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Abstract

Motivation: Imaging mass spectrometry (IMS) is a maturating technique of molecular imaging.

Confidence in the reproducible quality of IMS data is essential for its integration into routine use.

However, the predominant method for assessing quality is visual examination, a time consuming,

unstandardized and non-scalable approach. So far, the problem of assessing the quality has only

been marginally addressed and existing measures do not account for the spatial information of

IMS data. Importantly, no approach exists for unbiased evaluation of potential quality measures.

Results: We propose a novel approach for evaluating potential measures by creating a gold-

standard set using collective expert judgements upon which we evaluated image-based measures.

To produce a gold standard, we engaged 80 IMS experts, each to rate the relative quality between

52 pairs of ion images from MALDI-TOF IMS datasets of rat brain coronal sections. Experts’

optional feedback on their expertise, the task and the survey showed that (i) they had diverse back-

grounds and sufficient expertise, (ii) the task was properly understood, and (iii) the survey was

comprehensible. A moderate inter-rater agreement was achieved with Krippendorff’s alpha of 0.5.

A gold-standard set of 634 pairs of images with accompanying ratings was constructed and

showed a high agreement of 0.85. Eight families of potential measures with a range of parameters

and statistical descriptors, giving 143 in total, were evaluated. Both signal-to-noise and spatial

chaos-based measures performed highly with a correlation of 0.7 to 0.9 with the gold standard rat-

ings. Moreover, we showed that a composite measure with the linear coefficients (trained on the

gold standard with regularized least squares optimization and lasso) showed a strong linear correl-

ation of 0.94 and an accuracy of 0.98 in predicting which image in a pair was of higher quality.

Availability and implementation: The anonymized data collected from the survey and the Matlab

source code for data processing can be found at: https://github.com/alexandrovteam/IMS_quality.

Contact: theodore.alexandrov@embl.de

1 Introduction

1.1 Motivation
1.1.1 The need for quality measures in IMS

IMS recently emerged as an analytical chemistry technique for

untargeted and label-free molecular imaging of tissue sections, agar

plates and cell cultures that can localize hundreds of molecules sim-

ultaneously with a high molecular specificity and sensitivity, and

with cellular spatial resolution (Spengler, 2015). IMS was intro-

duced for biological analysis in 1997 and rapidly commercialized so

that it now provides a capable tool for molecular imaging directly

from tissue sections with the increasing potential for routine
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application. Matrix assisted laser desorption ionization (MALDI) is

probably the most commonly encountered ionization technique used

for IMS. IMS produces a dataset which can be viewed as a collection

of mass spectra acquired at pixels of the analyzed area, or as a

hyperspectral imaging dataset with thousands to millions of chan-

nels (ion images), each representing the spatial distribution of an ion

with a particular mass to charge ratio (mz) value. The quality of the

data and in particular of ion images produced is a key concern as

this directly impacts the ability of a researcher to draw conclu-

sions from the data (Deininger et al., 2011). IMS is becoming a

mature technique with standardized protocols (Chaurand, 2012;

Schuerenberg and Deininger, 2010); but decisions on several experi-

mental settings need to be made for each experiment, including the

washing procedure, matrix application (in the case of MALDI) and

acquisition parameters, with the aim to maximize the quality.

Currently, assessment of the quality of IMS data is performed by

a mass spectrometry expert using their knowledge and intuition to

evaluate the data. This includes visual examination of individual

spectra and ion images. However, as IMS becomes faster and wide-

spread, the data generation rate increases encompassing studies of

cohorts (Balluff et al., 2015) and hundreds of serial sections for 3D

images (Oetjen et al., 2013; Trede et al., 2012) that makes it imprac-

tical for an expert to evaluate the data produced. Moreover, the

optimization of experimental settings with the increase of con-

sidered parameters leads to the explosion of possible combinations

of settings and, correspondingly, of datasets to be generated and

evaluated.

A quantitative measure for objective, unbiased and automated

evaluation of the quality of IMS data would enable optimizing ex-

perimental steps, continuous monitoring of instrument performance,

evaluating the suitability of data for analysis and reporting results

across instruments and laboratories. In this study, we propose using

image-based quality measures and address the key question of their

evaluation through creating a gold-standard dataset.

1.1.2 Creating gold standard using collective expert knowledge

For knowledge-intensive tasks, it is often the expert judgements that

is the most important measure of quality of results, against which

automatic methods can be evaluated. Moreover, it is assumed that

collective judgments sourced from a crowd of experts are more reli-

able than judgement of any single expert (Gwet, 2012). Experts-

annotated ground truth datasets are called ‘gold-standard’ and are

used to train and test algorithms in a wide range of domains includ-

ing natural language processing (Carletta, 1996), content analysis

(Krippendorff, 2012) and clinical decision support systems (Berner,

2003). However, creating an annotated gold-standard data by

involving experts is a challenging task. Particular attention should

be paid to the experimental design and inter-annotator reliability

(Gwet, 2012). In this study, we propose an experimental design and

an open-source online survey platform for collecting, evaluating and

compiling expert judgements of IMS data into a re-usable and trans-

parent gold standard.

