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Abstract: In the present endeavor, for the dataset of 219 in vitro MDA-MB-231 TNBC cell antagonists,
a (QSAR) quantitative structure–activity relationships model has been carried out. The quantitative
and explicative assessments were performed to identify inconspicuous yet pre-eminent structural
features that govern the anti-tumor activity of these compounds. GA-MLR (genetic algorithm multi-
linear regression) methodology was employed to build statistically robust and highly predictive
multiple QSAR models, abiding by the OECD guidelines. Thoroughly validated QSAR models
attained values for various statistical parameters well above the threshold values (i.e., R2 = 0.79,
Q2

LOO = 0.77, Q2
LMO = 0.76–0.77, Q2-Fn = 0.72–0.76). Both de novo QSAR models have a sound

balance of descriptive and statistical approaches. Decidedly, these QSAR models are serviceable in
the development of MDA-MB-231 TNBC cell antagonists.

Keywords: QSAR; TNBC; MD-MBA-231

1. Introduction

Cancer is among the most clinically challenging and life-threatening ailments, globally.
In 2020, more than 19.29 million new cancer cases and nearly 10 million related deaths
worldwide were chronicled, of which 2.3 million are breast cancer cases with 685,000
related deaths [1,2]. In 2021, female breast cancer has overcome lung cancer and become
the most common cancer in the world [2]. Oncology experts prognosticate an estimated
more than 16 million breast cancer-induced deaths by 2040. Ample research is being done
and researchers are persistently improvising by studying novel treatments and drugs,
along with new combinations of existing treatments. Based on the response to various
methods of treatment, breast cancer is categorized in three clinical subtypes. Two of them,
viz. Hormone Receptor (HR)-positive and Human Epidermal growth factor Receptor 2
(HER2)-positive, are reparative through hormone therapy with or without chemotherapy.
In these two subtypes, cancer growth is triggered as a response to the hormones, i.e.,
estrogen or progesterone, or both receptor (ER/PR) and overexpressed HER2 protein [3,4].

Triple-negative breast cancer (TNBC), the third subtype, unlike the first two, does
not contain ER, PR or overexpressed HER2 protein, and this makes it hardest to treat.
Therefore, chemotherapy is the mainstay for the treatment of TNBC, essentially at all the
stages of breast cancer. Breast oncology is based on in vivo and in vitro studies performed
against breast cancer cell lines (BCCL). BT–20 is the first BCCL long-established back in
1958. Despite of tireless work in this area, permanent BCCLs obtained have been notably
low in number (about 100 only). Most of the available BCCLs are issued from metastatic
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tumors, mainly from pleural effusions. MCF-7, T-47D, SK-BR-3 and MDA-MB-231 are a
few BCCLs well-reported in breast oncology [5,6].

MDA-MB-231, an epithelial human BCCL, is known to be the most aggressive, in-
vasive and ill differentiate TNBC cell line. Proteolytic degradation of the extracellu-
lar matrix brings about invasiveness of the MDA-MB-231 cells [3]. Various genres of
compounds such as withangulatin–A derivatives [7], urea-based FGFR1 inhibitors [8],
Fam20c inhibitors [9], bradykinin B2 agonists [10], spiroketospirazoles [11], triazole spiro-
dienones [12], calix[4]arene-based carbonyl amide derivatives [13], 6-(2-amino-1H-benzo[d]
imidazole-6-yl)quinazolin-4(3H)-one derivatives [14], Purine/purine isostere-based scaf-
folds as new derivatives of benzamides [15], 5-flurouracil scaffold derivatives [16],
pyrimidine-thioindole conjugates [17], thieno[3,2-d]pyrimidine derivatives [18], nitrogen-
based chalcogens [19], pyrimidine based benzothiazoles [20], 1,3,4-thiadiazoles [21] and
3-Methylthiazolo[3,2-a]benzimidazole-benzenesulfonamides [22] are tested for their anti-
proliferative activities against MDA-MB-231 TNBC cells. Still, the thirst for better anti-
TNBC drug candidates is not quenched, and researchers are tantalized for further opti-
mization of the leads.

In silico lead optimization is a feasible, economical, absolutely eco-friendly, quanti-
tatively predictive, relatively faster drug discovery approach, which is the utmost need
of time. Sparse animal trials and result accustomization make computer-assisted drug de-
signing (CADD) a pragmatic approach. QSAR is one of the prospering branches of CADD,
which persistently and outstandingly contributes towards lead optimization [23,24].

