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Abstract

Sensory systems have evolved to respond to input stimuli of certain statistical properties, and to reliably transmit this
information through biochemical pathways. Hence, for an experimentally well-characterized sensory system, one ought to
be able to extract valuable information about the statistics of the stimuli. Based on dose-response curves from in vivo
fluorescence resonance energy transfer (FRET) experiments of the bacterial chemotaxis sensory system, we predict the
chemical gradients chemotactic Escherichia coli cells typically encounter in their natural environment. To predict average
gradients cells experience, we revaluate the phenomenological Weber’s law and its generalizations to the Weber-Fechner
law and fold-change detection. To obtain full distributions of gradients we use information theory and simulations,
considering limitations of information transmission from both cell-external and internal noise. We identify broad
distributions of exponential gradients, which lead to log-normal stimuli and maximal drift velocity. Our results thus provide
a first step towards deciphering the chemical nature of complex, experimentally inaccessible cellular microenvironments,
such as the human intestine.
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Introduction

Bacteria live in complex chemical microenvironments with the

spatio-temporal chemical concentration profiles shaped by nutri-

ent supply, as well as nutrient depletion by surrounding bacteria of

the same or other species (Fig. 1). From studies of the composition

of commensal bacteria in our intestines, it is emerging that these

bacterial communities have important roles for breaking down

undigested food, and for increasing resistance against colonization

by pathogens [1]. Although of physiological importance, we

currently do not have a good understanding of what chemical

gradients microorganisms in the gut typically encounter. One way

forward is to exploit our accumulated knowledge about their

sensory systems, evolved to detect typical stimuli relevant to the

organism, e.g. the concentration of a particular nutrient.

Therefore, knowing the design and functioning of sensory systems

we ought to be able to predict typical stimuli such as concentration

gradients.

The best-characterized bacterium is Escherichia coli, inhabiting

the gastrointestinal tract of humans and animals. This bacterium

grows in the mucus layer secreted by the intestinal epithelium

[2,3]. The chemotaxis sensory system enables these bacteria to

detect and migrate in chemical gradients of nutrients and toxins.

Unlike many sensory systems, it is relatively simple with only a few

components and well understood at the molecular level [4–8].

This and other sensory systems share common design principles

including Weber’s law, the Weber-Fechner law and fold-change

detection (FCD) [9–15] (see Text S1 and Fig. S1A for an

introduction). Weber’s law predicts that the minimum change in

stimulus perceived against a background stimulus increases

proportionally to the background stimulus, thus implementing

efficient contrast coding [11,16,17]. The integrated version of

Weber’s law is the Weber-Fechner law, stressing the internal

representation of stimuli [12]. FCD is a generalization of Weber’s

law to large stimuli and dynamics [18] that postulates the

invariance of responses to time-dependent stimuli when scaled

up or down by a constant factor [15,19]. While these laws relate to

average gradients [19,20], they do not quantify the complexity of

the chemical environment in terms of distributions of concentra-

tions and gradients, or provide information on their functional

importance in terms of cell-swimming behavior.

To fully characterize the chemical environment of chemotactic

bacteria in terms of distributions, we expect a matching between

the statistical properties of typical stimuli and the corresponding

cellular responses assuming certain optimization criteria. For

instance, taking into account cellular limitations of signal
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processing due to noise and limited energy resources, a reasonable

assumption is that cells translate a stimulus (input) into a cellular

response (output) in a way that maximizes the transmission of

information [21–24]. An appropriate measure for the information

contained in the output about the input is Shannon’s mutual

information (see Text S1 and Fig. S1B for an introduction to

information theory) [25], which effectively describes the correla-

tions between the inputs and outputs in bits, with a fundamental

link to thermodynamics [26]. It is furthermore unclear how the

above mentioned phenomenological laws follow from first

principles, such as information theory.

Here, we demonstrate the ability to predict distributions of

typical gradients of chemoattractant aspartate E. coli likely

encounters in its physiological microenvironment. For this purpose

we use quantitative dose-response curves from in vivo fluorescence

resonance energy transfer (FRET) measurements of the chemotactic

sensory pathway, information theory, as well as measurements

and simulations of swimming bacteria. Using our multidisciplin-

ary approach, we show that maximizing mutual information

implies maximizing the alignment of cell trajectories with the

gradient (chemotactic index), and hence the drift velocity of cells

swimming up the gradient. We thus go significantly beyond

Weber’s law, Weber-Fechner law and fold-change detection,

which only predict average chemical gradients. Our approach is a

first step towards the prediction of typical chemical environments

of bacteria, shaped by cellular communities and dynamic

turnover of nutrients. These environments are difficult to

determine experimentally, but are biomedically highly important

for gut metabolism, tissue homeostasis, and disease development

in the gastrointestinal tract [27,28].

Results

Prior knowledge of receptor signaling
E. coli chemotaxis is well known for its high sensitivity to detect

minute changes in chemical concentration (attractant and

repellents) due to cooperative receptor complexes [29]. Further-

more, cells adapt precisely to persistent chemical stimulation due

to covalent receptor modification (methylation and demethylation)

[30]. As a result, cells can chemotax in a wide range of chemical

concentrations. The final pathway output are the flagellated rotary

motors, which lead to runs (swimming) or tumbling (random

reorientation) [31], and hence biased random walk in the gradient.

The Monod-Wyman-Changeux (MWC) model was developed

to describe the chemoreceptor signaling activity [32–36]. The

average signaling activity of a receptor complex composed of N
receptors, which can switch between an on and an off state, is

given by

A~
1

1zeF (c,m)
, ð1Þ

where the free-energy difference F(c, m) between the on and off
state is

F (c,m)~N E(m)znaln
1zc=Koff

a

1zc=Kon
a

� �
znsln

1zc=Koff
s

1zc=Kon
s

� �� �
ð2Þ

with E(m)^1{ 1
2

m [32] (see Materials and Methods for param-

eters value). The free-energy difference is a function of the ligand

concentration c and the average modification level m of a receptor

in the complex. Here, we consider two receptor types mixed in a

complex, Tar (indicated by index a) with fraction na of receptors in

the complex, and Tsr (indicated by index s) with fraction ns of

receptors. Receptors are sensitive to attractant with dissociation

constants Kon
a=s and Koff

a=s in the on and off state, respectively. Wild-

type cells have a receptor ratio of na : ns~1 : 1:4 [35], whereas

Tar-only cells have na~1 and ns~0. This model quantitatively

describes the signaling activity of non-adapting cells as measured

by FRET [35].

In adapting cells, we additionally need to describe the process of

receptor modification dynamically. In this model, we describe the

dynamics by the following ordinary differential equation [37]

dm

dt
~gR(1{A){gBA3, ð3Þ

with gR and gB the methylation and demethylation rate constants

from enzymes CheR and phosphorylated CheB, respectively.

According to this model, receptors are methylated when the

complex is inactive and demethylated when the complex is active,

leading to precise adaptation [30,36] (see Materials and Methods
for parameter values and Fig. S2). The model in Eq. 3 is able to

describe a wide range of time-course data from FRET but other

dependencies of the rates on activity A may also work [38].