1.2 Related work
1.2.1 Collective expert judgement and crowdsourcing in mass

spectrometry

Collective expert judgement for creating a gold-standard has not yet

been introduced into the field of mass spectrometry or IMS and

crowdsourcing has only been minimally introduced. In this section,

we provide an overview of existing projects using crowdsourcing

that can be considered as a large-scale collective expert judgement.

One example is MSiMass, an online list of mz-values reported in

the IMS literature; containing 293 mz-values as of March 2015

(McDonnell et al., 2014). A related initiative was proposed by

(Römpp et al., 2014) who implemented and reported submission of

IMS datasets into the open PRIDE repository; containing one IMS

dataset as of March 2015.

Use of crowdsourcing for non-IMS has a longer history. The

most notable examples are the user-populated spectral repositories

such as MassBank, HMDB, GOLM, mzCloud, Lifeline-S.O.S.,

ProteomicsDB, MetaboLights and GnPS. The Spectral Game is a

web-based game with purpose where users are asked to match mo-

lecular structures with, in particular, mass spectra (Bradley et al.,

2009). A related initiative was reported by Du et al. (2014) who car-

ried out a citizen-science project on natural products discovery by

crowdsourcing the collection of soil samples which were later

analyzed with mass spectrometry.

1.2.2 Assessing data quality in mass spectrometry

1.2.2.1 control and suitability tests. A broad topic in mass spectrom-

etry where the quality of mass spectra is considered is the quality

control which aims to detect changes in the instrumentation. For

this, intra-experimental monitoring is performed by analyzing the

same sample over weeks and months so that changes in the instru-

ment performance can be seen (Abdel-Rehim, 2004). Similar to

quality control, the system suitability tests serve to check that the in-

strumentation satisfies the specifications. For this, analysis of

standardized mixtures is performed to benchmark the performance

of a mass spectrometer (Dresen et al., 2010). By examining the prop-

erties of spectra (e.g. peak shape or intensity), defects can be auto-

matically detected (Mutton et al., 2011).

1.2.2.2 Quality of tandem mass spectra. A particular problem needing

estimation of quality of individual mass spectra is the matching of tan-

dem mass spectra against databases. Here, the filtering out of low-qual-

ity spectra that are unlikely to return a database match can increases the

matching efficiency. Heuristic approaches have been developed which

typically examine the number of peaks and relative intensities of

peaks detected (Bern et al., 2004; Ma et al., 2003). Machine learning

approaches have been used to recognize ‘good’ spectra by training a

support vector machine on sets of labelled ‘good’ and ‘bad’ spectra

(Bern et al., 2004). Typically this labelling is achieved by running data-

base matching on a subset of the spectra with ‘good’ being manually

annotated or those for which a match was found and ‘bad’ being those

that were not matched (Ma et al., 2003; Nesvizhskii et al., 2006).

1.2.2.3 Quality of IMS data. Currently, no approach exist that

could automatically assess the quality of IMS data and would ac-

count for specific properties of IMS data which are: complex spectra

representing mixtures of analytes analyzed without separation, lim-

ited-to-no capabilities for tandem mass spectrometry, repetition of

acquisition of spectra coming from a region of similar chemical

composition and spatial imaging information.

Karlsson et al. (2014) recently reported on optimizing the experi-

mental settings for MALDI IMS through using a variance-based

measure of quality of spectra. Considering three measures of vari-

ance aided in minimizing the unwanted variance in MALDI IMS

and to discover subtle changes in protein expression in various sub-

regions of the brain. Note that in (Karlsson et al., 2014) the imaging

content was not considered. We briefly discussed the need for qual-

ity estimators in (Watrous et al., 2011) and proposed a spectra-

based quality test for MALDI time-of-flight IMS data.
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1.3 Problem statement and our approach
The quality of IMS data is currently assessed either by a subjective

expert judgement or by examining individual spectra. In order to

make this assessment automatic and at the same time to account for

imaging information inherently present in IMS data, image-based

quality measures are required.

Our approach to solve this problem has two essential compo-

nents (see Fig. 1). First, propose to create a gold-standard set by

involving the IMS community and recruiting a crowd of experts to

provide their subjective estimation of the relative quality between a

pair of images. Second, we propose to consider measures of quality

of IMS data based on the image analysis principles, and to assess

them for their ability to reproduce the human judgements.

The contribution of this article is the proposed approach for

which mass spectrometry data was acquired, expert data ratings col-

lected, a gold-standard set of pairs of images generated with relative

quality ratings and new measures of quality of ion images evaluated

on the gold-standard data.

2 Methods

2.1 Creating a gold standard through expert rating
We aimed at creating a gold-standard dataset consisting of pairs of

ion images annotated with their relative quality that can be used

later to evaluate candidate image-based measures of quality. This

involved selection of ion images from MALDI-TOF IMS datasets,

recruitment of experts to provide quality ratings through an online

survey, assessment of the expert-provided ratings and compilation

of the gold-standard.