QSAR–a cross-curricular, blended approach, ascertains mathematical correlation be-
tween structural traits of the molecule and associated bioactivity on a statistical basis.
General steps in a QSAR analysis protocol are (I) selection of a sufficiently large, pertinent
molecular dataset with desired bioactivity, (II) 3D structure generation and optimization,
(III) molecular descriptor calculation and consequential pruning using an apt statisti-
cal method, (IV) QSAR model generation using an algorithm that furnishes propitious
molecular descriptors and (V) cromulent validation of developed QSAR model(s) [25].
Descriptive QSAR analysis quantitatively interprets the interrelation of salient but super-
ficially enigmatic molecular structural traits with their reported bioactivity. Statistical
QSAR predicts the bioactivity of the molecule prior to its laboratory synthesis and in vivo
testing. Coherently balanced descriptive and statistical QSAR improves insight for the
pharmacokinetics [25–32]. This underlines the importance of QSAR analysis for further
optimization of the leads.

In the present endeavour, a qualitative cum quantitative SAR model for a series of
219 MDA-MB-231 cell anti-proliferative compounds has been performed. The results are
useful to optimize compounds for better anti-TNBC activity.

2. Results

Although the present study is based on the moderate size dataset, the presence of
diverse molecular scaffolds, functional groups, substituents, different rings, viz. non-
aromatic, homoaromatic, heteroaromatic, fused rings, spiro compounds, etc., have notably
covered an enormous chemical space. Hence, both of the QSAR models generated are
based on the divided dataset only.

Fitting parameters, such as R2, R2
adj, CCCtr, etc., have values well above the approved

threshold values, which confirms that the QSAR models are statistically acceptable with an
adequate number of molecular descriptors in them. Internal validation parameters such
as Q2

LOO, Q2
LMO, etc. have values that vouchsafe the statistical robustness of the QSAR

models (Figure 1a,c). External predictability of both the models is evident from high values
of the external validation parameters R2

ext, Q2-Fn, etc. Williams plots for models 1.1 and
1.2 (Figure 1b,d) corroborate the model applicability domain (AD). Accomplishment of
approved threshold values for many parameters, as well as low correlation among the
molecular descriptors, rules out the possibility of accidental development of the QSAR
models [31–35] (Tables S1 and S2; Figures S1a and S2a in supplementary information).
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These evidences substantiate statistical robustness and good external predictability of
these models.
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Figure 1. (a) Graph of experimental vs. predicted pIC50 values for model 1.1; (b) Williams plot for model 1.1; (c) graph of
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2.1. GA-MLR QSAR Models
2.1.1. Model-1.1 (Divided Set: Training Set–80% and Prediction Set–20%)

pIC50 = 4.876(±0.138) + 0.013(±0.006) * all_MSA3 – 0.538(±0.198) * com_Splus_7A
+ 0.379(±0.265) * fHringC4B + 0.107(±0.027) * fOH5B – 0.178(±0.077) * fringNC8B +
0.924(±0.140) * com_sp2N_2A.
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R2 = 0.79, R2
adj = 0.78, Q2

LOO = 0.77, Q2
LMO = 0.77, RMSEtr = 0.35, MAEtr = 0.27,

RSStr = 21.23, CCCtr = 0.88, RMSEcv = 0.36 MAEcv = 0.28, PRESScv = 22.89, CCCcv = 0.87,
R2

ext = 0.72, Q2-F1 = 0.72, Q2-F2 = 0.72, Q2-F3 = 0.72.

2.1.2. Model-1.2 (Divided Set: Training Set–80% and Prediction Set–20%)

pIC50 = 5.072(±0.193) + 0.012(±0.006) * all_MSA3 – 0.480(±0.203) * com_Splus_7A
– 0.096(±0.068) * com_don_6A + 0.101(±0.028) * fOH5B – 0.160(±0.078) * fringNC8B +
0.969(±0.121) * com_sp2N_2A.

R2 = 0.79, R2
adj = 0.78, Q2

LOO = 0.77, Q2
LMO = 0.76, RMSEtr = 0.35, MAEtr = 0.27,

RSStr = 21.24, CCCtr = 0.88, RMSEcv = 0.36 MAEcv = 0.28, PRESScv = 22.94, CCCcv = 0.87,
R2

ext = 0.76, Q2-F1 = 0.76, Q2-F2 = 0.75, Q2-F3 = 0.75.
Although for both these models, values of almost all the statistical parameters related

to fitting criteria and internal validation are essentially the same, the differences in values
of statistical parameters related to external validation, i.e., R2

ext and Q2-Fn are noteworthy.
This highlights the importance of both of the models. Moreover, these two QSAR models
differ in one variable (molecular descriptor) only, viz. fHringC4B in model 1.1 (with
positive sign of the coefficient) and com_don_6A (with negative sign of the coefficient)
in model 1.2. In the discussion section, we have explained the importance of these two
molecular descriptors, and consequently, the importance of these two QSAR models in
terms of their usability and applicability.

