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Simple Summary: Immunotherapy has been positioned as frontline therapy for advanced non-small
cell lung cancer (NSCLC), alone when PD-L1 tumor expression is high, or combined with chemother-
apy otherwise. However, 50% of the patients do not respond to the treatment and the mechanisms of
resistance are not well defined. Moreover, it is not clear whether chemo-immunotherapy could be
advantageous in high PD-L1 tumor expression. We have found that baseline circulating low-density
neutrophils (LDN) identify a subset of patients intrinsically refractory to immunotherapy. Interest-
ingly, responses can be achieved with CT+IT, detecting a progressive depletion of LDN. Besides the
potential role as predictive biomarker we observed that resistance was mediated by soluble molecules
related with the HGF/c-MET pathway. Our findings establish circulating myeloid cells as one of the
main mediators of resistance to immunotherapy in NSCLC, and give a rationale for potential drug
combinations that might improve the outcomes.

Abstract: Single-agent immunotherapy has been widely accepted as frontline treatment for advanced
non-small cell lung cancer (NSCLC) with high tumor PD-L1 expression, but most patients do not
respond and the mechanisms of resistance are not well known. Several works have highlighted
the immunosuppressive activities of myeloid subpopulations, including low-density neutrophils
(LDNs), although the context in which these cells play their role is not well defined. We prospectively
monitored LDNs in peripheral blood from patients with NSCLC treated with anti-PD-1 immune
checkpoint inhibitors (ICIs) as frontline therapy, in a cohort of patients treated with anti-PD1 im-
munotherapy combined with chemotherapy (CT+IT), and correlated values with outcomes. We
explored the underlying mechanisms through ex vivo experiments. Elevated baseline LDNs predict
primary resistance to ICI monotherapy in patients with NSCLC, and are not associated with response
to CT+IT. Circulating LDNs mediate resistance in NSCLC receiving ICI as frontline therapy through
humoral immunosuppression. A depletion of this population with CT+IT might overcome resistance,
suggesting that patients with high PD-L1 tumor expression and high baseline LDNs might benefit
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from this combination. The activation of the HGF/c-MET pathway in patients with elevated LDNs
revealed by quantitative proteomics supports potential drug combinations targeting this pathway.

Keywords: lung cancer; NSCLC; immunotherapy; neutrophils; LDN; biomarkers; PD-1; immune
checkpoint inhibitors

1. Introduction

Immune checkpoint inhibitors (ICI) have improved the outcomes of patients diagnosed
with advanced non-small cell lung cancer (NSCLC). Anti-PD1/PD-L1 antibodies have become
the standard frontline treatment, as a single agent when PD-L1 tumor expression is high or
combined with chemotherapy otherwise [1–8]. Unfortunately, the majority of the patients do
not respond to treatment, no accurate predictive biomarkers able to identify those who will
obtain a greater benefit have been discovered yet, and the mechanisms of resistance are not well
understood [9,10]. Moreover, some patients with high PD-L1 expression who do not respond to
single-agent ICI might benefit from chemoimmunotherapy combination.

Over recent years, the relevance of neutrophils in the immune response against can-
cer has been highlighted, although the understanding of their role is far from complete.
Pro-tumor and anti-tumor activity have been described depending on the tissue and
context [11,12]. A population of circulating neutrophils with immunosuppressive proper-
ties known as low-density neutrophils (LDNs) has been detected in cancer patients [13–15],
although its association with response to ICI has not yet been defined.

LDNs are an heterogeneous population comprising both mature and immature neu-
trophils. Whether it is a distinct lineage of neutrophils or the consequence of a premature
release from bone marrow is still a matter of debate, and even the characteristics and
function of LDNs might differ between cancer and other chronic inflammatory diseases, as
even proinflammatory activities have been described in the latter [16]. However, a work by
Sagiv JY et al. suggested a distinct origin and demonstrated that high density neutrophils
(HDN) can switch to LDN through a TGF-β-dependent mechanism [13].

Our group previously demonstrated the association between circulating immune
cells, particularly CD4 T cells, and the response to ICI in patients with NSCLC that have
progressed to platinum-based chemotherapy [17]. Surprisingly, preliminary data from
that project suggested that, in patients with advanced NSCLC receiving ICI as frontline
treatment, circulating CD4 T cells did not have predictive value, while LDNs might be
associated with primary resistance [18].