2.1.1 Selection of ion images

2.1.1.1 MALDI IMS data. A 12mm thick cryo-sections of wild-type

mouse brain were prepared on conductive-coated slides that then

underwent a washing procedure with either ethanol or propanol.

Sinapinic acid matrix was applied with the ImagePrep (Bruker

Daltonics, Bremen, Germany) either using the manufacturer’s stand-

ard protocol or with an extended incubation time. MALDI IMS

datasets were collected on an UltraFlex (Bruker Daltonics, Bremen,

Germany) in linear positive-ion mode and in the mass range 2–

20 kDa. A 75-mm raster size was selected and each spectrum was the

sum of 100 or 600 laser shots at 2000 Hz repetition rate using either

a tightly focused laser beam (with 5% random walk) or a static de-

focused beam that covered an equivalent area. In total 10 datasets

were collected with different combinations of instrument

parameters.

2.1.1.2 Selection of ion images for rating. We aimed to select 52 dif-

ferent and representative ion images to be used in the survey. (For

explanations on why 52 images were needed, please see Section

2.1.2.) In order to avoid biasing the images selected with the au-

thors’ own opinions, a semi-automated selection procedure was

used: For each dataset, peaks in the mean spectrum were determined

from gradient turning points as per Coombes et al. (2005). The 10

most intense peaks were taken from each dataset and merged into a

single aggregate list for all datasets, with any values within 1 Da

averaged. Ion images were produced from each dataset for every

peak in the aggregate list with a summation window of 65 Da

around the peak centroid. The intensities of each image I were

scaled to [0, 1]. The images were partitioned into 52 groups using k-

means clustering with the Euclidean distance. For each cluster, an

image with the closest distance to the cluster-average was selected.

2.1.2 Design of the online survey

For the selected ion images, our aim was to obtain relative ratings of

their quality by involving experts in IMS. Our expectations were

that although there is no precise formulation for the quality of ion

images, experts use this concept in their everyday work and so they

can assess whether images are of a high or low quality. To capture

this, we generated all possible pairs of selected images, showed them

to experts pair-by-pair, and asked the experts to provide a relative

rating of quality between two images in a pair.

2.1.2.1 Interface design. A web-based survey was deployed with

three sections: an introduction with instructions; a series of pairs of

ion images; and an exit questionnaire asking for a feedback both on

the task and the survey design. Screenshots of the sections can be

found in the GitHub project repository.

The welcome page introduced raters to the survey and its

broad aims, described what they are expected to do and how long it

can take and provided contact details for the project. The instruction

Fig. 1. The workflow of our study containing two parts: (i) creation of the gold-standard set of ion image pairs annotated by experts with relative quality of images

in a pair and (ii) evaluating candidate measures of quality of ion images. The anonymized data from the survey and the Matlab source code for data analysis is

available in the GitHub project repository
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page started with questions about rater background and then de-

tailed how to use the slider to describe the relative quality of

two images. Bright ‘sticky notes’ were used to draw attention to

key points such as the individual intensity scaling of each image.

To encourage raters to treat the survey as if they were flicking

through a dataset, they were instructed to spend at most 10 s per

pair.

Image pairs were then presented one-by-one for rating using the

following slider mechanic: the two images were displayed side-by-

side with a movable slider bar underneath (see Fig. 2), the rater

could then indicate which image, if either, of the pair was of higher

quality by moving the slider towards the image they considered to

be higher quality. For each pair, the slider value set by the user was

recorded along with the time spent for providing the rating. Once

they had decided on their rating they could click a button to pro-

gress to the next page. It was possible to close the survey and return

to it later if browser cookies were enabled. An exit questionnaire

thanked the rater and gave them opportunity to provide us with

feedback on the given task and the survey design. Unless a rater

chose to leave their email address during the exit questionnaire the

survey was anonymous and no additional information on the rater

was recorded.

2.1.2.2 Assignment of image pairs to survey instances. To determine

the number of pairs, compile them from images, and design how to

show them for rating, we first decided on the number of raters we

can involve. Based on our knowledge of experts (subjectively esti-

mated to be around 100) and the response rate of 75% during the

pilot study (9 out of 12), we estimated that 75 raters could be re-

cruited to the survey. Then, we decided that each pair has to be rated

by three different raters to later assess the agreement [based on typ-

ical literature values (Kaufman et al., 2008)]. Then, we decided to

show 52 image pairs to a rater (49 different image pairs plus 3 show-

ings of the same pair used only for the consistency check). For a de-

scription of the consistency check, please see Section 2.1.4. The

number was selected based on our experience in designing surveys

and was evaluated in the pilot study (see the next paragraph). This

led to 75 x 49¼3675 possible ratings that could be applied to rate

3675/3¼1225 unique image pairs, each pair rated 3 times. Finally,

the number of ion images we could consider for the survey and for

the later gold standard was determined to be 50 as the maximal

number of images with �1225 possible image pairs. Additionally, 2

more images were required for the internal consistency check that

led us to selecting 52 ion images as described earlier in Section 2.1.1.