3. Discussion

Among the reported QSAR studies of MDA-MB-231 TNBC cells, the particularly
recent work has been done using the dataset of 61 parthenolide derivatives (R2 = 0.67,
Q2 = 0.55 and R2

pred = 0.53) [36], and yet another using the dataset of 18β –glycyrrhetinic
acid derivatives (R2 = 0.84, Q2

LOO = 0.83 and R2
pred = 0.75) [37]. These QSAR models

are developed on the dataset of compounds with a single scaffold, e.g., parthenolide
scaffold, 18β–glycyrrhetinic acid etc., and limited pharmacophoric features. This limits the
applicability of these QSAR models. The QSAR models developed in the present work
are based on the dataset of relatively large number of compounds with various different
scaffolds and large number of pharmacophoric features that have increased the scope of
applicability of these models. Subjective feature selection provided some simple molecular
descriptors; those are reflected in the QSAR models. Values of these molecular descriptors
can be easily modified by introducing some simple constitutional and structural alterations
to bring about optimization.

Both models 1.1 and 1.2 have been constructed using the divided dataset only. These
models differ in only one descriptor out of a total of six descriptors. Although, the change
in the activity of each molecule, to a large extent, is a combined effect of all the six molec-
ular descriptors, in the ensuing section effect of variation in each molecular descriptor
on biological activity of the irrespective molecule, and is illustrated with examples (see
supplementary information Table S3).

1. all_MSA3, fHringC4B, fOH5B and com_sp2N_2A: All of these molecular descrip-
tors have positive values of the coefficient and increase in the values of these molecular
descriptors, which increases MDA-MB-231 anti-proliferative activity.

all_MSA3 (Molecular Surface Area of all atoms having partial charge in the range of
0.099 to 0.000): The observation is supported by comparing compound 36 (IC50 = 4.746) with
compound 39 (pIC50 = 5.772), for which an increase in the value of all_MSA3 from 0 for
compound 36 to 13.07 for compound 39 results in an increase in pIC50 value by about 1 unit
(about ten-fold increase in MDA-MB-231 cell anti-proliferative activity). Compound 23
(all_MSA3 = 0; pIC50 = 5.189) and compound 73 (all_MSA3 = 25.69; pIC50 = 6.420) is
another pair used as an example to support this observation. Partial charges on each
atom of the compound with the non-zero value of the all_MSA3 descriptor are shown
explicitly in Figure 2. The descriptor all_MSA3 to calculate molecular surface area takes
into consideration atoms with partial charges in the range −0.099 to 0.000 only.
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Figure 2. Illustration for molecular descriptor all_MSA3.

fHringC4B (Frequency of occurrence of ring carbons which are present exactly at
four bonds from the hydrogen atom): this molecular feature is absent in all the ten least
active compounds but present in all the ten most active compounds (see Figure 3a,b and
Figure 4), which highlights the importance of the presence of this molecular feature for
better MDA-B-231 anti-proliferative activity in the compound.

fOH5B (Frequency of occurrence of number of hydrogen atoms, which are present
exactly at 5 bonds from Oxygen atom): In compound 42 (fOH5B = 4; pIC50 = 4.914) there
are four hydrogen atoms which are five bonds away from oxygen. Whereas, in ten-fold
more potent MDA-MB-231 anti-proliferative compound 41 (fOH5B = 8, pIC50 = 5.910),
eight such hydrogens are present. This illustrates the significance of the higher value of the
fOH5B molecular descriptor in order for leads to be better MBA-MD-231 anti-proliferative
agents (Figure 5).

com_sp2N_2A (Number of sp2-nitrogen atoms within 2Å from center of mass of
molecule): Significance of this molecular descriptor can be rationalized with the fact
that in all the ten least active compounds (Figure 3a), this descriptor gets a value of
zero, and in all the ten most active compounds, the value of this descriptor is two (ex-
cept for compound 183, which has one sp2-N atom within 2Å from the center of the
mass of the molecule). (Center of mass in each molecule from Figure 3a shown with red
asterisk ‘*’ mark)

2. com_Splus_7A, com_don_6A and fringNC8B: These three molecular descriptors
have negative coefficients and hence decrease in their values possibly will increase
MDA-MB-231 anti-proliferative activity.

com_Splus_7A (Number of positively charged Sulfur atoms within 7Å from the center
of the mass of the molecule) There is no positively charged sulfur atom within 7Å from the
center of the mass of molecule (com_Splus_7A = 0), rather the sulfur atom itself is absent
in these ten most active compounds (pIC50 = 7.155–7.398) (Figure 3b). All the compounds
having a unit of pIC50 > 5.223 have the com_Splus_7A descriptor value as zero (Table S3
in supplementary information). (Center of mass in each molecule in Figure 3b shown with
red asterisk ‘*’ mark)
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Figure 5. Illustration for molecular descriptor fOH5B. (Distinguished hydrogens are shown in
green color).