Using multiple measurements of the response to the same

stimulus from FRET [39], we characterize the input-output

relationship of receptor signaling, including noise from the

experiments and the sensory system, respectively, for an

information-theoretic approach. Specifically, we use the fast

response of chemoreceptors and intracellular signaling to the

chemoattractant a-methyl-DL-aspartate (MeAsp), a non-metab-

olizable analogue of aspartate, to characterize the initial steps in

the chemotaxis sensory system. Two different data sets were used

in this paper: Firstly, dose-response curves for adapting wild-type

cells (WT 1) expressing both Tar and Tsr receptors, shown in

Fig. 2A and B [37]. This data is ideal to investigate Weber’s law,

as sensory adaptation adjusts the sensory system to the current

background attractant concentration, and step changes in

concentration probe the instantaneous intracellular signaling

response. Secondly, we use dose-response curves shown in

Fig. 3A [32] of mutants expressing only the Tar chemoreceptor

which are either adapting (WT 2) or genetically engineered to

Author Summary

Outside the laboratory, bacteria live in complex microen-
vironments characterized by competition for space and
available nutrients. Although often inaccessible by exper-
iments, understanding the spatio-temporal dynamics of
bacterial microenvironments is biomedically important.
For instance, the chemical environment that symbiotic
Escherichia coli encounter in the human gut relates to
health of the gastrointestinal tract, gut metabolism,
immune response, and tissue homeostasis. Other complex
microenvironments include soil and biofilms. Assuming
that bacterial sensory systems have evolved to optimally
sense typical gradients, we treat signaling data, the
signaling pathway with its architecture and reaction rates,
and computer simulations of swimming bacteria in
different gradients as ‘‘prior knowledge’’ to ‘‘reverse
engineer’’ E. coli’s habitat. Our identified gradients are
exponentially shaped with wide-ranging rate values. These
microenvironments most likely stem from local fluctuating
nutrient sources and degradation by competing species, in
which bacteria have evolved to swim with optimal
performance.

Predicting Chemical Environments of Bacteria
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have the amino acids glutamate (E) or glutamine (Q) at the four

receptor modification sites for methylation and demethylation.

Specifically, E is an unmethylated modification site, while Q

resembles a methylated modification site, allowing us to mimic

the various methylated states receptors can assume. Hence, these

engineered bacterial strains are more tractable experimentally,

enabling us to study the receptor response in defined adaptation

states.

Fold-change detection and Weber’s law
To obtain information about the preferred average gradients of

E. coli cells, we first critically reevaluate fold-change detection

(FCD) and Weber’s law in E. coli chemotaxis using our data. FCD

is characterized by the invariance of the response to scaling up or

down the ligand concentration. This means that when the

background (c0) and difference (Dc) concentrations are scaled by

the same factor, i.e. c0?cc0 and Dc?cDc, the response amplitude

remains the same. Expressing the change in free-energy difference

upon stimulation of initially adapted receptors as

DF~N naln

1z
Dc

Koff
a zc0

1z
Dc

Kon
a zc0

0
BB@

1
CCAznsln

1z
Dc

Koff
s zc0

1z
Dc

Kon
s zc0

0
BB@

1
CCA

2
664

3
775, ð4Þ

the ratios in the logarithm can be re-written

Dc

Koff,on
a,s zc0

~
Dc

c0

1

1zKoff,on
a,s =c0

, ð5Þ

which is only a function of the fraction Dc/c0 in two concentration

regimes: (i) Koff
a %c0%Kon

a and (ii) for Koff
s %c0%Kon

s . Hence, the

change in free-energy difference DF, as well as the change in receptor-

complex activity DA, are only a function of the fractional concentra-

tion change for background concentrations between the dissociation

constants of each receptor type, i.e. when receptor are most responsive.

The change in free-energy difference in these regimes is

Figure 1. The Escherichia coli chemosensory system is adapted to its chemical environment by evolution. Influences such as motile
behavior, chemical sources (e.g. patchy food gradients in the human intestine), and the multitude of other organisms shape the typical
concentrations sampled by a bacterium, leading to typical input distributions of chemical concentrations. Through signal transduction the sensory
system produces (intracellular) output distributions. Evolution is expected to have selected the optimal shape of the input-output (dose-response)
curve to allow for an appropriate response to typical stimuli.
doi:10.1371/journal.pcbi.1003870.g001
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Figure 2. Weber’s law and fold-change detection of adapting wild-type (WT 1) cells. (A) Example time course of a FRET measurement in
response to added (Q) and subsequently removed (q) step changes of MeAsp (background concentration 0.1 mM MeAsp). The adapted activity A*

and the adaptation half-time ta , the time to reach half of the pre-stimulus activity are indicated. (B) Dose-response curves for cells adapted to
ambient concentrations of 0, 0.1, 0.5 and 2 mM MeAsp and subjected to increasing concentration step changes Dc of MeAsp (curves from left to
right). Filled and open circles correspond to response to addition and removal of attractant, respectively [39]. Solid lines represent the MWC model of
mixed Tar/Tsr-receptor complexes [37]. FRET and MWC model activities were normalized by adapted pre-stimulus values at each ambient
concentration. The adapted activity A* (thin black line) and example threshold activities A*6DA (dashed- dotted lines) for removal (upper curve) and
addition (lower curve) of concentration step changes are also indicated. The threshold stimulus Dct corresponds to the concentration change Dc
where the activity reaches the threshold activity. (C) Dose-response curves from panel B plotted as function of fractional changes in concentrations
Dc/c0 for background concentrations of 0.1, 0.5 and 2 mM MeAsp. (C, Inset) Dose-response curves from panel B plotted as function of changes in
perception DF for background concentrations 0, 0.1, 0.5 and 2 mM MeAsp. Note 0 mM background curve can be plotted as a function of DR but not
as a function of Dc/c0. (D) Adaptation half-times for various concentration step changes as function of the fractional concentration change for 0.1, 0.3
and 5 mM MeAsp ambient concentration. (D Inset) The same adaptation times as a function of change in perception. (E) Threshold stimulus Dct for
addition and removal of MeAsp to achieve the response threshold DA = 0.08 A*, plotted as function of background concentration c0 (data, symbols).
MWC model (solid and dashed lines) and a linear fit of the experimental data points (dotted line) are shown as well. (E, Inset) Experimental data points
(symbols) and linear fits (dotted lines) are plotted on a linear scale for two different response thresholds. Threshold 1: DA = 0.08 A* (circles), threshold
2: DA = 0.16 A* (squares). Filled and open symbols represent addition and removal of MeAsp, respectively. Slopes of linear fits are 0.054 (threshold 1)
and 0.115 (threshold 2). (F) Different spatial concentration profiles with equal concentrations at distances x = 0 and x = 3 mm, spanned by grey box.
doi:10.1371/journal.pcbi.1003870.g002
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Nnsln 1z
Dc
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s (regime II)
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and DF<0 otherwise. Therefore, there are two concentration regimes

corresponding to the responsive ranges of the two receptor types, Tar

and Tsr, for which fold-change detection is expected. Indeed, these

two regimes of FCD are consistent with recent experiments for small

periodic stimuli [19]. Based on our ligand dissociation constants from

the Materials and Methods section, our regime I corresponds to their

first FCD regime, the transition from our regime I to regime II

coincides with their second FCD regime. Finally, our regime II

corresponds to their osmotic stress regime. Our interpretation is

supported by the low response amplitude of their second FCD regime

(see also Fig. 3B in [36]).

