific sites 
for up to seven HATs, including CREBBP, EP300, HAT1, KAT2A, KAT2B, KAT5 and KAT8. The prediction 
accuracy of GPS-PAIL was critically evaluated, with a satisfying performance. Using GPS-PAIL, we also 
performed a large-scale prediction of potential HATs for known acetylation sites identified from high-
throughput experiments in nine eukaryotes. Both online service and local packages were implemented, 
and GPS-PAIL is freely available at: http://pail.biocuckoo.org.

As one of the most important and ubiquitous post-translational modifications (PTMs) in proteins, the lysine 
acetylation catalyzed by histone acetyltransferases (HATs) or lysine acetyltransferases (KATs) reversibly regu-
lates a large number of biological processes, such as transcriptional regulation, metabolism and autophagy1–7. 
The dysregulation of site-specific HAT-substrate relations is frequently associated with human diseases such as 
cancers2,3,8,9. In eukaryotes, numerous HATs have been classified into three major families including p300/CBP, 
GCN5-related N-acetyltransferases (GNATs) and MYST proteins1–3,10,11. Different HATs can recognize overlap-
ping but distinct substrates1,11,12. Most HATs exist in multisubunit complexes in vivo by physically interacting 
with non-catalytic proteins, which are also involved in recognizing substrates and synergistically determine the 
specificity together with HATs2,3. In this regard, the identification of HAT-specific acetylation sites in proteins is 
fundamental for understanding the molecular mechanisms and regulatory roles of lysine acetylation.

Previously, systematic identification of protein acetylation sites or “acetylome” was a great challenge, due 
to the technical limitation4,13. For example, in 2006, Kim et al. used an anti-acetyllysine antibody to purify 
acetyl-peptides and only detected 388 acetylation sites of 195 proteins from human HeLa cells and mouse liver 
mitochondria4. Recently, advances in the development of high-throughput mass spectrometry (HTP-MS) and 
highly potent anti-acetyllysine antibodies have greatly improved the acetylomic profiling. For example, in 2009, 
Choudhary et al. identified ~3,600 lysine acetylation sites in 1,750 proteins from a human acute myeloid leu-
kemia cell line7. Later, Zhao et al. detected > 1,300 acetyl-peptides of 1,047 proteins human liver tissues, and 
further demonstrated a number of metabolic enzymes to be regulated by acetylation5. More recently, Svinkina 
et al. totally identified and quantified more than 10,000 acetyl-peptides in over 3,000 proteins from Jurkat cells 
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treated with or without suberoylanilide hydroxamic acid (SAHA)14. In our database of compendium of protein 
lysine modifications (CPLM), we manually curated known acetylation information and totally collected 20,088 
acetylated substrates with 58,563 sites15. Although more and more acetylation sites were experimentally charac-
terized, the regulatory HATs for most of sites remain to be dissected.

In contrast with labor-intensive and time-consuming experiments, computational prediction of lysine acetyl-
ation sites from protein sequences is also helpful to generate highly useful information for further experimental 
consideration. In 2006, we used 246 non-redundant lysine acetylation sites of 89 proteins as the training data 
set, and developed the first tool of PAIL for accurately predicting acetylation sites in proteins16. Later, Basu et al.  
prepared two training data sets containing 51 and 73 known acetylation sites respectively, and designed an 
alternative software package of PredMod17. In 2010, Gnad et al. compiled a much larger training data set with 
3,600 human lysine acetylation sites from a large-scale study7, and adopted the support vector machines (SVMs) 
algorithm to predict acetylation sites18. To date, there have been at least a dozen of additional computational 
programs constructed for the accurate prediction of general lysine acetylation sites, such as LysAcet19, N-Ace20, 
EnsemblePail21, BPBPHKA22, PLMLA23,24, PSKAcePred25, KAcePred26, LAceP27, SSPKA28, AceK29, iPTM-mLys30 
and KA-predictor31. However, none of them can predict HAT-specific sites. In 2012, Li et al. collected 267 and 82 
sites modified by CBP/p300 and GCN5/PCAF HATs, respectively11,32. Using this training data set, they developed 
the first tool of ASEB to accurately predict HAT- or KAT-specific acetylation sites in the family level11,32. They 
further predicted and experimentally validated that MBD1 and MTA1 are exclusively acetylated by p300 but not 
PCAF, whereas DNA polymerase β  (Pol-β ) and DDB1 are specifically modified by PCAF but not p30011.