We prepared 75 instances of online surveys with a subset of

image pairs to be shown; one survey to be rated by one rater. Each

rater was shown 52 pairs; of these 3 were the same pair shown re-

peatedly for the later consistency check. The same consistency check

pair was shown to all raters. All 1225 pairs were randomly allocated

into 75 groups, ensuring each pair was shown 3 times and that no

survey contained any particular pair more than once. We assigned a

default left/right order for the images in each pair. When showing a

pair we randomized which image would be presented on the left or

right.

2.1.2.3 Online platform for the survey. All the surveys were pre-gen-

erated in the required format and deployed onto the LimeSurvey

platform (https://www.limesurvey.org/), each with a unique URL. A

custom redirect script was placed on the recruitment page of the

website of the EU FP7 project 3D-MASSOMICS (http://3d-masso-

mics.eu) which held a queue of unvisited surveys. When a potential

rater followed the link within the invite email they were automatic-

ally redirected to the URL of the next unseen survey in the queue.

Any surveys that were started but not completed or scored poorly

on a set of three consistency control image pairs were manually re-

turned to the queue after 1 week of inactivity.

2.1.2.4 Pilot study. Before the main study, a small pilot survey

involving 9 raters (12 were invited, 9 agreed to contribute) was per-

formed to assess whether our task was feasible and to evaluate the

survey design. These raters were excluded from being invited to the

full survey. In general, the pilot raters were able to comprehend and

perform the task. The pilot study made us adjust the scheme of as-

signment of image pairs to survey instances. Instead of initially

planned on-the-fly random sampling of image pairs with replace-

ment, we decided to use pre-generated surveys, since many pairs did

not receive the required number of ratings. Some changes to the

slider mechanic were also made: the intervals were reduced so the

movement was smoother and an explicit instruction that the 0 value

could be used was included. We updated the instructions making

clear that all images were of coronal sections from mouse brain,

each scaled to its maximum value.

2.1.3 Recruitment or raters

Our aim was to recruit raters with substantial expertise in MALDI

IMS. We prepared an invitation and distributed it to correspondence

emails from journal articles where MALDI IMS was a primary fea-

ture and to researchers known to us as being active in this field.

Group leaders of IMS research groups were emailed with a request

to recruit members of their groups. Towards the end of the survey

time, a post was placed on the IMS group on LinkedIn. As an incen-

tive to complete the survey, a small prize was offered to the rater

whose performance will be closest to the average of all the expert

raters. To be eligible for this, raters must have provided their email

address.

2.1.4 Assessment of ratings and compilation of the gold standard

Our aim was to assess the inter-rater agreement and to compile the

gold-standard set of image pairs annotated with average ratings.

2.1.4.1 Rating pre-processing. All ratings provided by one rater

were normalized by dividing by their standard deviation. This aimed

to compensate for inter-raters variations in the scale of provided val-

ues, since no training was provided to the raters on the absolute val-

ues their sliders should take. The obtained scaled rating was then

rounded to the nearest 0.1. Additionally, while the surveys were

being collected, the same pair was shown to a rater three times (at

position 13, 26 and 38 in the survey) as a consistency check. The

standard deviation of the three ratings was calculated and raters

Fig. 2. A screenshot from the online survey showing a pair of ion images.

Raters were asked to provide relative quality of these images by moving the

slider either to the left or to the right depending on which image they believe

is of higher quality
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with a standard deviation >0.25 were excluded from the analysis.

The corresponding survey instance was returned to the queue to be

offered to another potential rater. The slider values were inverted

where required to match the default left/right position in each ion

image pair.

2.1.4.2 Measuring inter-rater agreement. For measuring the inter-

rater agreement, we selected the Krippendorff’s alpha that is a stand-

ard measure of the agreement fitting our experiment setup (interval

ratings, more than two raters). The Krippendorff’s alpha is defined

as: ak ¼ 1�Do=De, where Do and De are the measured and ex-

pected disagreements between raters, respectively; see Krippendorff

(2007) for a thorough explanation of how to perform the calcula-

tion. For calculating Krippendorff’s alpha, we treated the ratings

(slider values) as interval values with 0.1 intervals.

2.1.4.3 Compiling the gold standard. We evaluated whether any

particular rater was inconsistent with the cohort that may indicate a

low level of expertise, insufficient attention, or problems with a

particular instance of the survey. For this, we calculated a set

Krippendorff’s alpha values in a leave-one-out style with each rater

being removed in turn. In a similar way, we evaluated whether rat-

ings for any particular image pair were inconsistent with ratings for

all pairs that may indicate unusual images in the pair, complexity of

rating this particular pair or problems in presenting this pair in the

survey. Finally, a gold-standard subset of image pairs was selected

by sequentially removing pairs based on their individual effect on

the agreement until the overall agreement value was maximized;

each image pair was annotated with the mean of the slider values

provided by three raters.