com_don_6A (Number of donor atoms within 6Å from the center of the mass of the
molecule): There is no donor atom within 6Å from the center of the mass of the molecule
(com_don_6A=0); in fact, there is no H-Donor functionality such as N-H, O-H present in
all the ten most active compounds (pIC50 = 7.155–7.398). Hence, there is great scope to
say that the zero value for the com_Splus_7A and com_don_6A molecular descriptors
have gained better MDA-MB-231 cell anti-proliferation potency to them. With two H-
donor atoms (in functionality –COOH and –NH-), Compound 156 (com_don_6A = 2;
pIC50 = 4.066) is the least active compound of the series that highlights the importance
of absence of com_don_6A molecular descriptor for molecule to be better MDA-MB-231
cell anti-proliferator. Comparison of compound 97 (com_don_6A = 3; pIC50 = 5.159)
with 148 (com_don_6A = 0; pIC50 = 5.212) and 95 (com_don_6A = 3; pIC50 = 4.916) with
107(com_don_6A = 4; pIC50 = 4.445) also support the observation.

fringNC8B (Frequency of occurrence of number of carbon atoms which are present
exactly at 8 bonds from ring nitrogen atoms): Compound 49 (IC50 = 6.02 µM) with no
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such carbon atoms which are present exactly at eight bonds from the ring nitrogen atom
found to be about eight-fold more potent than compound 91 (IC50 = 40.92 µM), which
contain three such carbons (Figure 6). Moreover, all the ten most active compounds of
the series show an absence of carbon atoms, which are present eight bonds away from
ring nitrogen (fringNC8B = 0). These observations mark the importance of the fringNC8B
molecular descriptor.
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Two QSAR models proposed in the present study differ in one variable (molecular
descriptor) only, viz. fHringC4B in model 1.1 (with positive coefficient) and com_don_6A
(with negative coefficient) in model 1.2. All the relatively potent MDA-MB-231 cell anti-
proliferative compounds from the present dataset with pIC50 ≥ 7 have fHringC4B = 1 and
com_don_6A = 0 (except compound 154 with fOH5B = 9, which more than compensates
the counter effects of the rest of the molecular descriptors) and all the relatively inactive
compounds with pIC50 ≤ 5.043 have fHringC4B = 0 and com_don_6A > 0 (i.e., non-zero).
This observation signifies the importance of combined effect of the molecular features
represented with these molecular descriptors, and eventually broadens the applicability of
the present QSAR evaluation studies (see supplementary information Table S3).

There are five outliers, viz. molecules 80, 154, 156, 160 and 183 (with >2.5 σ), which are
revealed in the Williams plot (see Figure 1b–d, Figure 7 and supplementary information
Tables S1–S3, Figures S1a and S2a). Lipophilic cyclohexyl substituent in compound 80
(Practical pIC50 = 4.991, Predicted pIC50 = 6.015 by Model 1.1 and Predicted pIC50 = 5.961 by
Model 1.2) leads to the increase in values of all_MSA3 and fOH5B molecular descriptors
due to an increase in –CH2- groups in the molecule. Hence, both the models predicted
extremely high pIC50 values for molecule 80. Experimentally, the typical non-planar, chair
conformation of the cyclohexyl group due to steric reasons might have restricted inhibitory
interaction of compound 80 with the target (pIC50 = 4.991), and hence compound 80
turned out as an outlier. Compound 154 (Practical pIC50 = 7.097, Predicted pIC50 = 5.977
by Model 1.1 and Predicted pIC50 = 6.031 by Model 1.2) consists of multiple scaffolds
with different pharmacophores which (pIC50 = 7.097) might practically have increased
the possible inhibitory potency of the molecule through an increased number of favorable
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interactions, but owing to the same reason, there is an increase in the value of fringNC8B
and com_don_6A molecular descriptors (both have negative coefficient), and this leads to
the extremely low pIC50 value prediction by both of the models.
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Figure 7. Representation and illustration of outliers.

Compound 156 (Practical pIC50 = 4.066, Predicted pIC50 = 5.239 by Model 1.1, Pre-
dicted pIC50 = 5.227 by Model 1.2) and compound 160 (Practical pIC50 = 4.658, Predicted
pIC50 = 5.604 by Model 1.1 and Predicted pIC50 = 5.664 by Model 1.2) are developed from
some of the structural fragments of compound 154 (Figure 7). These fragments retained
their molecular features, which helped these compounds to attain enough large values for
a few molecular descriptors, with which both the models predicted high pIC50 values for
these molecules, but practically, these molecules fall short in a few other molecular features
such as length of the molecule, which limited their inhibitory potency and set them in the
outliers’ category.