In this study, we aimed to develop a highly useful tool to predict HAT-specific lysine acetylation sites in the 
individual HAT level. First, we manually collected 702 experimentally identified HAT-specific sites of 205 pro-
teins for seven well-characterized HATs, including CREBBP, EP300, HAT1, KAT2A, KAT2B, KAT5 and KAT8. 
In our data set, there were 544 and 158 HAT-specific acetylation sites in 160 human and 45 non-human proteins, 
respectively. A previously established algorithm of Group-Based Prediction System (GPS)33 was adopted and 
further improved for training a computational model for each HAT, by using human HAT-specific sites as the 
training data set. Then GPS-PAIL was constructed, whereas its prediction accuracy was critically evaluated with 
the leave-one-out (LOO) validation and n-fold cross-validations. We also compared GPS-PAIL with the existing 
tool of ASEB11,32, using non-human HAT-specific sites as a testing data set. We also used GPS-PAIL to perform 
a large-scale prediction of potential HATs for acetylation sites identified from high-throughput experiments in 
eukaryotes. Both online service and local packages of GPS-PAIL were implemented and could be accessed at 
http://pail.biocuckoo.org/.

Results
Sequence preferences around different types of HAT-specific acetylation sites. From the scien-
tific literature and public data resources11,15,32, we totally collected 702 non-redundant HAT-specific acetylation 
sites of 205 protein protein substrates for seven HATs (Table 1, Supplementary Tables S1 and S2). The num-
bers of collected substrates and acetylation sites were summarized for each HAT, whereas the keywords used for 
searching HAT-specific acetylation sites were also present (Table 1). For convenience, the standard gene names 
in UniProt database34 were adopted. CREBBP and EP300, usually called as CBP and p300, belong to the p300/
CBP family1,10. HAT1, KAT2A and KAT2B, also named as KAT1, GCN5 and PCAF, are key members of the 
GNAT family1,3,12. Also, KAT5 and KAT8, also called as Tip60 and MOF/MYST1, are essential HATs of the MYST 
family3,35.

Previously, it was demonstrated that different types of HATs can acetylate overlapping but distinct sub-
strates1,11,12. For example, both CREBBP and KAT2B acetylate Ku70 at K542 in vivo to inhibit the Bax-mediated 
apoptosis12, whereas several proteins such as MBD1 and MTA1 are preferentially acetylated by p300 but not 
PCAF11. Thus, different HATs exhibit mutual but still distinct specificity for the substrate recognition, and we 
speculated whether there are potentially different sequence preferences around different types of HAT-specific 
sites. To address this problem, here we used pLogo36, a convenient tool for the visualization of sequence logos, 

HAT

Number

KeywordsSubstrate Site

CREBBP 71 248 CREB-binding protein acetylation; 
CREBBP acetylation; CBP acetylation

EP300 138 496 EP300 acetylation; P300 acetylation

HAT1 12 15 KAT1 acetylation; HAT1 acetylation

KAT2A 24 69 KAT2A acetylation; GCN5 
acetylation; GCN5L2 acetylation

KAT2B 39 109 KAT2B acetylation; PCAF acetylation

KAT5 15 32 KAT5 acetylation; HTATIP 
acetylation; TIP60 acetylation

KAT8 8 10 KAT8 acetylation; MOF acetylation; 
MYST1 acetylation

Table 1.  A summary of the numbers of acetylated substrates and sites for seven types of HATs curated 
from the literature. The keywords used to search PubMed for the collection of HAT-specific acetylation sites 
were shown.

http://pail.biocuckoo.org/
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to analyze the amino acid occurrence around different types of HAT-specific sites (Fig. 1). The sequence logo of 
HAT1 was not drawn due to the data limitation.