2.2 Potential image quality measures
Once the gold-standard set of pairs of ion images with assigned rat-

ings of relative quality was compiled, we aimed to use it for evaluat-

ing candidate measures of quality of ion images which are

formulated based on the image analysis principles. Moreover, we

aimed to train a composite measure and evaluate whether it can out-

perform the individual candidate measures.

2.2.1 Candidate measures of quality of ion images

For candidate measures of quality of a real-valued ion image I with

n pixels with intensities from [0, 1], we considered those statistics

which quantify variation or noise within an image locally as well as

globally. In addition, we considered a measure of spatial chaos (SC),

which we recently developed (Alexandrov and Bartels, 2013). Each

candidate measure was scaled to take values in [0, 1] with low val-

ues corresponding to low quality.

2.2.1.1 Local coefficient of variation. For a set of intensity values,

the coefficient of variation is defined as the SD (r) divided by the

mean (l). We considered a local square window of pixels within an

image and moved it over the image pixel-by-pixel. For each local

window, we calculated local SD and local mean of intensities (rlocal

and llocal) and taking the ratio to give each pixel its local coefficient

of variation:

COVi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

m� 1
p rlocal

llocal

� �
: (1)

where i denotes the intensity of ith pixel of an ion image I with i

indexing over all n pixels and m is the number of pixels within a

window. This measure was also calculated taking the pixel values

for the entire image.

2.2.1.2 Local signal-to-noise ratio. For a set of intensity values, the

signal-to-noise ratio is defined as the mean divided by SD and is the

inverse of the coefficient of variation. Again, we calculated the val-

ues of the local standard deviation rlocal and local mean llocal within

a window:

SNRi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

m� 1
p llocal

rlocal

� �
: (2)

This measure was also calculated for the entire image.

2.2.1.3 Local SD. We calculated the local standard deviation within

a window rlocal for all pixels.

STDi ¼ 2 rlocalf g: (3)

This measure was also calculated for the entire image.

2.2.1.4 Square error. We considered another statistic representing the

level of noise in an ion image, defined as the mean square error (SE) be-

tween an image I and its de-noised version I. The SE is calculated as:

SEi ¼ ðIi � IiÞ2 (4)

The de-noised version of an image was created by applying a

Gaussian convolution filter, where we varied the SD of the Gaussian

function.

2.2.1.5 Spatial Chaos. In addition to the measures quantifying the

level of variation or noise locally or globally, we considered quantify-

ing the amount of SC or noise by using the measure of SC

SCAlexandrovBartels proposed by Alexandrov and Bartels (2013). We used

the default parameters as described in Alexandrov and Bartels (2013)

(ri ¼ 0:3; rd ¼ 3;x ¼ 10). In this article, we define the SC measure

to be scaled as follows with the aim to have low values for a chaotic

image as we assume a noisy image to be of low quality:

SC ¼ 1� SCAlexandrovBartels: (5)

2.2.1.6 Image histogram. Histogram measures are frequently used

in the analysis of natural scenes (Vogel and Schiele, 2004) as they

catalogue the relative abundance of intensities within the image. The

greyscale histogram was calculated with bin widths of 0.05. (The

intensities of each image I were scaled to [0, 1].)

2.2.1.7 RGB image. As the images were presented to the raters with a

colour mapping from their intensity values, and this can affect the judge-

ment of images (Borland and Taylor, 2007), we also explored some col-

our statistics after mapping the greyscale intensities using the jet

colourmap in Matlab (Mathworks, USA) with eight-bit colour depth.

2.2.1.8 Luminescence. Image luminescence relates the amount of

visual contrast that is present in an image and depends on colour

hue and saturation as well as brightness (Webster and Mollon,

1994). In general, more luminescent colours are more noticeable to

the human perception. The luminescence of a pixel within an RGB

image is defined to be

Li ¼ 0:2126Ri þ 0:7152Gi þ 0:0722Bi (6)

at a pixel i (Akyuz and Reinhard, 2006).
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2.2.1.9 RGB histograms. The frequency of intensities was calculated

for each Red, Green and Blue channel independently.

2.2.1.10 Window sizes and summary statistics. The measures COV,

STD, SNR and SE are non-local in the sense that at some point dur-

ing their computation they take information from a window of sur-

rounding pixels. To understand whether the degree of non-locality

relates to human perception of the images we varied the window

width between 3 and 51 pixels to cover all length scales. As we

wished for each combination of measure and window to return a

single assessment value we calculated a set of image statistics for

each measure as summarized in Table 1. This led to considering 143

features calculated per image.