To investigate FCD even for large stimuli, we use FRET time

courses and dose-response curves, as well as the dynamic MWC

model for adapting wild-type cells (WT 1). Fig. 2A and B define

the adapted activity, adaptation time and change in activity DA.

Figure 3. Predicted distributions of chemical inputs and intracellular outputs. (A) Dose-response curves for adapting (WT 2) cells and non-
adapting mutants in specific receptor-modification states as taken from [32]. Cells express the Tar receptor using an inducible plasmid with all
receptors removed from chromosome. Data points for various measurements of the FRET activity at different concentrations of MeAsp (filled
symbols), as well as their mean values are shown (open symbols). Strains: cells adapted to zero 0 mM MeAsp(black circles) and 0.1 mM MeAsp (black
triangles) background concentration, QEEE (red), QEQE (green), QEQQ (blue) and QQQQ (orange) mutant. Corresponding solid lines are the fits of the
MWC model [32]. Receptor complex and FRET activities were normalized to maximal activity. (B) Predicted input and output distributions. (Left)
Standard deviation (SD) of activity measured by FRET in panel A (open and filled symbols for including and excluding receptor expression noise,
respectively). Fits to the standard deviations are shown as well (dashed and solid lines, respectively). (Middle) Predicted distributions of attractant
concentrations (input). Note input distributions for low activity curves (0 mM MeAps and QEEE) look noticeably different from high activity curves
(0.1 mM MeAsp, QEQE, QEQQ, and QQQQ). (Right) Predicted distributions of signaling activities (output). (C) Log-normal scaling of the predicted
input concentrations. All curves are normalized with area of one. Symbols are the predicted input distributions panel B (QEQE, green; WT 2 (0.1 mM),
black; QEQQ, blue; QQQQ, orange) and colored lines are log-normal fits to the distributions. (Inset) Log-normal fits from the main panel scaled to the
peak position of the input distribution from cells adapted to 0.1 mM MeAps. See Tables S1 and S2 for fitting parameters with assessment of
confidence. The calculated mutual information between inputs and outputs is ,10 bits for different modifications from adapting and mutant cells
(WT 0 mM, 23.3; WT 0.1 mM, 7.7; QEEE, 6.6; QEQE, 6.8; QEQQ, 4.5; QQQQ, 18.9 in bits).
doi:10.1371/journal.pcbi.1003870.g003
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Specifically, adaptation time is defined here as the duration from

the onset of the concentration change to the time at which the

response is restored to half the pre-stimulus level. Fig. 2C shows

that FCD approximately holds for small response amplitudes DA
since all the dose-response curves approximately collapse onto a

single curve when plotted as a function of the fractional

concentration change. However, FCD requires that also adapta-

tion time only depends on the fractional change in concentration

to yield an invariant temporal response. From our model, we

expect FCD to extend to adaptation time as the adaptation

dynamics in Eq. 3 only depend on the receptor complex activity.

Fig. 2D shows that similar to the response amplitudes, small

fractional changes yield similar adaptation times (cf. [19]) with

significant deviations at large fractional changes. These deviations

might be due to the fact that large concentration changes Dc
exceed regime I. The breakdown of FCD with respect to

adaptation time may additionally reflect the previous observation

in single cells that the precision of adaptation is robust, but not the

adaptation time [40].

Weber’s law is a special case of FCD for small fractional

changes. Using the FRET dose-response curves and the dynamic

MWC model for adapting wild-type cells (WT 1) we extract the

threshold stimulus for different background concentrations

(Fig. 2B): we define the threshold stimulus Dct to be the

concentration increment, which produces the noticeable activity

response DA relative to the adapted level A*. Experimental dose-

response curves and our modeling indeed confirm the validity of

Weber’s law for the chemotactic sensory system (Fig. 2E). Note the

precise value of DA is not essential in obtaining Weber’s law

(Fig. 2E, inset) but can also be estimated from theory (see Text S1).

To obtain an analytical formula for Weber’s law for given DA, we

Taylor-expand Eq. 1 for the receptor-complex activity up to linear

order about the steady-state activity A*, leading to DA,Dct/c0 (see

Text S1). This explicitly shows that Weber’s law Dct,c0 is valid in

both FCD regimes.

Weber-Fechner law predicts chemotactic perception
The Weber-Fechner law predicts an internal representation of

the ligand concentration, perception R, to follow R,lnc [12]. This

law results from the postulate that the threshold concentration for

a particular background concentration corresponds to an incre-

ment DR in the internal representation of the concentration in the

sensory system. This increment is a function of the fractional

change in concentration Dc/c. Hence, integrating DR,Dc/c
yields R,lnc.

To derive the Weber-Fechner law we cannot integrate the

activity response DA (Eq. 8 in Text S1) to obtain the perception

with its logarithmic dependence (since factor LA=LF depends

implicitly on the attractant concentration). However, DF = k?Dc/c
(Eq. 4 for small Dc/c0) can be integrated to result in the

logarithmic perception R given by the receptor complex free-

energy difference

F&N: E(m)znaln
c

Koff
r

� �� �
, ð7Þ

valid for concentrations Koff
r %c%Kon

r , with r = a, s (cf. Eq. 2). In

the insets of Fig. 2C and D, we show the dose-response curves and

adaptation times as function of a change in perception DR.

Clearly, the resulting data collapse holds well. This indicates that

perception is a quantity relevant to the cell, thus favoring Weber-

Fechner law over fold-change detection. Note the free-energy

difference, Eq. 7, was previously identified as the cause of

logarithmic sensing [17]. As shown in Fig. S3A perception

depends on the receptor-modification level m. At constant

concentration, adaptation produces a perception equal to F*,

corresponding to adapted activity A*. A sudden concentration

change moves the perception along the logarithmic curve for a

specific modification level with the perception deviating from

adapted value F*. Subsequent adaptation shifts the perception

according to the m-dependent term in Eq. 7 so that R returns to F*

for the new concentration.

Predicting typical gradients from Weber-Fechner law
To identify the gradients bacteria likely experience in their

natural environment, we compare how moving bacteria perceive

different gradients. We assume that spatial gradients which can be

perceived over a wide range of concentrations, i.e. in which the

perception neither diminishes due to adaptation nor saturates,

may be the typical gradients the sensory system has evolved to

detect. To gain intuition we consider a number of spatial gradients

which arise from diffusion processes. Free diffusion of a fixed

number of ligand molecules deposited at a point produces a

Gaussian gradient [20,41]. Diffusion from a point source expelling

molecules at a constant rate results in a hyperbolic gradient [41].

Diffusion between points with constant rates of production and

absorption produces a linear gradient [20,42]. Finally, diffusion

from a constant source and homogeneous degradation in the

medium results in an exponential gradient [43]. Fig. 2F shows

examples of these concentration gradients, where we have kept the

value of the concentration the same at two points in space to make

the gradients comparable.

We consider simple unidirectional one-dimensional swimming

of bacteria with constant velocity vs = 20 mm s21. This way, we

can translate the spatial gradient into a temporal gradient, which is

easier to analyze. To make progress, we approximate the free-

energy difference by its logarithmic form Eq. 7, which is valid for

the range of concentrations where Weber’s law applies, e.g.