From the results, although the K residue is significantly over-represented in + 3, + 4 and + 5 positions for 
both CREBBP- and EP300-specific acetylation sites, the G and S residues are enriched in − 1 and + 1 positions 
for CREBBP, whereas A and K residues prefer to occur at − 1 and + 1 positions for EP300, respectively (Fig. 1). 
For the GNAT family, a G residue preferentially occur at − 2 position for both KAT2A and KAT2B, while the K 
and G residues are over-represented at − 4 positions of KAT2A and KAT2B, respectively (Fig. 1). In addition, the 
residues of G, K and K prefer to occur at − 5, − 4 and − 3 positions of KAT5-specific sites, while the residues of 
G, G and A preferentially occur at − 3, − 2 and − 1 positions of KAT8-specific sites. However, the R and K res-
idues are enriched at + 3 and + 4 positions for both KAT5 and KAT8, respectively (Fig. 1). Taken together, our 
results demonstrated that different types of HAT-specific sites have considerably similar but distinct sequence 
preferences.

Development of GPS-PAIL for the prediction of HAT-specific lysine acetylation sites. Since 
different HATs have distinct sequence specificities for the substrate modifications, here we aimed to develop a 
highly useful tool to predict HAT-specific acetylation sites from protein sequences, and improved a previously 
established algorithm of GPS 2.233 to train a computational model for each HAT, respectively. We used 544 human 
HAT-specific acetylation sites of 160 protein substrates as the training data set. For a convenient usage, both 
online service and stand-alone packages of GPS-PAIL were provided, with a user-friendly interface. GPS-PAIL 
can predict HAT-specific acetylation sites for seven HATs including CREBBP, EP300, HAT1, KAT2A, KAT2B, 
KAT5 and KAT8.

The online service of GPS-PAIL was implemented in PHP and JavaScript. Also, two web services, IUPred37 
and NetSurfP38 were integrated for the prediction of protein structural features, such as disorder regions, sec-
ondary structures and surface accessibilities. The website of GPS-PAIL was extensively tested on various web 
browsers such as Internet Explorer, Mozilla Firefox and Google Chrome to provide a robust service. For the usage 
of GPS-PAIL, here we chose the protein sequence of human p53 as an example (Fig. 2). The input of the online 
service contained three parts, including the HAT types, the protein sequences, and the thresholds (Fig. 2a). One 
or multiple HATs can be selected by clicking the checkboxes, while four threshold options including “High”, 
“Medium” and “Low” and “All” were provided in the lower panel. In GPS-PAIL, the “High”, “Medium” and “Low” 
thresholds were selected with Sp values of ~95%, ~90 and 85%, respectively. The “All” option will generate a 

Figure 1. The amino acid frequencies of different types of HAT-specific lysine acetylation sites were 
analyzed and visualized by pLogo36.
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predicted score for each lysine residues with no stringency. One or multiple protein sequences can be directly 
input or uploaded through a sequence file in FASTA format. Furthermore, users can transfer to the “compre-
hensive” mode by clicking the “here > > ” link, to perform the predictions of secondary structures and surface 
accessibilities of given proteins (Fig. 2a).

After starting the prediction, the website will be redirected into a waiting page and then transferred to 
the result page (Fig. 2b). The results of p53 contained four sequential parts, including the list of 27 predicted 
HAT-specific acetylation sites with the HAT information, predicted surface accessibilities and disorder regions, 
predicted secondary structures, and a summarization of the results. All the results can be downloadable through 
clicking the “Download” button (Fig. 2b). To ensure the stability of the online service, the input of protein 
sequences was limited with < 2MB, while the large-scale computation can be performed through installing the 
stand-alone software packages, which were implemented in JAVA and supported for three major operation sys-
tems including Windows, Linux and Mac OS (Fig. 2c).