We have used flow cytometry to prospectively monitor LDNs levels in fresh blood
samples from a cohort of patients with untreated advanced NSCLC receiving ICI monother-
apy as frontline treatment, and evaluated the association with response and disease control.
These findings were compared with a cohort of patients treated with chemoimmunotherapy
combination. Lastly, we explored ex vivo the mechanisms of resistance using co-cultures,
and compared the plasma of the different cohorts of patients using quantitative proteomics.

2. Materials and Methods
2.1. Study Design and Patient Enrolment

The study was approved by the Ethics Committee of the University Hospital of
Navarre. Informed consent was obtained from all subjects and all experiments were
performed according to the principles stablished in the Declaration of Helsinki and the
Department of Health and Human Services Belmont Report. Samples were collected by
the Blood and Tissue Bank of Navarre, Health Department of Navarre, Spain. Thirty-one
patients diagnosed with NSCLC and PD-L1 tumor expression ≥50% were recruited at the
University Hospital of Navarre. All received anti-PD1 immunotherapy (pembrolizumab)
as frontline therapy according to current indications. Twenty patients diagnosed of NSCLC
and PD-L1 0–49% were recruited at University Hospital of Navarre. They were treated with
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platinum-based chemotherapy combined with anti-PD1 immunotherapy (pembrolizumab)
according to current indications. Exclusion criteria were mixed histologies, previous
treatment for advanced disease or progression during neoadjuvant or adjuvant systemic
treatment. Data from a cohort of healthy donors and of patients with NSCLC treated with
anti-PD-1/PD-L1 after progression to first-line chemotherapy were also evaluated [17].

Ten ml of peripheral blood samples were obtained before the first cycle of immunotherapy,
and after the first radiological control. PBMCs were isolated using Ficoll gradient as described
elsewhere [17] and immune cell subpopulations were analyzed by flow cytometry. After
centrifugation, LDN grouped at the interface between plasma and Ficoll as described [14], and
were further analyzed along with PBMCs. Participation of each patient in the study concluded
when a radiological test confirmed response or progression, or if the patient withdrew consent
or died. Tumor responses were evaluated according to RECIST 1.1 [19] and Immune-Related
Response Criteria [20]. Progressive disease was confirmed by at least one sequential tumor
assessment, except in the case of clear clinical deterioration.

2.2. Flow Cytometry

Surface flow cytometry analyses were performed as described elsewhere [21]. Blood
samples (10 mL) were obtained from each patient, and immediately processed. PBMCs were
isolated by FICOL gradients. PBMCs were washed and cells were stained with the indicated
antibodies in a final volume of 50 µL for 10 min in ice. The following fluorochrome-conjugated
antibodies were used at 1:50 dilutions unless otherwise stated: CD3-APC (ref 130-113-135,
Miltenyi Biotech, Bergisch-Gladbach, North Rhine-Westphalia, Germany), CD4-APC-Cy7 (ref
130-113-251, Miltenyi Biotech), CD4-FITC (ref 130-114-531, Miltenyi Biotech), CD8-FITC (ref
35-0088-T500, Tonbo Biosciences, San Diego, CA, USA), CD11b-PerCP-Cy5 (1:250) (ref 65-0112-
U100, Tonbo Biosciences), CD14-PB (1:20) (ref 75-0149-T100, Tonbo Biosciences), CD27-PE
(1:20) (ref 50-0279-T100, Tonbo Biosciences), CD28-PE-Cy7 (ref 302926, BioLegend, San Diego,
CA, USA), CD28-PerPC-Cy5 (1:20) (ref 302921, BioLegend), CD45RA-PB (ref 130-113-922,
Miltenyi Biotech), CD56-PE-Cy7 (ref 130-113-870, Miltenyi Biotech), CD57-PB (ref 130-123-866,
Miltenyi Biotech), CD62L-APC (1:20) (ref 304810, BioLegend), CD62L-PerCP-Cy5 (ref 304823,
BioLegend), CD66b-APC-Cy7 (ref 130-120-146, Miltenyi Biotech), CD95-FITC (ref 130-124-261,
Miltenyi Biotech), CD116-APC (ref 130-100-986, Miltenyi Biotech), CD119-PE (ref 130-125-874,
Miltenyi Biotech), KLRG1-APC-Cy7 (ref 130-120-563, Miltenyi Biotech), LAG3-PE (ref 369306,
BioLegend) and PD1-PE-Cy7 (ref 130-120-391, Miltenyi Biotech). Gating strategy is presented
in supplementary materials (Figure S1).