The com_sp2N_2A molecular descriptor does not take into consideration any such
sp2-nitrogen, which is beyond 2Å from the center of the mass of the molecule. In compound
183, (Practical pIC50 = 7.301, Predicted pIC50 = 6.253 by Model 1.1, Predicted pIC50 = 6.113
by Model 1.2), presence of a Bromine (Br)-heavy atom with large atomic/ionic volume as a
substituent caused shifting of the position of the center of the mass of the molecule, which
reduced the value of com_sp2N_2A (positive coefficient) to 1, and hence both models
predicted lower pIC50 values than was experimentally observed.

4. Materials and Methods
4.1. Dataset Selection

A total of 219 MDA-MB-231 cell antagonists having moderate anti-proliferation potency
(experimental IC50 = 0.04 to 86 µM) have been selected for the present work [8–12,14–20]. The
IC50 values were converted to pIC50 (pIC50 = –logIC50) before actual QSAR analysis. To
demonstrate the variation in bioactivity with chemical features covered by the present
dataset, ten least and ten most active molecules have been depicted in Figure 3a,b. The
SMILES strings with reported IC50 and pIC50 values for all the molecules are present in
Table S4 in the supplementary material.

4.2. Molecular Structure Drawing and Optimization

A free comprehensive chemical drawing package, ChemSketch 12 Freeware (www.
acdlabs.com, accessed on 15 May 2021), was used to draw structures of all 219 molecules.

www.acdlabs.com
www.acdlabs.com
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Subsequent conversion of these structures to corresponding 3D structures was achieved
using another free and open-source chemistry toolbox, OpenBabel 2.4.0. Thereafter, an
optimization and molecular alignment was carried out using the force field MMFF94
available in TINKER (default settings) and Open3DAlign, respectively.

4.3. Molecular Descriptor Calculation and Molecular Descriptor Pruning

PyDescriptor calculated various molecular descriptors for each molecule [38]. More
than 15,000 molecular descriptors had been provided by PyDescriptor for each molecule.
It is necessarily important to remove redundant molecular descriptors to steer clear of
the impinging of multi-collinear and spurious variables in the GA-MLR model. Hence,
molecular descriptors with nearly constant values (>95%) and co-linearity (|R|) >0.95 were
removed using objective feature selection (OFS) in QSARINS v2.2.4 [39,40]. The contracted
molecular descriptor pool thus resulted is comprised of 1370 molecular descriptors only.

4.4. QSAR Model–Development and Validation

The contracted molecular descriptor set is a heterogeneous set of descriptors in the
sense that it comprises 0D to 3D descriptors, charge descriptors and molecular properties,
etc. that have covered an adequately comprehensive descriptor space. Subjective feature
selection (SFS) in QSARINS v2.2.4 was executed in order to construct statistically robust
GA-MLR-based QSAR models. Thereafter, thorough statistical validation (internal and
external), Y-randomization and applicability domain analysis of the derived models was
done, abiding by OECD [41–44] principles. A dataset of 219 molecules is large enough that
even on splitting, the size of training dataset has covered the chemical space adequately
and to great extent. Following are the steps in protocol for QSAR model construction using
the divided dataset:

i. As per OECD guidelines, thorough internal as well as external validation of the
developed QSAR model(s), for example, is necessarily mandatory. Hence, some
molecules from the dataset were randomly kept aside as a prediction set, and remain-
ing molecules (training set) were subjected to SFS treatment to develop the QSAR
model. The QSAR model(s) generated is validated using molecules in the prediction
set. Random splitting of the dataset using random splitting option in QSARINS
v.2.2.4 into an 80% training set (175 molecules in training set) and a 20% prediction set
(44 molecules in prediction set) was achieved. The training set was used for QSAR
model development, and the prediction set was utilized for external validation.

ii. QSARINS v2.2.4 with default settings and Q2
LOO as a fitness function for feature

selection was deployed in genesis of the GA-MLR-based QSAR models with double
cross validation. Up to six variables, there was a generous increase in the Q2

LOO
value, but minor augmentation was observed thereafter. Consequently, the selection
of the molecular descriptor was confined to a set of six descriptors to foil the danger
of over-fitting, and this additionally helped to derive easy and informative QSAR
models (see supplementary information Table S3 values for all the selected molecular
descriptors present in QSAR models).

iii. Abide by OECD guidelines; for ensured proper validation, all the models were
subjected to internal and external validation, Y-randomization and model applicability
domain (AD) analysis using QSARINS 2.2.4. Robustness of the GA-MLR-based QSAR
model was adjudicated on the basis of (a) internal validation based on Leave-One-
Out (LOO) and Leave-Many-Out (LMO) procedure; (b) external validation; (c) Y-
randomization and (d) fulfilling of the respective threshold value for the statistical
parameters: R2 ≥ 0.6, Q2