Performance evaluation and a comparison with ASEB. To evaluate the prediction perfor-
mance and robustness of GPS-PAIL, the training data set was used to perform the LOO validation and n-fold 
cross-validations. The receiver operating characteristic (ROC) curves were drawn, and the values of area under 
the curve (AUC) were calculated. Due to the data limitation, only 4- and 6-fold cross-validations were performed 
for HAT1 and KAT8, whereas 4-, 6-, 8- and 10-fold cross-validations were carried out for remaining HATs 
(Fig. 3). From the LOO results, AUC values are 0.661, 0.704, 0.998, 0.776, 0.767, 0.544 and 0.981 for CREBBP, 
EP300, HAT1, KAT2A, KAT2B, KAT5 and KAT8, respectively (Fig. 3). Thus, the prediction accuracies are gen-
erally satisfying except KAT5. In addition, the results of n-fold cross-validations are quite similar with the LOO 
results, suggesting the computational models were trained in a robust manner (Fig. 3).

Moreover, we used 158 non-human HAT-specific sites as an additional testing data set, and compared 
GPS-PAIL to ASEB, the first established tool for predicting HAT-specific sites in the family level11,32. For a justified 
comparison, we directly input the protein sequences of the testing data set to GPS-PAIL and ASEB to calculate 
the performances (Table 2). We fixed the specificity (Sp) values to be approximately identical and compared the 
sensitivity (Sn) scores. For convenience, the LOO results of GPS-PAIL on our training data set were also shown 
(Table 2). Although the accuracies of CREBBP and EP300 in GPS-PAIL were similar with the results of CREBBP/
EP300 in ASEB, GPS-PAIL generated a much better performance against ASEB for KAT2A and KAT2B (Table 2). 

Figure 2. The user interface of GPS-PAIL online service and local packages. (a) As an example, the 
protein sequence of human p53 can be directly inputted for the prediction of HAT-specific acetylation 
sites. (b) The detailed predictions will be shown in a tabular format, while additional information such as 
surface accessibilities, disorder regions and secondary structures will be predicted and presented. A brief 
summarization of predicted sites will be also shown. (c) For predicting multiple protein sequences, the local 
packages can be downloaded and used with a higher speed.
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In addition, since more HATs were available for the prediction, GPS-PAIL is more applicable for further dissect-
ing the signaling regulations of site-specific acetylation in proteins.

Large-scale prediction of potential HATs for acetylomes in eukaryotes. Ab initio prediction of 
HAT-specific acetylation sites directly from protein sequences will generate too many false positive hits. Thus, 
in this study we performed a systematic prediction of potential HATs for experimentally identified acetylation 
sites without the HAT information. Previously, we developed a comprehensive database of CPLM, containing 
58,563 known lysine acetylation sites of 20,088 proteins from both eukaryotes and prokaryotes15. Because eukar-
yotic HATs were generally not conserved in prokaryotes, here we only predict potential HATs for eukaryotic 
acetylation sites. From CPLM, we totally obtained 44,850 sites in 15,898 proteins for nine eukaryotic species, 
including Homo sapiens, Mus musculus, Rattus norvegicus, Drosophila melanogaster, Cavia porcellus, Plasmodium 

Figure 3. The LOO validation and n-fold cross-validations were performed for seven HATs including 
CREBBP, EP300, HAT1, KAT2A, KAT2B, KAT5 and KAT8. The known human HAT-specific sites were used 
for training. Due to the data limitation, only 4- and 6-fold cross-validations were carried out for HAT1 and 
KAT8. AROC values of the LOO validation and n-fold cross-validations were calculated.