Koff
a %c%Kon

a . We find that an exponential gradient is perceived

as constant as previously found by experiment [17] and computer

simulation [20] (Fig. S3B). In Supporting Text S1 we further

demonstrate this for cells in exponential ramps in line with data

[44] (Fig. S3C,D). In contrast, the perception of the other

gradients either attenuates by sensory adaptation (Gaussian and

linear gradients), or increases, eventually saturating the response

(hyperbolic gradient) along the swimming path (Fig. S3B). This

may indicate that chemotactic E. coli typically encounters

exponential gradients in its natural habitat, since its pathway has

evolved to maintain perception in these. Although the Weber-

Fechner law makes no predictions about the distribution of

gradients, i.e. their statistics of occurrence, its focus on perception

views changes in concentration as bearers of useful information for

the cell. In the following we quantify this view of signaling.

Maximizing information transmission with noise
Sensory systems convert inputs (here ligand concentration) into

cellular outputs (here receptor activity) using noisy signal

transduction pathways. Furthermore, inputs themselves carry

uncertainty, and this input noise is transmitted through the

pathway as well. Hence, to deal with the noise information

transmission in a cell needs to be described in terms of probability

distributions. Particularly useful is the mutual information,

expressed as a function of the probability distributions of inputs

and outputs, pc(c) and pA(A), respectively, the joint probability

distribution p(c, A), and the conditional probability distribution for

output A given input c, p(A|c) (see Text S1 for details).

Predicting Chemical Environments of Bacteria
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Here, we assume that for a given input value c the output of a

single cell is distributed normally around a mean output value �AA(c)

with variance s2
T (c) due to transmitted input (cell-external) and

output (cell-internal) noise. We further assume that the transmitted

input (s2
c ) and output (s2

A) noise are independent. Hence, the

output variance is given as the sum s2
T~s2

Az(L�AA=Lc)2s2
c . The

mutual information can be calculated analytically assuming that

the noise in the output is small (an assumption we test later). The

mutual information is then given by (cf. [22])

I½c; A�~{

ð
dcpc(c) log2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pe½s2

A(L�AA=Lc){2zs2
c �

q
pc(c)

� �
, ð8Þ

i.e. the mutual information depends only on the distribution of

inputs, the mean input-output relationship �AA(c) and the variances

of input and output noise. If we assume that the sensory system

maximizes the mutual information between concentration inputs

and cellular outputs, the relation between inputs and outputs, i.e.
�AA(c), fulfils the following relationship (for derivation see Materials
and Methods):

L�AA

Lc
: 1z

L�AA

Lc

� �2

s2
c

s2
A

2
6664

3
7775~ZsA

:pc(c), ð9Þ

where Z is a constant given by the normalization of the input

distribution

Z~

ð
dc

1

sA

: L�AA

Lc

� �
: 1z

L�AA

Lc

� �2

s2
c

s2
A

2
6664

3
7775: ð10Þ

Note assuming maximal information transmission is consistent

with the assumption of constant perception in the Weber-Fechner

law, as only perceived gradients contain information for the cell.

In the limiting cases that the input noise is much smaller or

larger than the output noise, we can simplify this result. For small

input noise, Eq. 9 reduces to L�AA=Lc!sA
:pc(c), i.e. the input-

output relationship is the steeper the higher the output noise

[23,45]. This can be understood intuitively, as different output

levels become better separated (see Text S1). In the opposite case

of large input noise, we obtain L�AA=Lc!sA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pc(c)=s2

c
3
p

. Hence, the

larger the input noise the shallower the input-output relationship,

as different input levels become better separated. In the well-

characterized chemotaxis system, where we have experimental

dose-response curves determining the input-output relationship,

we can thus predict the typical distributions of input concentra-

tions using Eq. 9.

Predicting input and output distributions
The distributions of input concentrations and cellular outputs

can be predicted from experimental data based on the arguments

presented above. Fig. 3A shows multiple dose-response measure-

ments using FRET for fields of cells expressing only the Tar

receptor. As can be seen from the figure, there is large variability

between different measurements of the curves. A large amount of

this variability is caused by noisy receptor expression, most likely

due to plasmid copy-number variation [32]. Hence, in Fig. 3B

(first column) we removed this expression noise from the variance

using principal component analysis [32] (see Text S1, although we

later relax this assumption). The resulting standard deviation (SD)

has a characteristic shape when plotted as a function of ligand

concentration: cells adapted to zero background concentration

(WT 2) and the QEEE mutant show a monotonically decreasing

SD with increasing MeAsp concentration as receptors become

saturated by attractant. Cells adapted to a higher ambient

concentration (WT 2), as well as mutants in higher receptor-

modification states, show a peak in the SD in the linear, steep

regime of the dose-response curve.

To extract input (s2
c ) and output (s2

A) noises for single cell we

fitted the following intuitive equation for the variance of the total

activity from n<400 cells

s2
n,T~n2 a1c|{z}

s2
c

LA

Lc

� �2

zn a2A 1{A
� �

za3A
	 
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

s2
A

, ð11Þ

to the FRET variance SD2 shown in the first column of Fig. 3B,

with a1, a2 and a3 fitting parameters (listed in Table S1 with

confidence intervals and x2 quality-of-fit test), and A the average

activity of an individual cell from Eq. 1 (a constant scaling factor

between the receptor-complex and FRET activities is neglected

here for simplicity). In Eq. 11, the first, second, and third terms

represent transmitted input noise, noise from switching of receptor

complexes, and noise from the intracellular pathway, respectively.

We assume all of these noise sources are independent. Specifically,

input noise depends proportionally on concentration c [46], and is

transmitted according to the mean input-output relationship given

by the MWC model. Receptor switching depends on the

probabilities of complexes to be on and off, and hence has a

binomial activity dependence. Pathway fluctuations, e.g. due to

dephosphorylation, are assumed to be Poissonian, and the number

of phosphorylated signaling proteins is taken to be proportional to

the signaling activity A. In the first term the factor n2 arises due to

coherent addition of input fluctuations from all cells in the same

flow chamber (e.g. due to pipetting errors). In the remaining noise

terms, the factor n arises due to the incoherent addition of cell-

internal fluctuations from all cells.

Equipped with single-cell input-output relationships and noises

we can predict the input and output distributions given optimal

information transmission. Based on matching relation Eq. 9, the

predicted distributions of concentration inputs are shown in

Fig. 3B (second column). For high receptor-modification states,

the distributions can be fit by log-normal distributions as shown in

Fig. 3C (fitting parameters are listed in Supporting Table S2 with

confidence intervals). Log-normal distributions have the property

that their ratio of variance and squared mean only depend on a

single parameter. Hence, scaling log-normal distributions with

equal relative variances such that their means coincide, collapses

the entire functions on top of each other (inset of Fig. 3C). This

constitutes further evidence for Weber’s law and contrast coding.

The quality of the scaling collapse is not further improved when

removing all noise (equivalent to constant output noise), showing

that noise is indeed small (or sufficiently uniform, see Fig. S4).