2.3. Cell Culture

Human lung adenocarcinoma A549 cells were a kind gift of Prof Rubén Pío, authenti-
cated by his group, and were grown in standard conditions. They were confirmed to be
mycoplasma-free by PCR. These cells were modified with a lentivector encoding a single-
chain version of a membrane-bound anti-OKT3 antibody [22]. The lentivector expressed
the single-chain antibody construct under the control of the SFFV promoter and puromycin
resistance from the human ubiquitin promoter in a pDUAL lentivector construct [23]. The
single-chain antibody construct contained the variable light and heavy OKT3 immunoglob-
ulin sequences separated by a G-S linker fused to a human IgG1 constant region sequence
followed by the PD-L1 transmembrane domain.

Cell growth and cytotoxicity were monitored using xCELLigence real-time cell analysis
(RTCA, Agilent Technologies, Santa Clara, CA, USA). Ten thousand A549-OKT3 cells
resuspended in RPMI supplemented with 10% fetal bovine serum (FBS) were seeded in
each well, adding plasma from patients or healthy donors at a 1:3 concentration when
required by the experiment. After a 24-h incubation, 5000 T lymphocytes obtained from
patients with NSCLC or healthy donors and stimulated with anti-CD3 and anti-CD28 were
added. Each group had at least three repetitions, and each experiment was performed at
least twice to confirm the results.
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2.4. Data Collection and Statistics

Immune cell subpopulations were quantified using FlowJo (BD Biosciences, Franklin
Lakes, NJ, USA). The percentage of LDNs were quantified prior to therapy (baseline) and
after the first radiological control. Data were recorded by H.A., A.I.B., M.Z. and M.G., and
separately analyzed by H.A. and M.G.

Treatments were administered to the patients according to current indications. Progression-
free survival (PFS) was defined as the time from the starting date of therapy to the date of
disease progression or death from any cause, whichever occurred first. PFS was censored on the
date of the last patient consultation when no signs of progressive disease were evident. PFS was
represented by Kaplan-Meier Plots and log-rank tests were used to compare cohorts. Derived
neutrophil-to-lymphocyte ratio (dNLR) and Lung Immune Prognostic Index (LIPI) score were
calculated as described [24]. Receiver operating characteristics (ROC) analysis were performed
with baseline LDNs numbers, NLR, dNLR and neutrophils and disease control at 6 months
yes/no as a binary output. Overall survival (OS) was defined as the time from the start date of
therapy to the date of death from any cause. OS was evaluated in the same way as PFS.

Statistical tests were performed with GraphPad Prism 6 (GraphPad Software, San
Diego, CA, USA) and SPSS statistical packages (IBM, Armonk, NY, USA). Percentages of
LDNs were not normally distributed, so the comparisons between groups were made using
Mann-Whitney and Kruskal-Wallis tests.

2.5. Proteomics

Plasma from the patients with NSCLC recruited for this study was purified before the
administration of the first cycle of treatment, and frozen at −80 ◦C for further analysis. Plasma
samples from patients with NSCLC that had progressed to platinum-based chemotherapy
were recovered from a previous project [17]. The Multiple Affinity Removal Spin Cartridge
System (Agilent Technologies, Miami, FL, USA) was used to remove the most abundant
proteins according to the manufacturer’s instructions. Briefly, 6 µL of human plasma was
diluted 16-fold with Buffer A and filtered through a 0.22-µm spin filter (1 min, 14,000× g). The
non-bound protein fraction was collected and the column was washed twice with Buffer A
and centrifuged (2.5 min, 100× g). Protein concentration was measured using Bradford assay
kit (Bio-Rad, Hercules, CA, USA). MS/MS Library Generation and Quantitative Analysis were
performed as previously described [25], and included 5 healthy donors, 4 untreated patients
with NSCLC and high LDN levels, 5 untreated patients with non-squamous NSCLC and low
LDN levels, 5 untreated patients with squamous NSCLC and low LDN levels and 5 patients
with NSCLC that had progressed to platinum-based chemotherapy and high LDN levels.
Briefly, 20 µg per sample were be used and the quantitative data obtained was analyzed using
Perseus software (Max Planck Institute of Biochemistry, Munich, Germany) [26] for statistical
analysis and data visualization.