2.2.2 Evaluating candidate measures of quality of ion images

We evaluated how well the candidate measures reproduced the

expert ratings. For each measure we defined a differential for

every pair of images: the measure was calculated for the left and

right images independently and then the value for the left was

subtracted from the right. This was calculated for every pair in

the survey and two metrics were then calculated between the dif-

ferential measures and the expert ratings. First, we calculated the

sample Pearson correlation coefficient to examine scale invariant

trends on an absolute scale; second, we compared whether the

sign (positive or negative) of the measures matched that of the

expert raters:

s ¼ 1

n

Xn

i¼1

Pðxi; yi Þ; Pðx; yÞ ¼

1 if x�0 & y�0

1 if x > 0 & y > 0 :

0 otherwise

8>>>><
>>>>:

(7)

2.2.3 Composite measure of quality of ion images

We investigated whether a composite of the candidate measures

could outperform each of them. For this, we considered a linear

combination of the proposed candidate measures and their multipli-

ers were optimized by minimizing the least squared difference be-

tween the composite measure and the gold-standard annotations

with the lasso regularization. The lasso regularization was employed

to select the most relevant features out of groups of similar features.

The solver lasso in Matlab (Mathworks, USA) was used with the 10-

fold cross validation.

3 Results and discussion

3.1 Gold-standard obtained through expert rating
3.1.1 Selected ion images

Given the pool of images obtained as described in Section 2.1.1, two

images were manually selected for an internal consistency check and

50 for the online survey itself. In total, 1225 image pairs were gener-

ated for the survey. Our knowledge of MALDI-IMS suggested that

images from the same mz in datasets with different sample-handling

were likely to have different relative noise characteristics.

Comparison of the mean spectra between the datasets (data not

shown) revealed reasonable heterogeneity in peak intensities indicat-

ing that the expected variation was achieved. The mean spectra with

49 peaks used for the survey images and the images itself can be

found in the project GitHub repository.

3.1.2 Recruited raters

Based on the response times for the pilot study, we allocated one

month for recruitment, but it took longer than expected to involve

enough raters. We extended the recruitment time to three months

with two follow-up email requests and a post on the LinkedIn IMS

group. In total, 80 experts completed the survey.

All recruited experts indicated some experience with MALDI

IMS data, with total experience over 260 years. Nine raters reported

more than ten years experience each. The distribution of experience

and work background is shown graphically in Figure 3a. The major-

ity of raters (45%) had a background of using IMS primarily for

investigating biological or biochemical problems, 24% for data ac-

quisition and the remainder encountered IMS data during technol-

ogy or algorithm development.

3.1.3 Interaction of raters with the online survey

The feedback from both the pilot and the final survey raters was

that the slider mechanic was easy to understand and to use (see

Fig. 3b). The exit questionnaire revealed that four raters had diffi-

culty in using the slider, two of these thought the granularity of the

slider was too fine and the other two found it difficult to set the

value to exactly zero.

It was agreed by 95% of raters that completed the survey that

the task determining the quality of images from IMS was important:

agreed or strongly agreed with the statement ‘Determination of

image quality is an important part of a MALDI imaging experi-

ment’; see Figure 3b. However, the statement ‘It was easy to decide

on the relative quality of a pair of images’ proved divisive amongst

users with the majority of responses neither agreeing or disagreeing

with the statement. In contrast to the survey mechanisms, which

were generally agreed to be easy to understand, the task of actually

rating a pair of images was not found to be straightforward. This re-

inforces the importance of finding a general measure that can re-

place subjective judgements and present route to a standardized

image quality score for reporting purposes.

We recorded how long each rater spent on rating each pair, see

Figure 4d. The obtained learning curve is in line with our expect-

ations: the raters were spending more time per rating when starting

the survey with less time per rating being needed as the survey pro-

gressed. If this average time was extrapolated to a typical MALDI-

TOF dataset with 10 000 channels then manually going through

each to determine the quality would take over 20 h and high-

resolution IMS would take many days. This quantifies the amount

of human time needed for the analysis of IMS data, which has been

noted as a rate limiting step (Alexandrov, 2012; Pacholski and

Winograd, 2010; Palmer et al., 2013).

Table 1. Measures calculated per image, where the input can be

the raw intensity values or mapped onto a jet colourscale

Input image Measure Statistics Window size

Grey COV a 3, 5, 11, 21, 51

STD a 3, 5, 11, 21, 51

SNR a 3, 5, 11, 21, 51

SE a 3, 5, 11, 21, 51

SC b

histogram c

RGB luminescence a

histogram (per channel) c

Sets of summary statistics calculated were:a, mean, median, maximum ab-

solute deviation (mad), maximum (max), minimum (min), sum; b, mean; c,

skew, kurtosis, entropy, maximum value. Each measure was applied to the

whole image, and if indicated in the column ‘Window size’, locally to moving

square windows of specified size in pixels.
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3.1.4 Assessment of ratings and obtained gold standard

3.1.4.1 Consistency check. Out of 80 recruited experts, 20 did not

pass the consistency check (see Section 2.1.4). The ratings produced

by these experts were excluded from further consideration. As a re-

sult, we obtained ratings from 60 raters which produced 634 image

pairs with three ratings.

3.1.4.2 Inter-rater agreement. The Krippendorff’s alpha ak value for

the 60 raters was 0.5. This was lower than expected from the pilot

study where a value of 0.65 was achieved and below the usually ac-

cepted threshold of 0.6 (Krippendorff, 2012).