Furthermore, scaling collapse and distributions of inputs do not

change markedly when using total FRET variance for fit or using

uniform output noise s2
A in Eq. 11 (see Fig. S4), demonstrating

robustness of our predictions.

The predicted output distributions (cf. Eq. 9) are shown in

Fig. 3B (third column). Using the variance excluding the receptor-

expression noise (first principal component), we obtain bimodal

Predicting Chemical Environments of Bacteria
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distributions for receptors in high modification states. This

deviation from the flat maximum-entropy distribution (cf. Fig.

S1B) is due to noise, and was observed in other biological systems

[23]. Predicted mutual information values are ,10 bits, corre-

sponding to a graded response with about 210,1000 distinguish-

able output levels. Such analogue computation is particularly

useful when small variations in stimuli need to be sensed and

processed [47].

Distributions of chemical gradients from simulations of
swimming bacteria

Equipped with the distributions of sampled input concentra-

tions, we aimed to characterize the chemical environment of

swimming bacteria through the distributions of chemical gradi-

ents. For this purpose, we set up simulations of swimming bacteria

using the RapidCell software [20] as described in Materials and
Methods. Briefly, cells are able to sense and adapt via Eqs. 1–3, as

well as to run and tumble based on cell-internal signaling. Cells are

also subject to rotational diffusion. To relate the distribution of

gradients to the functional output (swimming behaviors) of

chemotactic cells, we use the chemotactic index (CI), which

measures the alignment of cell trajectories with the gradient often

used to quantify eukaryotic chemotaxis [48], and the drift velocity

(nd ) up the gradient [49]. In fact, CI and drift velocity are closely

related to each other (see Text S1). To achieve the above we follow

a multistep protocol.

First, we validated our simulations by comparing trajectories of

swimming bacteria with experimental tracking data in two

dimensions in linear gradients [50]. Specifically, we successfully

compared the CI (Fig. S5A–D), and interval-length distributions of

motor rotation (see Fig. S5E,F and [44]). In addition to the tests

conducted in [20], this provides confidence that our simulations

reproduce realistic swimming behavior.

Second, we set up simulations of adapting Tar-only bacteria

swimming in different linear gradients along the x direction. That

way we obtained distributions of sampled concentrations at a

particular receptor-modification level, denoted by m*. The idea is

that in a very shallow gradient cells sample a symmetric range of

concentrations around c* = c(m*, A*), with A* the adapted activity.

However, when the gradient becomes steeper cells start moving up

the gradient. As a result, cells sample a wider range of

concentrations up the gradient than down the gradient, producing

an asymmetric distribution of sampled concentrations (Fig. 4A).

Since a dose-response curve has evolved to sense gradients best

that cells most likely encounter, we compared the predicted

distributions from information theory (cf. Fig. 3) to the sampled

concentrations from simulations in order to select typical

gradients.

As shown in Fig. 4B for one exemplar linear gradient, we

extracted 100 s-long trajectories from simulations of about 1000

cells. From these trajectories we then calculated the CI as a

function of concentration, and repeated this for different linear

gradients. The resulting CI is a complicated, non-monotonic

function of concentration and gradient, shaped by receptor

sensitivity, adaptation, and rotational diffusion (see Fig. 4C, Text

S1 and Fig. S6A,B for details). In particular, for a given c* there

are relative gradients, defined as gradient over c*, which lead to

large CI values (red curve in Fig. 4C) while for both smaller (blue

curve) and higher (green curve) relative gradients the CI values are

reduced. In contrast, for smaller concentrations (c,c*) a smaller

gradient maximizes CI (blue curve), while for larger concentra-

tions (c.c*) a larger gradient maximizes CI (green curve). This

indicates that chemotaxis is optimized with respect to the gradient

for a given m* (and hence c*).

Third, after obtaining the sampled concentrations from

trajectories with m = m* (indicated by red lines in Fig. 4B), we

used the overlap between these and the predicted input

Figure 4. Simulations of swimming bacteria in chemical
gradients. (A) Strategy to extract sampled distribution of inputs from
simulations. Adapted activity A* and modification level m* determine
concentration c* (and position x*). Cells swimming in typical gradients
should sample the same concentrations as predicted by information
theory (light blue curve). (B) Simulation in a rectangular box with
gradient in x as described in Materials and Methods. Trajectories of Tar-
only cells for relative gradient 0.1 mm21, using m* = 6 (QEQQ) as an
example. Green dots, blue lines and red lines correspond to initial
positions, full trajectories, and partial trajectories with modification level
of bacteria equal to m*, respectively. (C) Chemotactic index (CI)
extracted from all simulated trajectories in the box for different relative
gradients as function of concentration in the box. Gradients relative to
c* = 223.9 mM: 0.1 mm21 (blue), 0.25 mm21 (red) and 1.0 mm21 (green).
Non-monotonic trend of CI as function of c suggests an optimal range
of gradients which maximizes CI. For example, at c* the maximum CI
corresponds to linear relative gradient 0.25 mm21. Symbols and error
bars indicate averages and standard errors of the mean from several
trajectories at this concentration and gradient. Lines are interpolations
by smooth functions.
doi:10.1371/journal.pcbi.1003870.g004
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distributions to select the gradients sensed best. As shown in

Fig. 5A for m* = 4 (see Figs. S7–S9 for more details and plots), only

intermediate relative gradients give a sampled distribution that

matches the prediction with significant overlap. In extremely

shallow relative gradients the histograms of concentrations

sampled at m = m* are symmetric due to adaptation, leading to

low overlap and reduced CI values (Fig. 5A, left panel). On the

other hand, extremely steep gradients lead to very asymmetric

distributions. Although these cells locally move up the gradient

more than predicted, their receptor signals are saturated and their

long runs lead to low CI (Fig. 5A, right panel). In other words, to

efficiently move up the gradient (maximum of CI) a cell has to

balance between long runs up the gradient and sufficient tumbles

to correct for misalignment.

In line with our expectation, Fig. 5B shows that maximal

overlap between the simulated and predicted distributions of

concentrations corresponds to maximal CI, and hence maximal

drift up the gradient. Unlike CI, which encodes information on

trajectories only, drift is about the speed in a gradient and thus can

be considered the final output of the chemotactic cells. Drift is

Figure 5. Reconstruction of distributions of sampled gradients. (A) Using m* = 4 (QEQE) as an example, predicted distribution of inputs from
information theory (black lines) and distributions of sampled concentrations (blue lines) obtained for cells swimming in increasing relative linear
gradients, 0.1 mm21 (left), 0.5 mm21 (central), and 1.5 mm21 (right) (gradients relative to c* = 0.065 mM). To imitate cell-external noise, the base
concentration of the gradients was fluctuating every 0.1s with standard deviation 0.001 mM. To imitate cell-internal noise, modification level was
selected from normal distribution with relative standard deviation s~0:04 in line with previous results [70]. (B) Overlap between distribution of
sampled concentrations and predicted distribution (blue shades), chemotactic index (CI, red shades) and drift velocity (green shades) with
modification level m = m*. Symbols indicate modification level: squares, circles and triangles stand for m* = 4 (QEQE, c�^0:07 mM), m* = 4.6 (WT 2,
c�^0:09 mM), and m* = 6 (QEQQ, c�^0:22 mM), respectively. m* = 8 (QQQQ, c* = 0.63 mM) is not included as Tar-only cells do not adapt at high
values of c*. Horizontal arrow illustrates range of relative gradients over which the overlap is within 20% of maximal value on average between the
three modification levels. (C) Sampled distributions from different relative gradients (0.1–1.75 mm21) indeed fit prediction (overlap 90%). (D) Range
of exponential gradients predicted to be sensed best (blue area), according to the range indicated by horizontal arrow in (B).
doi:10.1371/journal.pcbi.1003870.g005
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most likely the quantity under evolutionary pressure [51]. Also

note in Fig. 5B that CI and drift fall off to zero at very shallow

relative gradients as expected due to precise adaptation, but that

they fall off more slowly for steep relative gradients. This is

consistent with our prediction of a limiting CI value for steep

gradients (see Text S1) and the strongly asymmetric distributions

of sampled inputs in Fig. 5A (right). CI and drift become ill defined

once the relative gradient reaches the inverse run length

(,50 mm21).