HAT Positivea Negative Pr Sn Sp

GPS-PAIL (LOO)

CREBBP 167 1719 16.12 38.32 80.63

EP300 411 3525 22.81 50.61 80.03

HAT1 10 110 62.50 100.00 94.55

KAT2A 32 265 30.56 68.75 81.13

KAT2B 69 954 17.17 49.28 82.81

KAT5 28 531 39.29 39.29 96.80

KAT8 6 177 33.33 83.33 94.35

GPS-PAIL (Testing)

CREBBP 81 405 28.32 39.51 80.00

EP300 85 605 25.85 44.71 81.98

HAT1 5 33 100.00 100.00 100.00

KAT2A 37 430 19.23 54.05 80.47

KAT2B 40 133 47.92 57.50 81.20

KAT5 4 7 100.00 100.00 100.00

KAT8 4 139 36.36 100.00 94.96

ASEB (Testing)
CREBBP/EP300 107 771 22.61 42.06 80.03

KAT2A/KAT2B 73 522 23.08 41.10 80.84

Table 2.  Comparison of GPS-PAIL with ASEB11,32, by using 158 non-human HAT-specific sites of 45 
proteins as the testing data set. For convenience, the LOO results of GPS-PAIL on our training data set were 
also provided. a. Positive, the number of positive sites.
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falciparum, Toxoplasma gondii, Saccharomyces cerevisiae, and Arabidopsis thaliana (Supplementary Table S3). 
Before the prediction, we first determined the existence of potential orthologs of seven HATs across the nine 
organisms. We downloaded the proteome sequences of these species and pairwisely detected orthologs, using 
the strategy of reciprocal best hits (RBH)39. The orthologs of seven HATs were exactly identified and picked out 
if available (Fig. 4). From the results, we observed that the seven HATs were not equally conserved in eukaryotes. 
For example, all seven HATs are encoded in Homo sapiens, Mus musculus and Rattus norvegicus, whereas only 
HAT1, KAT2A/GCN5, and KAT5/ESA1 are conserved in Saccharomyces cerevisiae (Fig. 4). For each species, only 
detected HATs were selected for the large-scale predictions.

To greatly reduce false positive predictions, the high threshold in GPS-PAIL was chosen. In the results, we 
predicted totally 4,344 acetylation sites of 2,764 protein substrates with at least one potential HAT, with an anno-
tated coverage of 9.69% and 17.39% of all acetylation sites and proteins (Fig. 5 and Supplementary Table S3). 
For different species, the annotated coverage values ranged from 1.56% to 24.72% at the site level. For example, 
GPS-PAIL only predicted 67 sites of 46 substrates with at least one HAT from 4,284 un-annotated sites of 1,368 
proteins in Saccharomyces cerevisiae (Fig. 5 and Supplementary Table S3). However, 14.20% and 24.72% of total 
acetylation sites were predicted with the HAT information in Homo sapiens and Arabidopsis thaliana, respectively 
(Fig. 5 and Supplementary Table S3). Thus, our results proposed that GPS-PAIL might be more efficient to predict 
HAT-specific acetylation sites in mammalians and plants.

In addition, the distribution of numbers of protein substrates and sites modified by different types of HATs 
were analyzed (Fig. 6). Among 2,764 potential HAT-specific substrates, 1,939 proteins (70.15%) were predicted 
to be acetylated by only one HAT, whereas 514 substrates (18.60%) were predicted to be mutually modified by 
two HATs (Fig. 6a). Only 311 proteins (11.25%) might be regulated by over two HATs (Fig. 6a). In the site level, 
the results are similar that 3,219 (74.10%) and 752 (17.31) acetylation sites were modified by one and two HATs, 
respectively (Fig. 6b). The overlaps of predicted substrates and sites for CREBBP, EP300, HAT1, KAT2A and 
KAT2B were analyzed (Fig. 6c,d), while KAT5 and KAT8 were not included due to the data limitation from 
predictions. In the protein level, most of substrates were acetylated by only one HAT, while only nine proteins 
can be regulated by the five HATs (Fig. 6c). In the acetylation site level, the results were similar and no site can be 
modified by all the five HATs (Fig. 6d). Taken together, our large-scale analyses of predicted acetylated proteins 
and sites also demonstrated that different HATs recognize mutual but still distinct substrates. The detailed results 
of 2,764 proteins together with predicted sites and GPS-PAIL scores were shown in Supplementary Table S4.