2.6. Bioinformatics

Multiparametric flow cytometry data were represented in 2 dimensions using T-distributed
Stochastic Neighbor Embedding (tSNE) algorithms [27]. Networks obtained from comparative
proteomics of plasma from different cohorts were identified and represented using STRING
(Search Tool for the Retrieval of Interacting Genes) software (http://stringdb.org/, accessed on
several occasions from September 2021 to March 2022) [28].

3. Results
3.1. Study Population

Thirty-one patients diagnosed with advanced NSCLC who received pembrolizumab
as frontline therapy were recruited. All had PD-L1 tumor expression ≥ 50%. Baseline
characteristics are depicted in Table 1. Overall response rate (ORR) was 42.9%, and disease
control rate (DCR) was 64.3%. Median PFS and OS were 5.7 and 33.0 months, respectively.
Fast progressive disease (fast-PD)/early death rate, defined as death at 12 weeks after
starting, was 25.8%.

http://stringdb.org/
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Table 1. Baseline characteristics of the ICI monotherapy cohort.

Variable Percentage

Age <70
≥70

21 (67.7%)
10 (33.3%)

Sex Female
Male

7 (22.6%)
24 (77.4%)

Performance Status 0–1
2–4

27 (87.1%)
4 (12.9%)

Histology Non-squamous
Squamous

22 (71%)
9 (29%)

Stage Stage IIIA-C
Stage IV

3 (9.7%)
28 (90.3%)

Tumor burden
Less than 3 organs
3 organs or more

12 (38.7%)
19 (61.3%)

Liver metastases Yes
No

8 (25.8%)
23 (74.2%)

PD-L1 tumor expression ≥50% 31 (100%)

Neutrophil-to-lymphocyte ratio (NLR)
≤6
>6

Unknown

21 (67.7%)
7 (22.6%)
3 (9.7%)

Serum lactate dehydrogenase (LDH)
≤upper limit of normal
>upper limit of normal

Unknown

10 (32.3%)
8 (25.8%)

13 (41.9%)

Serum albumin
≥3.5 g/dL
<3.5 g/dL
Unknown

20 (64.5%)
8 (25.8%)
3 (9.7%)

Gustave Roussy Immune Score (GRIm)
0–1
2–3

Unknown

17 (54.8%)
6 (19.4%)
8 (25.8%)

Derived neutrophil-to-lymphocyte ratio (dNLR)
≤3
>3

Unknown

25 (80.6%)
5 (16.1%)
1 (3.2%)

Lung Immune Prognostic Index (LIPI)
Good/Intermediate

Poor
Unknown

28 (90.3%)
2 (6.5%)
1 (3.2%)

In another study cohort, 21 patients diagnosed with advanced NSCLC who received
chemotherapy-immunotherapy combination (CT+IT) including pembrolizumab as first-line
treatment were recruited. Baseline characteristics are depicted in Table 2. Overall, 61.9%
had PD-L1 expression ≤ 1%, 14.3% had PD-L1 expression 1–4% and 23.8% had PD-L1
expression 5–49%. ORR was 47.4%, and DCR was 52.6%. Median PFS was 3.6 months,
while median OS was not reached. The rate of fast-PD/early death was 9.5%.

Table 2. Baseline characteristics of the CT+IT cohort.

Variable Percentage

Age <70
≥70

17 (85.0%)
3 (15.0%)

Sex Female
Male

5 (25.0%)
15 (75.0%)

Performance Status 0–1
2–4

18 (90.0%)
2 (10.0%)

Histology Non-squamous
Squamous

18 (90.0%)
2 (10.0%)

Stage Stage IIIA-C
Stage IV

1 (5.0%)
19 (95.0%)
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Table 2. Cont.