To finally extract the distributions of gradients, we realize that

for exponential gradients, c(x)~Aelx, predicted from the Weber-

Fechner law the relative gradient is given by (dc=dx)c{1~l~
const, i.e. independent of x and therefore c. As a consequence, if

cells prefer exponential gradients with a particular rate value l,

then this preference should apply to all receptor-modification

levels (as long as cells are responsive for Koff
a %c%Kon

a ). Thus,

when plotted as a function of relative gradient, we expect that all

overlap, CI and drift curves collapse for different receptor-

modification levels, which they approximately do (see Fig. 5B).

The resulting distribution of exponential gradients is remarkably

broad (wide range of rate values in Fig. 5D), demonstrating the

wide dynamic range of the sensory system. Consistently, the

broadness index defined in Materials and Methods is markedly

larger than one, i.e. ranges from about 3.7 for QEQQ to 5.5 for

WT 2 (0.1 mM). Slightly broader distributions are obtained when

fitting to the total variance from FRET (Fig. S10). This case may

imitate strong gene-expression noise which sometimes even arises

when expressing from the chromosome [52,53].

Discussion

In the large intestine, hundreds of different bacterial species are

present at high cell densities [2], forming a dynamic microenvi-

ronment with complex spatio-temporal chemical gradients from

partially digested food and host secretions [54]. Previous models

accounted for Weber’s law and fold-change detection (FCD)

[17,19,20], but were unable to make predictions beyond average

gradients. Here, we first critically reevaluated FCD and Weber’s

law, also addressing the Weber-Fechner law. To predict distribu-

tions of concentration we then applied information theory to in
vivo FRET data in E. coli. By comparing with simulations of

swimming bacteria in different linear gradients, we found that the

predicted distributions of input concentrations from information

theory are consistent with bacteria experiencing a broad range of

exponential gradients. In particular, fluctuating gradients (cell-

external noise) and methylation levels (cell-internal noise) were

needed to explain the long tails of the distributions in line with

expectation [55,56]. Importantly, our results show that maximiz-

ing information transmission leads to maximizing the chemotactic

index (CI), and hence the drift velocity up the gradient (Fig. 5)

[49]. Although expected, the existence of such a link between

information transmission and drift has recently been questioned in

bacterial chemotaxis [51]. Our model is thus able to connect a

large number of phenomenological laws with information theory

at the molecular level.

In contrast to the report by Lazova et al. [19], we found that at

large concentration changes the resulting large-amplitude respons-

es and their subsequent adaptation curves do not show FCD (cf.

Fig. 2C, D). A possible reason for this discrepancy is that Lazova

et al. used small temporal variations of stimuli which varied on a

time scale close to adaptation [19]. Hence, their experiments

might have probed FCD with respect to small response amplitudes

with temporal responses mainly determined by the external

oscillatory stimulus rather than by internal signaling [30].

The Weber-Fechner law requires a quantity called ‘‘percep-

tion’’, which has not been identified previously in bacterial

chemotaxis. The free-energy difference between the on and off
states of the receptor complex fulfills this purpose; it is a

logarithmic function of the concentration in the validity range of

Weber’s law, thus leading to a compressed internal representation

of cell-external stimuli. This functional form arises from the

molecular interaction between ligand and receptor, in particular

from the competition between the gain of binding-free energy and

loss of ligand-volume entropy upon ligand-receptor binding [35].

As logarithmic response functions are implicated for ligand-

receptor interactions [20,57], as well as simple membrane

potentials (Nernst equation), our findings may apply to a wide

range of signal transduction processes in cells [10,58,59].

Information theory can predict the distributions of input

concentrations, and using simulations the distributions of gradients.

Interestingly, our predicted distribution of inputs are log-normal,

similar to the identified scale invariance of light intensities in the

visual system [11]. This observation may contain deeper insights into

the workings of sensory systems. Specifically, log-normal distribu-

tions arise from multiplicative interactions in molecular components

[60]. Indeed, our dose-response curves closely resemble Hill

equations due to receptor cooperativity [35] (note Hill equations

are the cumulative distributions of log-normal distributions). Our

deduced exponential gradients of aspartate may arise from local

nutrient sources and degradation by bacteria in the surroundings.

Although our information-theoretic/simulation results are con-

sistent with exponential gradients predicted by phenomenological

laws, our model is based on a number of assumptions. These include

small Gaussian noise and a certain functional form of the noise (Eq.

11, both assumptions were successfully tested in Fig. S4). Most

importantly, we assume maximal information transmission. How-

ever, Tar receptors are also used for pH and temperature sensing

[61], and global optimization may result in suboptimal sensing of

individual stimuli types [62]. Additionally, expression of chemotac-

tic genes is linked to nutrient supply, growth conditions, and life

cycle [63], further restricting the predictive power of our

information-theoretic approach. Furthermore, this approach only

applies to (nearly) instantaneous receptor signaling, and hence

excludes slower downstream dynamics, in particular of the motor

[64]. However, we expect that if information transmission is

optimized by the whole chemotaxis pathway, this should also be

true for every intermediate stage, as information can only be lost,

not gained. Note that our data of non-adapting cells was restricted

to Tar-only cells. While this restricted the dynamic range, Tar is the

cognate receptor for our stimuli.

To fully characterize the microenvironment of E. coli future work

may need to factor in additional types of stimuli, such as other

chemicals, temperature [65] and pH [66]. Models can first be tested

in well-defined gradients of stimuli produced in microfabricated

devices [42,50,66–68], thus establishing the stimuli cells sense best.

By measuring FRET in single cells [69], the fidelity of information

transmission can be tested more directly without any masking effects

at the population level. This may also help answering whether

information is conserved between graded receptor signaling and the

binary-like motor response. Ultimately, imaging and tracking

bacteria in complex microenvironments will enhance our under-

standing of chemotaxis under natural conditions.

Materials and Methods

FRET measurements
FRET measurements were performed as described previously

[39,65], using phosphorylation-dependent interaction between the
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response regulator CheY, fused to yellow fluorescent protein

(CheY-YFP), and its phosphatase CheZ, fused to cyan fluorescent

protein (CheZ-CFP), as a readout of the pathway activity.