Figure 4. The potential orthologs of seven HATs among nine eukaryotic organisms were computationally 
identified with the approach of reciprocal best hits39. The existent HATs were marked with a black ball.

Figure 5. A summary of numbers of proteins and acetylation sites predicted with at least one HAT 
across nine eukaryotes. The heatmap was drawn with HemI44, and detailed statistics was shown in 
Supplementary Table S3.
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Discussion
HAT- or KAT-mediated acetylation at specific lysine residues of proteins is an essential PTM, conserved in both 
prokaryotes and eukaryotes, and plays a critical role in the regulation of numerous biological processes and cel-
lular pathways1–7. Recent advances in the development of the state-of-the-art techniques in acetylomics have ena-
bled to identify and quantify thousands of acetylation sites in a single run5,7,14. Although over 58,000 acetylation 
sites have been characterized in prokaryotic and eukaryotic species, the regulatory HATs of most of these sites still 
remain to be elucidated. Previously, we and others developed about 15 computational programs to predict general 
acetylation sites from protein sequences, with a satisfying accuracy7,16–31. However, the prediction of HAT-specific 
acetylation sites was still unavailable until the release of ASEB11,32, which clearly demonstrated that different types 
of HATs could modify distinct protein substrates11,32. Since ASEB only predicted HAT-specific sites in the family 
level, with only two predictors such as CBP/p300 and GCN5/PCAF, the prediction of specific acetylation sites for 
individual HATs is still a great challenge.

In this work, we first collected 702 known HAT-specific acetylation sites in 205 proteins for seven HATs 
including CREBBP, EP300, HAT1, KAT2A, KAT2B, KAT5 and KAT8, from the scientific literature and public 
data resources such as CPLM15 and ASEB11,32. The sequence preferences of different types of HAT-specific sites 
were analyzed, while the results demonstrated that different HATs recognize similar but considerably distinct 
sequence motifs for the substrate recognition. Using known human HAT-specific sites as the training data set, we 
further developed GPS-PAIL for the prediction of HAT-specific sites in the single HAT level, while both online 
service and local packages were implemented. We critically evaluated the prediction performance of GPS-PAIL 
by using the LOO validation and n-fold cross-validations. By a comparison with ASEB using non-human 
HAT-specific sites as an additional testing data set, GPS-PAIL exhibited at least a comparative accuracy. For HAT1 
and KAT8, the values of Pr, Sn and Sp were all equal to 100% on the testing data set. However, the LOO results 
of HAT1 and KAT8 on the training data set didn’t reach an accuracy of 100% (Table 2). Because there were only 
5 and 4 known HAT1- and KAT8-specific acetylation sites in the testing data set, we couldn’t conclude a perfect 
performance for the two HATs, and further evaluations still remain to be performed when more specific sites were 
experimentally identified.

Using GPS-PAIL, we performed a large-scale analysis to annotate potential HATs for known acetylation sites 
in nine eukaryotic organisms. Again, the large-scale prediction proposed that most of protein substrates and sites 
were acetylated by only one HAT, and the results further supported that different HATs recognize overlapping but 
still distinct substrates. We also carefully checked the literature and UniProt database34, and all known site-specific 
HAT-substrate relations (ssHSRs) in the prediction results were pinpointed (Supplementary Table S4). Previously, 
it was demonstrated that various functional features of proteins, such as gene ontology (GO) annotations and 
protein-protein interactions (PPIs), were beneficial for the prediction of kinase-specific phosphorylation sites40,41. 
In this work, the GO information was not used, because the functional diversity of HAT-specific acetylated sub-
strates was high and no particularly significant GO terms were detected from the statistical enrichment analysis. 
However, the PPIs between HATs and substrates are potentially useful to reduce false positive predictions. From 