It was important for us to understand why the inter-rater agree-

ment was low in order to judge whether the ratings obtained would

still be useful. We considered three hypotheses which could lead to

low agreement between raters: (i) some raters performed badly

compared with the cohort, (ii) there were pairs within the survey

that were too difficult to rate, (iii) the whole task was not achiev-

able. We were confident that the task was feasible as our pilot study

achieved a reasonable ak value and so we assessed the first two

hypotheses in more detail.

We calculated ak with each rater excluded in turn to see if indi-

vidual raters performed differently to the rest of the cohort. In gen-

eral, removing specific raters had a small impact (<5%) on the

value of ak (see Fig. 4a), but removing two raters caused an improve-

ment. Removing both of these raters from the cohort increased the

value of ak to 0.55, still lower than could be called a sufficient agree-

ment. We compared the median time each expert spent on the rat-

ings against the change in ak when removing this expert, but no

correlation was visible (data not shown). We then scored raters ac-

cording to their impact on the overall agreement and sequentially

Fig. 3. Overview of the raters who completed the survey and their feedback on the task and survey. (a) Raters’ experience and background show that a diverse

range of experts was recruited. (b) The raters described the objectives of the survey as important, the mechanics and the layout of the survey clear and easy to

use but the task of determining image quality was found to be difficult. (c) Raters’ feedback on the survey duration and number of pairs showed that the survey

was comfortable for the participants

Fig. 4. Assessment of the raters and the ratings they provided. (a) A histogram of the change of the inter-rater agreement when removing one rater in turn. (b) A

histogram of the change of the inter-rater agreement when removing one image pair in turn. (c) The median time spent per pair against average slider value and

SD per pair. (d) Box-whisker plot of tracked time shows an expected learning curve with less time per rating being needed as survey progresses (plot shows 25/

50/75 quantiles with whiskers covering 99.3% of data)
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removed the worst performing raters. As shown in Figure 5 (bot-

tom), removing raters also resulted in a gradual improvement of the

agreement. The agreement of 0.6 and 0.8 was reached with 414 and

26 image pairs left, correspondingly.

We then calculated ak with each image pair excluded in turn. As

the number of image pairs is very large compared with the number

of raters it would not be expected that removing individual pairs

would have a substantial impact on the overall agreement levels.

However, for a few pairs it led to improving the value of ak by over

1%; see Figure 4b. Plotting agreement calculated with removed pairs

against the median time did not reveal any correlation, suggesting

that those pairs with low agreement were not inspected for any

more or less time than other pairs. We then scored image pairs ac-

cording to their impact on the overall agreement. Sequentially

removing the worst performing pairs steadily improved the agree-

ment value until a maximum was reached after which a plateau was

seen; see Figure 5 (top). The agreement of 0.6 and 0.8 was reached

with 595 and 386 image pairs left, correspondingly. The maximum

agreement of 0.85 was reached with 244 image pairs and taking re-

sponses from 60 raters.

These observations suggest that there were both problematic

raters and image pairs difficult to rate. Another conclusion is that it

proved to be possible to isolate a set of high-agreement image pairs.

3.1.4.3 Gold standard. The key feature of a gold-standard set is that

it received a consistent judgement by all the experts who rated it.

Based on the observations presented in the previous paragraph, we

decided to exclude low-agreement image pairs from the gold stand-

ard. Alternatively, raters, which performed worse with respect to

the overall agreement, could be excluded, but it would result in a

much smaller gold standard, because excluding one rater implies

excluding all image pairs that they have rated.

Given the agreement results, we generated three gold-standard

datasets based on three different agreement thresholds (see Fig. 5).

The first dataset consisting of 595 image pairs includes pairs rated

with the usually accepted agreement of 0.6. The second agreement

threshold is defined as a standard deviation of normalized slider val-

ues (386 image pairs). The third dataset consists of 244 image pairs

that produced the maximal agreement of ak ¼ 0:85.

Future work includes a more detailed study of features of the

high- and low-agreement image pairs that will allow us to draw con-

clusions about the reasons for the raters to disagree on certain sub-

sets of images.

The gold-standard datasets can be found in the GitHub reposi-

tory as a freely available resource to provide the community with an

annotated dataset that we hope will spur further developments in

this area.

3.2 Reproducing human judgements with proposed

measures
Human assessment of image quality is a time consuming task, par-

ticularly if consensus between several experts is required. In our

study, a total of 12.5 person-hours were required to get 3675 rat-

ings. We considered several candidate measures which took into ac-

count both local variation and the whole image and evaluated their

ability to reproduce human judgements about quality of MALDI ion

images. The measures looked at heterogeneity (COV, STD), relative

intensity (SNR), global noise (SE), gradient patterns (SC), scene stat-

istics (histogram) and image colour (luminescence, RGB histo-

grams). The COV, STD and SNR operate locally whilst the SE, SC

and histogram operate on an entire image to return a number quan-

tifying the global level of noise or the degree of structure present in

the image; (see Alexandrov and Bartels, 2013) for a discussion on

the structure and chaos in MALDI ion images.