LOO ≥ 0.5, Q2
LMO ≥ 0.6, R2 > Q2, R2

ex ≥ 0.6, RMSEtr <
RMSEcv, ∆K ≥ 0.05, CCC ≥ 0.80, Q2-Fn ≥ 0.60, r2m ≥ 0.6, 0.9 ≤ k ≤ 1.1, 0.9 ≤ k’ ≤
1.1 with RMSE and MAE close to zero. All QSAR models which failed to meet any of
these criteria were omitted. Two QSAR models (1.1 and 1.2) with best values of these
parameters and with best predicative ability (Q2-Fn > 0.71) were selected.
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5. Conclusions

A well-founded balance of statistical QSAR and descriptive QSAR with highly precise
bioactivity predictability (external predictability) on incorporation of molecular features is
furnished by both models. Various statistical parameters that are indicators of preciseness
of the external predictability, especially R2

ext and Q2-Fn, resulted in extremely high values
for both models. Molecular features which appeared in QSAR models, such as an increased
number of four bond-distant ring carbons from hydrogen, five bond-distant hydrogen from
oxygen, a lesser number of eight-bond distant carbons from ring nitrogen, etc., are easy
to incorporate in a manner that will make optimization easy and scopeful. These models
will help in optimizing present compounds to more potent MBA-MD-231 anti-proliferative
leads to treat triple-negative breast cancer.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/molecules26164795/s1, Table S1: Details regarding performance of model 1.1. Table S2: Details
regarding performance of model 1.2. Table S3: The values for selected molecular descriptors present
in QSAR models. Table S4: The SMILES notation for two hundred and nineteen MDA-MB-231 cell
anti-proliferative leads, along with their reported IC50 and pIC50 values; Figure S1: Different graphs
associated with model 1.1 (a) graph of pred. endpoint vs. residual values (b) Y-scrambling plot.
Figure S2: Different graphs associated with model 1.2 (a) graph of pred. endpoint vs. residual values
(b) Y-scrambling plot. Statistical parameters for used for validation of QSAR models
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OECD Organization for Economic Co-operation and Development
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ER Estrogen Receptor
PR Progesterone Receptor
BCCL Breast Cancer Cell Line
LOF Lack of Fit (Friedmann Parameter)
RMSE Root Mean Square Error
MAE Mean Absolute Error
RSS Residual Sum of Squares
CCC Concordance Correlation Coefficient
PRESS Predictive Residual Sum of Squares
LOO Leave One Out
LMO Leave Many Out

References
1. Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F.; Global Cancer

Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. 2020. Available online: https:
//gco.iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf (accessed on 29 July 2021).

2. Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F.; Global Cancer
Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. 2020. Available online: https:
//www.who.int/news-room/fact-sheets/detail/cancer (accessed on 29 July 2021).

3. European College of Authenticated Cell cultures Cell line profile MDA-MB-231. Eur. Collect. Authenticated Cell Cult. 2017, 231, 1–3,
MDA-MB-231 (ECACC 92020424).

4. Mendelsohn, J.; Howley, P.M.; Israel, M.A.; Gray, J.W.; Thompson, C.B. The Molecular Basis of Cancer; Elsevier Saunders:
Philadelphia, PA, USA, 2015; ISBN 978-1-4557-4066-6.

5. Holliday, D.L.; Speirs, V. Choosing correct breast cancer cell line for breast cancer research. Breast Cancer Res. 2011, 13, 1–7.
[CrossRef]

6. Freischel, A.R.; Damaghi, M.; Cunningham, J.J.; Ibrahim-Hashim, A.; Gillies, R.J.; Gatenby, R.A.; Brown, J.S. Frequency-dependent
interactions determine outcome of competition between two breast cancer cell lines. Sci. Rep. 2021, 11, 1–18. [CrossRef]

7. Zhou, W.X.; Chen, C.; Liu, X.Q.; Li, Y.; Lin, Y.L.; Wu, X.T.; Kong, L.Y.; Luo, J.G. Discovery and optimization of withangulatin
A derivatives as novel glutaminase 1 inhibitors for the treatment of triple-negative breast cancer. Eur. J. Med. Chem. 2021,
210, 112980. [CrossRef] [PubMed]

8. Ashraf-Uz-Zaman, M.; Shahi, S.; Akwii, R.; Sajib, M.S.; Farshbaf, M.J.; Kallem, R.R.; Putnam, W.; Wang, W.; Zhang, R.; Alvina, K.;
et al. Design, synthesis and structure-activity relationship study of novel urea compounds as FGFR1 inhibitors to treat metastatic
triple-negative breast cancer. Eur. J. Med. Chem. 2021, 209, 112866. [CrossRef] [PubMed]

9. Zhao, R.; Fu, L.; Yuan, Z.; Liu, Y.; Zhang, K.; Chen, Y.; Wang, L.; Sun, D.; Chen, L.; Liu, B.; et al. Discovery of a novel small-
molecule inhibitor of Fam20C that induces apoptosis and inhibits migration in triple negative breast cancer. Eur. J. Med. Chem.
2021, 210, 113088. [CrossRef]