Variable Percentage

Tumor burden
Less than 3 organs
3 organs or more

5 (25.0%)
15 (75.0%)

Liver metastases Yes
No

6 (30.0%)
14 (70.0%)

PD-L1 tumor expression
0%

1–4%
5–49%

13 (65.0%)
2 (10.0%)
5 (25.0%)

Neutrophil-to-lymphocyte ratio (NLR) ≤6
>6

11 (55.0%)
9 (45.0%)

Serum lactate dehydrogenase (LDH)
≤upper limit of normal
>upper limit of normal

Unknown

5 (25.0%)
7 (35.0%)
8 (40.0%)

Serum albumin
≥3.5 g/dL
<3.5 g/dL
Unknown

18 (90.0%)
1 (5.0%)
1 (5.0%)

Gustave Roussy Immune Score (GRIm)
0–1
2–3

Unknown

13 (65.0%)
5 (25.0%)
2 (10.0%)

Derived neutrophil-to-lymphocyte ratio (dNLR) ≤3
>3

12 (60.0%)
8 (40.0%)

Lung Immune Prognostic Index (LIPI)
Good/Intermediate

Poor
Unknown

15 (75.0%)
3 (15.0%)
2 (10.0%)

3.2. Baseline Low-Density Neutrophils (LDNs) and Response to ICI Monotherapy as Frontline
Treatment in NSCLC

In the cohort of 31 patients diagnosed with advanced NSCLC who received pem-
brolizumab as frontline therapy, the overall immune cell composition in peripheral blood
was characterized by high-dimensional flow cytometry and tSNE analyses in 3 consecutive
patients with disease control longer than 6 months. These results were compared to those
of 3 consecutive progressors. To avoid the confounding effect of chemotherapy, initially
only patients receiving pembrolizumab monotherapy were evaluated.

Previous work by our group showed that relative percentages of highly differenti-
ated CD4 T cells (CD4 THD) in peripheral blood were a good predictive biomarker of
response to second-line ICI monotherapies [17]. However, no correlation was observed in
patients treated with frontline ICI therapy. Interestingly, a strong enrichment of low-density
neutrophils (LDNs), a subpopulation with immunosuppressive properties identified as
CD11b+ CD116+ CD66b+ CD3− CD14−, was found in progressors, while this population
was apparently absent in responders (Figure 1A).

In the overall cohort of patients treated with ICI monotherapy, higher levels of LDNs
were detected in progressors compared to responders or healthy donors (mean 25.2%, 2.7%
and 0.7%, respectively; p < 0.0001). No differences were found according to age or tumor
burden (Supplementary Figure S2). To evaluate the value of baseline LDNs as a biomarker
of response, ROC analyses were performed and an area under the curve (AUC) of 0.908
(p < 0.001) was calculated. ROC analyses established a LDN threshold of 7.09%, which
identified patients who showed disease control of less than 6 months with a sensitivity
of 84.6% and specificity of 93.3% (Figure 1B). Patients with LDNs above this threshold
presented an ORR of 0%, lower median progression free survival (mPFS) (5.6 weeks vs.
non-reached, p < 0.001) and lower median OS (mOS) (6.1 weeks vs. non reached, p = 0.004)
(Figure 1C). Furthermore, the incidence of fast-PD/early death was significantly higher in
patients with NSCLC and high baseline LDNs (66.7% vs. 6.3%, p = 0.001) (data not shown).
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Figure 1. (A): Top, tSNE graph of myeloid subpopulations represented by different colors. NK/NK-T
cells: CD11b+, CD56+, CD14−, CD66b−. LDNs: CD11b+, CD66b+, CD116+, CD14−. Mono-
cytes/macrophages: CD11b+, CD14+, CD116+, CD66b−. Lower left, tSNE graph of 3 responders
to immune checkpoint inhibitors (ICI) monotherapy. Lower right, tSNE graph representative of
3 non-responders to ICI monotherapy. (B): Left, ROC analysis of baseline low-density neutrophils
(LDNs) as a function of clinical benefit rate (CBR) < 6 months. Right, baseline levels of LDN in
patients receiving ICI monotherapy with CBR longer than 6 months compared with patients with
CBR less than 6 months and with healthy donors. (C): Top, progression free survival stratified by
the presence of baseline LDNs above the ROC threshold (7.09%). Below, overall survival stratified
by the presence of baseline LDN above the ROC threshold. *** indicate highly significant (p < 0.001)
statistical differences.