Parameters of MWC model
For the MWC model for receptor complexes we use the

following parameters as derived from fits to FRET data

[35,37]: Koff
a ~0:02mM, Kon

a ~0:5mM, Koff
s ~100mM and

Kon
s ~106 mM. The size of receptor complexes is assumed to

increase as a function of ambient concentration c0 according to

N(c0)~a0za1c0, with a0 = 17.5 and a1 = 3.35/mM [37]. Fur-

thermore, we used a direct interpolation of data from [32] to

evaluate E(m) instead of using the equation E(m)^1{0:5m, see

Supporting Fig. S3 for the comparison. For the adaptation rate

constants we used gR = 0.0069 s21 and gB = 0.11 s21 [37]. For the

concentration-step profiles we assumed exponential rising and

falling functions with rate constants ladd = 0.6 s21 and

lrem = 0.5 s21 [37,39].

Maximizing information transmission with input and
output noise

We assume a Gaussian channel, i.e. the input-output relation-

ship is given by a dose-response curve for the mean �AA(c) and

normally distributed output noise with total variance

s2
T~(L�AA=Lc)2s2

czs2
A, consisting of transmitted cell-external

(input) and cell-internal (output) noise, respectively. The condi-

tional probability for the output given the input is then

p(ADc)~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
T (c)

q exp {
½A{�AA(c)�2

2s2
T (c)

( )
: ð12Þ

The mutual information is given by Eq. 8 [22], which is

maximized with respect to �AA using the Lagrange formalism.

Introducing gain G~L�AA=Lc and interpreting the integrand of Eq.

8 as the Lagrangian

L~pc(c)log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

AG{2zs2
c

q
pc(c)

� �

~pc(c)
1

2
log(s2

Azs2
cG2)zlog(pc(c)){log(G)

� �
,

ð13Þ

the following Euler-Lagrange equation is obtained

LL
L�AA

{
d

dc

LL
LG

~0: ð14Þ

The derivatives of L with respect to �AA and G, respectively,

evaluate to

LL
L�AA

~
1

2

pc(c)
Ls2

A

L�AA
s2

Azs2
cG2

ð15Þ

LL
LG

~{
pc(c)s2

A

G(s2
Azs2

cG2)
: ð16Þ

The derivative of the last term with respect to the input variable

c is

d

dc

LL
LG

~{

Lpc(c)

Lc
s2

A

G(s2
Azs2

cG2)
{pc(c)

d

dc

s2
A

G(s2
Azs2

cG2)

� �
: ð17Þ

The resulting Euler-Lagrange can be rearranged into

{

dj

dc
j

~
G

2s2
A

Ls2
A

L�AA
z

Lpc(c)

Lc
pc(c)

ð18Þ

with j~s2
A=G(s2

Azs2
cG2). Integration over the input c yields Eq.

9 for the dose-response curve G~L�AA=Lc.

Experimental tracking and simulations of swimming cells
in spatial gradients

Experimental data for bacteria in linear gradients were obtained

from Jean-Baptiste Masson [50]. To generate the dynamics of the

receptor activity and modification level, we used the information

about sampled concentrations at each position as input for the MWC

model. We initialized cells with the adapted modification level

corresponding to the initial concentration and integrated Eqs. 1–3.

To simulate swimming Tar-only cells, we used the software

package RapidCell [20]. The modification dynamics within

RapidCell were replaced by our pathway model with parameters

as described in the text. This led to an adapted activity A*<1/3.

The simulation box was set to a rectangle of 5 mm in y- and

variable dimension in x-direction, allowing bacteria with 5 flagella

each to sample concentrations from 0–0.8 mM (note that beyond

0.6 mM cells stop responding and only run [36]). Periodic

boundary conditions were applied. Cells reaching the boundary

were taken out and injected at the opposing side. The receptor-

modification level was then set to the adapted level corresponding

to the concentration at the injection site with tumbling to

reinitialize the swimming direction. For analysis we excluded a

0.2 mm border both for comparison with the data by Masson et al.

[50] and for the prediction of gradient distributions. For the

prediction of gradients, linear gradients in x-direction with

different slopes and base concentration were used for identification

of the range of well-sensed gradients and calculation of the

chemotactic index (CI). Randomly shifting the base concentration

by normal distribution with standard deviation of 0.001% allowed

simulation of input noise. To calculate histograms of sampled

concentrations, all cells with modification level equal to m* of the

corresponding strain were selected using a normal distribution

with relative standard deviation 0.04% (thus mimicking output

noise in line with [70]). These noise sources broadened the

distributions of sampled inputs to better match the predicted

distribution of inputs.

For the prediction of gradients, the overlap between the

obtained histograms p(c, m*) and the predicted input distributions

(pinput) were calculated using
Ð

min pinput; p(c,m�)
� �

dc using

software R (version 3.0.1). The calculation of CI and drift is

detailed in the Text S1. The broadness of the overlap (broadness

index) was estimated by the ratio of fold change in overlap to fold

change in relative gradient between their respective minimal and

maximal values. The latter are defined by achieving an overlap

within 20% of maximal overlap.

Predicting Chemical Environments of Bacteria

PLOS Computational Biology | www.ploscompbiol.org 11 October 2014 | Volume 10 | Issue 10 | e1003870



Supporting Information

Figure S1 Schematic of fold-change detection and
Weber’s law (A) and maximization of mutual informa-
tion with uniform noise (B). (A, top) In fold-change detection,

different step changes of equal size relative to the background

(left) produce equal responses (right). (A, bottom) Weber’s law

predicts that the smallest noticeable change in stimulus S
increases proportionally to the background stimulus S0 (left),

leading to a logarithmic coding of the perception R. (B) The

input-output relationship (middle) for a typical distribution of

input stimuli p(I) (top) maximizing information transmission in

the presence of constant output noise [21] is given by the

cumulative distribution of p(I). The corresponding output

distribution is uniform (right).

(EPS)

Figure S2 The offset energy as a function of modifi-
cation level m. Comparison between linear fit [32] (blue) and

interpolation of experimental data (red).

(PDF)

Figure S3 Perception in different chemical gradients.
(A) Perception R of the Weber-Fechner law depending on ligand

concentration c and modification level m. Adapted perception is

given by the steady-state free-energy difference F* (dashed line).

Three example curves corresponding to three different modifica-

tion levels are plotted. On each curve, the adapted perception

R = F* is indicated (solid circle) relating adapted modification level

to the respective ambient concentration (dotted lines). (B)

Perception along a straight swimming path in the respective

concentration profile for swimming velocity vs = 20 mm s21 and

free-energy difference F (m,c)~E(m)zln(c=Koff
a ) (in units of kBT).

(C–D) Receptor complex activity for exponential concentration

ramps, c(t) = c0e
6rt with ramp rate 6r. Results for up (+r, black)

and down (2r, red) ramps for initial concentration c0 = 0.1 mM

are shown. (C) Time courses of receptor complex activity for

ramps starting at t = 10 s with increasing rates r (low rates

correspond to small changes in the receptor complex activity from

the adapted state). Dots indicate the times when dA/dt = 0

(plateau) is reached for the first time. (D) Plateau activity as

function of rate r. (B Inset) Same as B, but only for small rates. The

dashed lines represent our analytical result.