3.2.1 Performance of candidate measures

The values of differential measures were compared with the expert

ratings on each of the three gold-standard sets defined by taking the

agreement cut-off values of a ¼ 0:5; a ¼ 0:6 and a ¼ 0:85; see

Figure 5a. Two statistics were used to evaluate the similarity of each

measure to the human ratings of MALDI ion image quality. First,

we calculated the sample Pearson correlation coefficient between

the differential measure values and the ratings in the gold standard.

The Pearson correlation is a standardized measure of linear relation-

ship and so is easy-interpretable and comparable. Second, we com-

pared the sign of the differential measure with the sign of the rating.

This provides a simple classification of which image is of higher or

lower quality, independent on the magnitude of the difference. The

top 10 performing statistics are summarized in Table 2; the full table

can be found in the GitHub repository.

This table reveals that two measures (madSTD and SC) showed

a strong linear relationship with the expert assessments for all three

gold-standard datasets, and that the linearity increased with the

rater agreement. This may indicate that local variation and the spa-

tial structure are the characteristics that the expert raters use to

judge when assessing the relative quality of images. The sign match

accuracy shows a similar trend, increasing from >0.7 to >0.9; all

values are >0.5 that would be produced by simple guessing. It is

noteworthy that among the top 10 performing measures only the

one measure (medianSTD5) operates on a small moving window

(5�5). All other measures operate either on a full image (SC) or on

a large moving windows (at least 11�11 in size); four measures op-

erate on 51�51 moving windows. This suggests that the expert

raters were taking larger image areas into account, rather than very

small details. The majority of the top performing measures were

Fig. 5. Agreement (Krippendorff’s alpha ak) calculated after sequentially

removing the worst performing image pairs (top) and raters (bottom) then

recalculating the agreement on the remaining subset (i.e. removing from left

to right in Fig. 4a and b)
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based on the maximum absolute deviation, a robust measure of the

spread of values, or the median indicating that raters may have pre-

ferred images where there was consistency in the local noise across

an image.

3.2.2 Performance of a composite measure trained on the gold

standard

We investigated whether a composite measure can better reproduce

the human judgements. We considered a linear combination of

measures and optimized the linear multipliers as described in

Section 2.2.3 noting that the lasso approach is expected to eliminate

duplicitous features. The gold standard with ak ¼ 0:85 was used.

The optimum combination (in a least squares sense) produced a set

of 18 measures that was largely composed of COV, SNR and STD.

This linear combination produced a linear correlation (Corr) of 0.94

and a sign match accuracy (Sign) of 0.98. This represents a very

modest improvement over the top performing individual algorithms

(achieved Corr of 0.93 and Sign of 0.93). There was a substantial

variation in the measures included in the top scoring sets for differ-

ent initialization values that is indicative of a complex search space

with multiple local minima.

Based on the results of the evaluation, we recommend for quan-

tifying the quality of MALDI ion images to use either the madSTD11

or SC measure as these consistently outperformed other candidate

image-based measures, or consider using the composite measure

with optimized linear multipliers. Note that the composite measure

may not generalize to all sample types, mass spectrometry systems

used and experimental settings as it was trained on the set of images

chosen for this survey, whereas no parameters optimization was per-

formed for the SC measure.

4 Conclusion

In recent years, IMS emerged as an indispensable tool of molecular

imaging. With the increasing rate of IMS data collected, the number

of laboratories performing the experiments, and the rising complex-

ity of protocols, there is a growing need for an objective and quanti-

tative measure of quality of IMS data that would account for

specific properties of IMS data, in particular for imaging informa-

tion inherently present in IMS data. Having such a measure would

open up avenues for optimization and monitoring of data acquisi-

tion. It could be included in-line with automated data acquisition to

monitor instrument performance and provide warning of low-

quality data collection so that appropriate steps can be taken to

restore the instrument to full capacity. The images included in the

survey were on the lower end of the quality of data that can be pro-

duced and the next stages would be to assess how raters interpret

the relative quality of high-resolution data.

We proposed new measures based on the image analysis prin-

ciples, created a gold-standard set of ion images annotated with rela-

tive ratings of quality by a crowd of experts, and illustrated how the

gold-standard set can be used to derive a composite measure of qual-

ity of ion images.

Unexpectedly for us, involving a crowd of experts and creating a

gold-standard set of ion images turned out to be a significant chal-

lenge that can explain why this approach was not yet applied in the

field of analytical chemistry. However, despite the challenges faced

we continue to believe that this approach provides the best way to

assessment of quality of IMS data through formalization of subject-

ive knowledge possessed by experts. Our approach demonstrated

that despite the lack of formal definition of quality of IMS data, this

knowledge is indeed possessed by experts. By publishing the gold-

standard set of relatively rated pairs of ion images together with the

source code for the data analysis, we invite the community to test

their own algorithms and compare the performance to our results.
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