3.3. High LDN Levels and Resistance to First-Line Chemoimmunotherapy in Patients with NSCLC

Twenty-one patients receiving chemoimmunotherapy combination (CT+IT) containing
pembrolizumab as first-line treatment were recruited. In contrast to the results from first-
line ICI monotherapy, baseline proportions of circulating LDNs did not predict response
to CT+IT (AUC 0.350, p = 0.257), and levels did not differ between responders and non-
responders (mean 31.2% and 16.8%, p = 0.14), suggesting a predictive and not prognostic
value of LDNs (Figure 2A). Moreover, some patients with high baseline LDN levels (n = 9)
responded to treatment and we observed in all of them a brisk decline in LDNs between
the first and the second cycle. Significant proportions of LDNs were no longer observed at
the time of the first radiological follow-up. This suggests that these cells play an active role
in ICI resistance (Figure 2B).
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Figure 2. (A): Left, ROC analysis of baseline LDNs as a function of CBR < 6 months in patients
receiving chemoimmunotherapy (CT+IT). Right, baseline levels of LDN in patients receiving CT+IT
with CBR for more than 6 months compared to patients with CBR less than 6 months. (B): Monitoring
of patients with LDNs above the threshold who responded to CT+IT. (C): Scatter plot representing the
association between baseline LDNs and baseline neutrophils in blood test in the whole group of patients.
(D): ROC analysis of baseline neutrophils, neutrophil-to-lymphocyte ratio (NLR) and derived neutrophil-
to-lymphocyte ratio (dNLR) as a function of CBR < 6 months in patients receiving ICI monotherapy.
(E): ROC analysis of baseline neutrophils, NLR and dNLR as a function of CBR < 6 months in patients
receiving CT+IT. ns indicate non-significant statistical differences.

To confirm that the predictive value of LDNs was specific to patients treated with ICI
monotherapy as first-line therapy, we retrospectively studied the flow cytometry stain-
ing from a previous well-characterized cohort of patients with NSCLC treated with ICI
monotherapy after progression to platinum-based chemotherapy [17]. No significant dif-
ferences in LDNs were found between first-line and pretreated NSCLC (median 8.1% vs.
4.4%, p = 0.15) (data not shown). Again, the mean proportion of LDNs was not higher in
patients who progressed to treatment compared with responders (9.5% vs. 19.1%, p = 0.13)
(data not shown).

Previous works have demonstrated the predictive value of baseline neutrophils in pe-
ripheral blood tests from patients with NSCLC treated with ICI [24,29,30]. To identify any
relationship between neutrophils and LDNs, we studied the correlation between neutrophils
from ordinary blood samples and LDNs quantified by flow cytometry. A statistically sig-
nificant association was found by linear regression (p = 0.047), although the strength of the
association was low. We observed that all patients with high levels of neutrophils presented
a high proportion of LDNs (Figure 2C). However, 54% of patients with LDNs above the
7.08% threshold had no neutrophilia, suggesting that the expansion of LDN is independent of
peripheral neutrophils.

The predictive value of peripheral neutrophils, neutrophil-to-lymphocyte ratio (NLR)
and derived NLR (dNLR) was then studied. These variables were associated with pro-
gression to ICI monotherapy, although with lower sensitivity and specificity than LDNs
(AUC 0.638, p = 0.11; AUC 0.750, p = 0.02; AUC 0.634, p = 0.21) (Figure 2D). Interestingly,



Cancers 2022, 14, 3846 9 of 14

NLR and dNLR were also associated with resistance to CT+IT (Figure 2E), and with OS in
both the ICI monotherapy and the CT+IT cohort (not shown), indicating prognostic and
not predictive value.