10. Rassias, G.; Leonardi, S.; Rigopoulou, D.; Vachlioti, E.; Afratis, K.; Piperigkou, Z.; Koutsakis, C.; Karamanos, N.K.; Gavras, H.;
Papaioannou, D. Potent antiproliferative activity of bradykinin B2 receptor selective agonist FR-190997 and analogue structures
thereof: A paradox resolved? Eur. J. Med. Chem. 2021, 210, 112948. [CrossRef] [PubMed]

11. Huang, T.; Wu, X.; Yan, S.; Liu, T.; Yin, X. Synthesis and in vitro evaluation of novel spiroketopyrazoles as acetyl-CoA carboxylase
inhibitors and potential antitumor agents. Eur. J. Med. Chem. 2021, 212, 113036. [CrossRef]

12. Luo, L.; Jia, J.J.; Zhong, Q.; Zhong, X.; Zheng, S.; Wang, G.; He, L. Synthesis and anticancer activity evaluation of naphthalene-
substituted triazole spirodienones. Eur. J. Med. Chem. 2021, 213, 113039. [CrossRef]

13. An, L.; Wang, C.; Zheng, Y.G.; Liu, J.D.; Huang, T.H. Design, synthesis and evaluation of calix[4]arene-based carbonyl amide
derivatives with antitumor activities. Eur. J. Med. Chem. 2021, 210, 112984. [CrossRef] [PubMed]

14. Fan, C.; Zhong, T.; Yang, H.; Yang, Y.; Wang, D.; Yang, X.; Xu, Y.; Fan, Y. Design, synthesis, biological evaluation of 6-(2-amino-1H-
benzo[d]imidazole-6-yl)quinazolin-4(3H)-one derivatives as novel anticancer agents with Aurora kinase inhibition. Eur. J. Med.
Chem. 2020, 190, 112108. [CrossRef]

15. Nepali, K.; Chang, T.Y.; Lai, M.J.; Hsu, K.C.; Yen, Y.; Lin, T.E.; Lee, S.B.; Liou, J.P. Purine/purine isoster based scaffolds as new
derivatives of benzamide class of HDAC inhibitors. Eur. J. Med. Chem. 2020, 196, 112291. [CrossRef] [PubMed]

16. Petreni, A.; Bonardi, A.; Lomelino, C.; Osman, S.M.; ALOthman, Z.A.; Eldehna, W.M.; El-Haggar, R.; McKenna, R.; Nocentini, A.;
Supuran, C.T. Inclusion of a 5-fluorouracil moiety in nitrogenous bases derivatives as human carbonic anhydrase IX and XII
inhibitors produced a targeted action against MDA-MB-231 and T47D breast cancer cells. Eur. J. Med. Chem. 2020, 190, 112112.
[CrossRef]

17. Sana, S.; Reddy, V.G.; Bhandari, S.; Reddy, T.S.; Tokala, R.; Sakla, A.P.; Bhargava, S.K.; Shankaraiah, N. Exploration of carbamide
derived pyrimidine-thioindole conjugates as potential VEGFR-2 inhibitors with anti-angiogenesis effect. Eur. J. Med. Chem. 2020,
200, 112457. [CrossRef] [PubMed]

https://gco.iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf
https://gco.iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf
https://www.who.int/news-room/fact-sheets/detail/cancer
https://www.who.int/news-room/fact-sheets/detail/cancer
http://doi.org/10.1186/bcr2889
http://doi.org/10.1038/s41598-021-84406-3
http://doi.org/10.1016/j.ejmech.2020.112980
http://www.ncbi.nlm.nih.gov/pubmed/33176943
http://doi.org/10.1016/j.ejmech.2020.112866
http://www.ncbi.nlm.nih.gov/pubmed/33039722
http://doi.org/10.1016/j.ejmech.2020.113088
http://doi.org/10.1016/j.ejmech.2020.112948
http://www.ncbi.nlm.nih.gov/pubmed/33139111
http://doi.org/10.1016/j.ejmech.2020.113036
http://doi.org/10.1016/j.ejmech.2020.113039
http://doi.org/10.1016/j.ejmech.2020.112984
http://www.ncbi.nlm.nih.gov/pubmed/33183867
http://doi.org/10.1016/j.ejmech.2020.112108
http://doi.org/10.1016/j.ejmech.2020.112291
http://www.ncbi.nlm.nih.gov/pubmed/32325365
http://doi.org/10.1016/j.ejmech.2020.112112
http://doi.org/10.1016/j.ejmech.2020.112457
http://www.ncbi.nlm.nih.gov/pubmed/32422489


Molecules 2021, 26, 4795 14 of 15

18. Wang, R.; Yu, S.; Zhao, X.; Chen, Y.; Yang, B.; Wu, T.; Hao, C.; Zhao, D.; Cheng, M. Design, synthesis, biological evaluation
and molecular docking study of novel thieno[3,2-d]pyrimidine derivatives as potent FAK inhibitors. Eur. J. Med. Chem. 2020,
188, 112024. [CrossRef] [PubMed]