(PDF)

Figure S4 Comparison of predicted distributions of
inputs from our model in the main text including all
principal components except for the first (without gene-
expression noise), from model using all principal
components (with gene-expression noise), and from
model with uniform output noise (cf. Laughlin [21]).
Lines and symbols are explained in the legends. Colors indicate

WT cells adapted to 0.1 mM MeAsp background concentration

(black), and mutants QEQE (green), QEQQ (blue) and QQQQ

(orange). (A) Predicted input distributions. Each panel refers to a

particular receptor-modification level identified either with a

mutant or a background concentration. (B) Predicted input

distributions (symbols) and log-normal fits (lines) for those

distributions which show a peak. (C) Log-normals from panel B

scaled to the peak position of the WT input distribution. Line

styles are the same as in panel B. See Tables S1 and S2 for fitting

parameters with assessment of confidence.

(EPS)

Figure S5 Calculation of the chemotactic index (CI) and
comparison between simulations and data. (A–B) Schematics

of trajectories of a swimming cell and calculation of CI with gradient

in vertical direction. (A) Without rotational diffusion run length lk
and angle hk between run direction and gradient are well defined

between two tumbling events. (B) Rotational diffusion curves runs.

To allow calculation of CI we use a linear-piecewise approximation

of the trajectory using time step Dt = 0.1 s, allowing us to define lk
and hk. (C–D) Average CI (C) and drift velocity (D) as a function of

the concentration in which wild-type E. coli bacteria swim.

Simulations (in blue and green, respectively) match tracking

experiments from [50] (in red and orange, respectively) using

identical shallow linear gradients. (E–F) Simulated clockwise (CW)

rotation (E) and counter-clockwise (CCW) rotation (B) of single-

motor interval distribution (black dots) of adapted cells match the

exponential fits of experimental data [44] (blue lines). Decay time

vtwsim~1:21s is close to vtwexp~1:22s (A), vtwsim~1:32s
is close to vtwexp~1:33s (B).

(PDF)

Figure S6 Additional results for chemotactic index (CI).
(A–B) CI as a function of concentration in different linear

gradients (in units of mm21). (A) Simulations without rotational

diffusion significantly increase CI compared to simulations with

rotational diffusion (B). Although there is no clear maximum for

each linear gradient with rotational diffusion, there is a linear

gradient that maximizes CI for each concentration in both cases.

Linear gradients relative to c* = 0.2239 mM with value 0.1 in

black, 0.25 in yellow, 0.5 in blue, 1.0 in red and 2.0 in green in

unit of mm21. (C) Comparison of CI (red scale solid lines) and drift

velocity (green scale dotted lines; relative to run velocity assumed

to be constant with urun~20mms{1). This graph shows the close

similarity of the two quantities in line with Eq. 27 in Text S1.

Symbols indicate different receptor-modification levels with m* = 4

corresponding to QEQE (squares), m* = 4.6 corresponding to WT

2 (0.1 mM) (circles), and m* = 6 corresponding to QEQQ

(triangles).

(PDF)

Figure S7 Comparison between simulated and predict-
ed distribution of inputs for m* = 4 (QEQE). (A) Distribu-

tions of input concentration from simulations (red) and informa-

tion theory predictions (blue) for different relative linear gradients.

Corresponding chemotactic index (CI) is shown for each panel.

Receptor-modification level is selected with Gaussian distribution

with standard deviation 0.04% to mimic cell-internal (output)

noise. The gradient shift up and down with Gaussian distribution

with standard deviation 0.001% to mimic cell-external (input)

noise. (B) Overlap between simulated and predicted distributions

of inputs (dark blue), CI (red), and drift velocity (green) as a

function of the relative gradient. (Inset) Fit to predicted

distribution using simulated distribution of inputs in panel A as

bases set. Overlap 89.4% between fit and prediction.

(PDF)

Figure S8 Comparison between simulated and predict-
ed distribution of inputs for m* = 4.6 (WT 2 0.1 mM). (A)

Distributions of input concentration from simulations (red) and

information theory predictions (blue) for different relative linear

gradients. Corresponding chemotactic index (CI) is shown for each

panel. Receptor-modification level is selected with Gaussian

distribution with standard deviation 0.04% to mimic cell-internal

(output) noise. The gradient shift up and down with Gaussian

distribution with standard deviation 0.001% to mimic cell-external

(input) noise. (B) Overlap between simulated and predicted

distributions of inputs (dark blue), CI (red), and drift velocity

(green) as a function of the relative gradient. (Inset) Fit to predicted
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distribution using simulated distribution of inputs in panel A as

bases set. Overlap 79.4% between fit and prediction.

(PDF)

Figure S9 Comparison between simulated and predict-
ed distribution of inputs for m* = 6 (QEQQ). (A) Distribu-

tions of input concentration from simulations (red) and informa-

tion theory predictions (blue) for different relative linear gradients.

Corresponding chemotactic index (CI) is shown for each panel.

Receptor-modification level is selected with Gaussian distribution

with standard deviation 0.04% to mimic cell-internal (output)

noise. The gradient shift up and down with Gaussian distribution

with standard deviation 0.001% to mimic cell-external (input)

noise. (B) Overlap between simulated and predicted distributions

of inputs (dark blue), CI (red), and drift velocity (green) as a

function of the relative gradient. (Inset) Fit to predicted

distribution using simulated distribution of inputs in panel A as

bases set. Overlap 91.5% between fit and prediction.

(PDF)

Figure S10 Distribution of relative gradients from
overlap between distributions of sampled concentra-
tions and predicted distributions. (A) Predicted distributions

excluding gene-expression noise (all principal components except

the first; solid lines) and distributions predicted with total noise

including gene-expression noise (all principal components; dashed

lines). Results look very similar showing robustness of our

predictions from information theory and simulations. (B) Predicted

distributions excluding gene-expression noise (all principal com-

ponents except the first; solid lines) and distributions predicted

with uniform (constant) output noise (dotted lines). Maximum

overlap in the latter case shifts to shallower gradients since

predicted input distributions are narrower and more symmetric (cf.

Fig. S4). Horizontal arrow illustrates range of relative gradients

over which the overlap is within 20% of maximal value on average

for total noise (A) and uniform noise (B), cf. Fig. 5B in the main

text.

(PDF)

Table S1 Fit parameters of the variance in FRET
activity. Parameter values for the noise components of FRET

activity (cf. Eq. 11 in the main text) excluding (top) and including

(bottom) gene-expression noise, respectively. Corresponding 95%

confidence intervals calculated using the profile-likelihood ap-

proach are given in brackets below the fitted value. We set a1 and

a2 to zero when below 10220. The goodness-of-fit is indicated by

the x2 value of each fit in comparison to the critical x2
crit value

corresponding to a significance level of 0.05 (given in brackets

below the x2 value). If x2
vx2

crit, the model is consistent with the

data and classified as a good fit (last column).

(PDF)

Table S2 Log-normal fits to predicted input distribu-
tions. Estimated parameter values for the fit of log-normal

distributions (cf. Eq. 24 in Text S1) to the predicted input

distributions shown in Fig. 3 in the main text and Fig. S4.

Corresponding 95% confidence intervals are given in brackets

below the fitted value.

(PDF)

Text S1 Model and simulation details and additional
results.

(PDF)
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