Figure 6. The distribution of predicted HAT-specific substrates and sites in nine eukaryotes. The number of 
potential HATs for (a) predicted proteins and (b) acetylation sites. The overlaps of (c) predicted substrates and 
(d) sites were shown for CREBBP, EP300, HAT1, KAT2A and KAT2B.
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the STRING database42, the pre-integrated PPI data sets for nine species were retrieved, and the site-specific 
HAT-substrate relations with or without PPIs were shown (Supplementary Table S4). In the results, we observed 
there were 315 (5.23%) known ssHSRs with experimental evidences and 2,493 (41.41%) predicted ssHSRs with 
PPIs, respectively (Supplementary Table S4). Interestingly, we found 101 known ssHSRs without the PPI infor-
mation (Supplementary Table S4). This is because interactions between HATs and substrates are usually transient 
and dynamic with a weak binding affinity, which might be difficult to be detected by standard PPI screenings or 
computational predictions.

For the future plan, we will continuously collect experimentally identified HAT-specific acetylation sites if 
available in the literature. Undoubtedly, a larger training data set will generate a more accurate performance for 
the prediction. Also, we will further refine and improve the prediction algorithm. For example, we recently devel-
oped GPS-SUMO for the prediction of sumoylation sites and SUMO-interaction motifs from protein sequences, 
with an enhanced version of GPS algorithm43. Currently, the GPS algorithm is still under improvement, and 
we will test the accuracy of the latest version of GPS algorithm on the prediction of HAT-specific acetylation 
sites. Taken together, in this study we developed an efficient tool GPS-PAIL to predict HAT-specific acetylation 
sites for seven HATs, with a satisfying accuracy. The prediction results of potential HATs for known acetylation 
sites in eukaryotes from the large-scale analysis can also serve as a useful data resource for further experimental 
consideration.

Methods
Data collection and preparation. First, we collected experimentally identified HAT-specific lysine acetyl-
ation sites from the scientific literature if available. For each known HAT2,3, we used its standard gene name, 
protein name or aliases together with the keyword of “acetylation” to search the PubMed database (Table 1). For 
example, multiple keyword combinations such as “’CREB-binding protein’ acetylation”, “CREBBP acetylation” 
and “CBP acetylation” were used to search CREBBP-specific acetylation sites, whereas “KAT5 acetylation”, “Tip60 
acetylation” and “HTATIP acetylation” were used to find KAT5-specific sites (Table 1). The known HAT-specific 
sites in CPLM database15 and ASEB training data set11,32 were also integrated. Only HATs with at least five known 
specific sites were reserved for the further analysis, and their standard gene names from the UniProt database34 
were adopted. Then we mapped all HAT-specific substrates to the primary protein sequences downloaded from 
the UniProt database34, and pinpointed the exact acetylation position. The redundancy was cleared, and the final 
data set contained 702 unique HAT-specific acetylation sites in 205 proteins, including 544 human acetylation 
sites in 160 proteins (Supplementary Table S1) and 158 non-human sites of 45 proteins (Supplementary Table S2).

In this study, the human HAT-specific sites were adopted for training, while non-human sites were used as 
an additional data set to test the prediction performance. For the preparation of the training data set, we defined 
an acetylation site peptide ASP(m, n) as an acetyllysine amino acid flanked by m residues upstream and n resi-
dues downstream. For each HAT, its experimentally identified acetylation sites were taken as positive data (+ ), 
whereas all the other non-acetylated lysine residues in the same proteins were regarded as negative data (− ). The 
training and testing procedures were independently performed for each HAT. For the large-scale prediction of 
HAT-specific acetylation sites in eukaryotes, we totally obtained 44,850 known but un-annotated acetylation sites 
in 15,898 proteins of nine species from CPLM15 (Supplementary Table S3).