3.4. Soluble Factors in Plasma from Patients with High LDN Levels Impair Antitumor Immune
Response Ex Vivo

To evaluate ex vivo T cell effector functions from the different cohorts of patients, we
performed co-cultures of T cells with A549-SC3 cells, a human lung cancer cell line engineered
by us to express membrane-bound anti-CD3 single-chain antibody to ensure tumor cell
recognition by lymphocytes independently of antigen-specificity [17]. T cells from healthy
donors were used as controls. T cells from patients with NSCLC regardless of their LDN
status showed comparable cytotoxic activities to T cells from healthy donors (Figure 3A).
These results showed that T cells from these patients are not dysfunctional per se.
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Figure 3. (A): Cell index of A549-OKT3 cells before and after the addition of T lymphocytes from the
cohorts indicated below. (B): Cell index before and after the addition of T lymphocytes from a healthy
donor and plasma from the cohorts indicated below. (C): Cell index before and after the addition of
plasma from the cohorts indicated below. (D): Upper left, heat-map comparing the complete identified
proteome from the plasma of untreated NSCLC patients with high baseline LDN levels, of untreated
squamous NSCLC patients with normal LDN levels and of untreated non-squamous NSCLC patients
with normal LDN levels. Top right, heatmap comparing the complete identified proteome from the
plasma of untreated NSCLC patients with high baseline LDN levels, with that of NSCLC patients
with high LDN levels who progressed to platinum-based chemotherapy. Lower left, functional inter-
actomes with significantly upregulated proteins in untreated NSCLC patients with high baseline LDN
levels compared to untreated NSCLC patients with normal baseline LDN levels. Lower right, func-
tional interactomes with significantly upregulated proteins in untreated NSCLC patients with high
baseline LDN levels compared to NSCLC patients with normal baseline LDN levels who progressed
on platinum-based chemotherapy. **; ***, indicate very significant (p < 0.01) and highly significant
(p < 0.001) statistical differences respectively. Ns indicate non-significant statistical differences.

It had been previously demonstrated that soluble factors might mediate immune
suppression caused by LDNs [31]. To find out if this was the case, co-cultures of A549-
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SC3 cells with T cells isolated from healthy donors were carried out in the presence or
absence of plasma from healthy donors, from patients with NSCLC and normal LDNs
proportions, and from patients with NSCLC and elevated LDNs. Interestingly, only plasma
from patients with elevated LDNs levels abrogated T cell cytotoxicity over A549-SC3 cells
(Figure 3B). Furthermore, in the absence of T cells, the plasma of these patients promoted
cancer cell growth (Figure 3C).

Finally, to identify potential immunosuppressive candidates in plasma from patients
with NSCLC and elevated LDNs, we performed quantitative proteomics in plasma. To this
end, plasma from healthy donors, from untreated NSCLC patients with normal LDN pro-
portions, from untreated patients with NSCLC and elevated LDNs, and from patients with
NSCLC and elevated LDNs treated with ICI monotherapy after progression to platinum-
based chemotherapy were used.

Interestingly, untreated patients with NSCLC and elevated LDNs exhibited a distinct
proteome. We found an enrichment in proteins related with neutrophil polarization and
regulation of inflammation, suggesting a potential role for LDNs in therapeutic resistance.
Among these, hepatocyte-growth factor (HGF) activator (HGFAC), a serin-protease that
activates HGF, was significantly elevated (Figure 3D). HGF is an activator of the MET
pathway, which has been associated with peripheral expansion of neutrophils [32], as
well as with immunosuppressive activity of these cells and lack of tumor T lymphocyte
infiltration [31]. We quantified plasmatic HGF by ELISA and found a trend towards higher
levels in patients with NSCLC compared with controls (median 550.2 and 346.3 pg/mL,
p = 0.08). However, no differences were observed between patients with or without elevated
LDNs (mean 915.4 and 799.4 pg/mL, p = 0.7) (Figure S3).

4. Discussion

The precise mechanisms underlying the anticancer immune response unleashed by
immunotherapy are still not well characterized. Even though several resistance mechanisms
have been described, their impact on the efficacy of the treatment in the different cancer
subtypes is yet to be defined. Several papers exploring predictive biomarkers of response
to ICI in NSCLC have been published up to date. However, the actual role that these
biomarkers might play in the immune response has not been sufficiently detailed, probably
due to the recruitment of heterogeneous cohorts of patients receiving different treatments
in dissimilar clinical settings.

In agreement with other studies [33–35], we found a strong association between high
baseline levels of circulating LDNs and resistance to ICI in untreated patients. LDN levels
are higher in patients with advanced cancer compared with early-stage cancer patients or
healthy controls [33,34]. Interestingly, LDNs were not associated with resistance to CT+IT,
which indicates not only that circulating LDNs are a predictive biomarker of resistance
to single-agent ICI as frontline therapy, but also suggests that chemotherapy combined
with immunotherapy might deplete this cell population and allow an antitumor response.
Neutrophil depletion, as well as IL-6 blockade, were associated with enhanced anti-PD1
immunotherapy efficacy in 2 lung cancer murine models [36,37]. Accordingly, we found
that all patients with elevated LDNs who responded to CT+IT showed a brisk decline of
LDNs after the first cycle, and this population was almost absent at the first radiological
follow-up.