Performance evaluation. As previously described33, three measurements of Sn, Sp and precision (Pr) were 
adopted to evaluate the prediction performance. The three measurements were defined as equation (1), (2), and 
(3):

=
+

Sn TP
TP FN (1)

=
+

Sp TN
TN FP (2)

=
+

TP
TP FP

Pr
(3)

The LOO validation and 4-, 6-, 8- and 10-fold cross-validations were performed. The ROC curves were drawn 
and AROC values were calculated.

Algorithm. Previously, we developed the GPS 2.2 algorithm for the prediction of APC/C recognition motifs 
such as D-boxes and KEN-boxes proteins33. The algorithm comprises two major parts, including the scoring 
strategy and performance improvement.

In the former part, based on the basic hypothesis of similar short peptides exhibiting similar biochemical 
properties with similar functions, we used an amino acid substitution matrix, e.g., BLOSUM62, to evaluate the 
similarity between two ASP(m, n) peptides of A and B as equation (4):

∑=
− ≤ ≤

S A B Score A i B i( , ) ( [ ], [ ])
(4)m i n

Score(A[i], B[i]) represents the substitution score of the two residues of A[i] and B[i] in the amino acid substitu-
tion matrix at the position i. If S(A, B) < 0, we redefined it as S(A, B) =  0. For each HAT, a given ASP(m, n) was 
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then pairwisely compared with each of its known specific acetylation sites to calculate the similarity score. The 
average value of the substitution scores was taken as the final score for the HAT.

The second part comprises three distinct steps, including motif length selection, weight training and matrix 
mutation. To monitor the performance improvement, here we fixed the Sp at 90% and compared Sn values of the 
LOO validation.

Motif length selection. In this step, the combinations of ASP(m, n) (m =  1, … , 30; n =  1, … , 30) were exhaustively 
tested, while the optimized combination of ASP(m, n) was determined based on the highest LOO result for each 
HAT, separately.

Weight training. Since different positions can provide different contributions to modification specificity, we 
refined the substitution score between the two ASP(m, n) peptides A and B was as equation (5):

∑′ =
≤ ≤

S A N w Score A i B i( , ) ( [ ], [ ])
(5)m i n

i

The wi value denotes the weight of position i. Again, if S′(A, B) <  0, we redefined it as S′(A, B) =  0. Initially, the 
weight of each position in ASP(m, n) was taken as 1. Then we randomly picked out a weight of any position for  
+ 1 or − 1, and adopted the manipulation if the LOO performance was increased. The process was continued until 
the Sn value was not increased any longer.

Matrix mutation. The aim of this step is to generate an optimal or near-optimal scoring matrix. BLOSUM62 
was chosen as the initial matrix, and the LOO performance was calculated. Then we improved the Sn though 
randomly picking out an element of the BLOSUM62 matrix for + 1 or − 1. The process was repeated until con-
vergence was reached.

During the training, the order of the three steps in performance improvement can be shuffled. To improve the 
training efficiency, we adopted the simulated annealing (SA) algorithm to optimize the parameters for the steps 
of Weight Training and Matrix Mutation.

The PPI data sets. The PPIs together with corresponding protein sequences of nine species were down-
loaded from the STRING database (Version 10, http://string-db.org), which is an integrative data resource 
for both physical and functional associations among proteins in over 2,000 organisms42. Totally, we obtained 
28,386,035 pairs of PPIs in nine species, including 4,274,001, 5,109,107, 5,319,621, 2,176,849, 2,340,229, 
2,575,257, 332,297, 939,998 and 5,318,676 PPIs from Homo sapiens, Mus musculus, Rattus norvegicus, Drosophila 
melanogaster, Cavia porcellus, Plasmodium falciparum, Toxoplasma gondii, Saccharomyces cerevisiae and 
Arabidopsis thaliana, respectively.
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