High baseline levels of neutrophils in routine blood tests, often represented as NLR
or dNLR, has been stablished as an adverse biomarker, both prognostic and predictive of
response to ICI [24]. We observed a low strength association between neutrophils in blood tests
and LDN measured by flow cytometry, suggesting that some patients present a generalized
expansion of myeloid subsets while some tumors can induce a specific expansion of LDNs.
A recent paper reported higher rates of fast-PD/early death in patients with NSCLC and
high dNLR before starting ICI monotherapy [38]. We found a numerically higher proportion
of fast-PD/early death in the ICI monotherapy cohort than in the CT+IT cohort, and an
association between fast-PD/early death and high LDNs in the ICI monotherapy cohort but
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not in the CT+IT cohort. This suggests that CT+IT treatment could prevent fast-PD/early
death in patients with NSCLC and high baseline LDNs receiving ICI monotherapy.

A translational study found that high blood neutrophil counts in melanoma patients
refractory to immunotherapy were associated with high serum HGF levels. The authors
demonstrated in a murine model that the inhibition of the HGF/c-MET axis impaired the
recruitment of immunosuppressive neutrophils into tumors, thus allowing T cell tumor
infiltration and enhancing the effect of immunotherapy [31]. Using ex vivo co-cultures we
observed that plasma from patients with NSCLC and elevated LDN levels impaired the
cytotoxic activities of T cells and promoted tumor cell proliferation. We used quantitative
proteomics to compare the plasma of patients with elevated LDNs, and found in this subset
of patients a specific upregulation of proteins associated with the immunosuppressive
role of LDNs, the HGF/c-MET pathway being a potential route involved. Proteomics
studies from tissue samples would have probably provided relevant additional data, but
unfortunately in most of the cases these samples were not available as they were used for
routine diagnostic test required for clinical practice. We did not find higher HGF levels
in plasma from patients with high LDNs, which might reflect that the activation of the
HGF/c-MET pathway depends on the overexpression of HGFAC rather than on increased
production of HGF.

Our results show a specific association between LDNs and resistance to ICI monother-
apy as frontline treatment in NSCLC. Patients with high baseline LDN levels, regardless
of high PD-L1 tumor expression, might benefit from CT+IT. Even though LDNs appear
to have a major role in the resistance to ICI monotherapy in NSCLC, other factors such as
tumor gene alterations [39,40], additional infiltrating [41] or circulating immune cells [42],
tumor microenvironment elements [43], as well as host related factors including intestinal
microbiota [44], could be influencing the results. The spontaneous plasticity of LDNs might
as well be a confounding factor, as the levels of these cells could significantly change over
time and impact the efficacy of ICI [13]. Moreover, some of the previously mentioned fac-
tors also have a role in neutrophil differentiation and plasticity, and might indirectly affect
the outcomes through mechanisms yet unexplored [45–47]. Due to the exploratory nature
of the study, these findings will be validated in an independent cohort that is currently
under recruitment. The potential benefit of ICI combining with HGF/c-MET pathway
inhibitors could be explored in further studies.

5. Conclusions

Baseline LDNs identify a subset of patients with NSCLC intrinsically refractory to ICI
monotherapy as frontline treatment. The combination of chemotherapy with ICI causes a
depletion of LDNs, thus eliciting the antitumor immune response, and preventing fast-PD/early
death. LDNs mediate resistance to ICI through humoral mechanisms, mainly via the HGF/c-
MET pathway, suggesting a potential synergy between ICI and c-MET targeting drugs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14163846/s1, Figure S1: Gating strategy for the identification
of LDN; Figure S2: A: LDN levels stratified by patient’s age. B: LDN levels stratified by the number of
organs affected. C: LDN levels stratified by the presence of liver metastasis; Figure S3: A: Plasmatic HGF
concentration in healthy donors compared with patients with NSCLC. B: Plasmatic HGF concentration
in patients with NSCLC and normal LDNs compared with high LDNs; File S1: Proteomic Analysis.
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