19. Elkhalifa, D.; Siddique, A.B.; Qusa, M.; Cyprian, F.S.; El Sayed, K.; Alali, F.; Al Moustafa, A.E.; Khalil, A. Design, synthesis, and
validation of novel nitrogen-based chalcone analogs against triple negative breast cancer. Eur. J. Med. Chem. 2020, 187, 111954.
[CrossRef] [PubMed]

20. Diao, P.C.; Lin, W.Y.; Jian, X.E.; Li, Y.H.; You, W.W.; Zhao, P.L. Discovery of novel pyrimidine-based benzothiazole derivatives as
potent cyclin-dependent kinase 2 inhibitors with anticancer activity. Eur. J. Med. Chem. 2019, 179, 196–207. [CrossRef]

21. Liu, T.; Wan, Y.; Liu, R.; Ma, L.; Li, M.; Fang, H. Improved antiproliferative activities of a new series of 1,3,4-thiadiazole derivatives
against human leukemia and breast cancer cell lines. Chem. Res. Chin. Univ. 2016, 32, 768–774. [CrossRef]

22. Alkhaldi, A.A.M.; Al-Sanea, M.M.; Nocentini, A.; Eldehna, W.M.; Elsayed, Z.M.; Bonardi, A.; Abo-Ashour, M.F.; El-Damasy,
A.K.; Abdel-Maksoud, M.S.; Al-Warhi, T.; et al. 3-Methylthiazolo[3,2-a]benzimidazole-benzenesulfonamide conjugates as novel
carbonic anhydrase inhibitors endowed with anticancer activity: Design, synthesis, biological and molecular modeling studies.
Eur. J. Med. Chem. 2020, 207, 112745. [CrossRef]

23. Baldi, A. Computational approaches for drug design and discovery: An overview. Syst. Rev. Pharm. 2010, 1, 99–105. [CrossRef]
24. Joy, S.; Vijayakumar, Y.M.; Sunhye, G. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res. 2015,

38, 1686–1701. [CrossRef]
25. Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y.C.; Todeschini,

R.; et al. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem. 2014, 57, 4977–5010. [CrossRef]
26. Chirico, N.; Gramatica, P. Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different

validation criteria and the need for scatter plot inspection. J. Chem. Inf. Model. 2012, 52, 2044–2058. [CrossRef] [PubMed]
27. Martin, T.M.; Harten, P.; Young, D.M.; Muratov, E.N.; Golbraikh, A.; Zhu, H.; Tropsha, A. Does rational selection of training and

test sets improve the outcome of QSAR modeling? J. Chem. Inf. Model. 2012, 52, 2570–2578. [CrossRef] [PubMed]
28. Fujita, T.; Winkler, D.A. Understanding the Roles of the “two QSARs”. J. Chem. Inf. Model. 2016, 56, 269–274. [CrossRef]
29. Huang, J.; Fan, X. Why QSAR fails: An empirical evaluation using conventional computational approach. Mol. Pharm. 2011,

8, 600–608. [CrossRef] [PubMed]
30. Masand, V.H.; Mahajan, D.T.; Nazeruddin, G.M.; Hadda, T.B.; Rastija, V.; Alfeefy, A.M. Effect of information leakage and method

of splitting (rational and random) on external predictive ability and behavior of different statistical parameters of QSAR model.
Med. Chem. Res. 2015, 24, 1241–1264. [CrossRef]

31. Gramatica, P.; Cassani, S.; Roy, P.P.; Kovarich, S.; Yap, C.W.; Papa, E. QSAR modeling is not “Push a button and find a correlation”:
A case study of toxicity of (Benzo-)triazoles on Algae. Mol. Inform. 2012, 31, 817–835. [CrossRef]

32. Gramatica, P. On the development and validation of QSAR models. Methods Mol. Biol. 2013, 930, 499–526. [CrossRef]
33. Consonni, V.; Ballabio, D.; Todeschini, R. Comments on the Definition of the Q2 Parameter for QSAR Validation. J. Chem. Inf.

Model. 2009, 49, 1669–1678. [CrossRef]
34. Consonni, V.; Todeschini, R.; Ballabio, D.; Grisoni, F. On the Misleading Use of QF32 for QSAR Model Comparison. Mol. Inform.

2019, 38, 1800029. [CrossRef] [PubMed]
35. Chirico, N.; Gramatica, P. Real external predictivity of QSAR models: How to evaluate It? Comparison of different validation

criteria and proposal of using the concordance correlation coefficient. J. Chem. Inf. Model. 2011, 51, 2320–2335. [CrossRef]
[PubMed]

36. Lawal, H.A.; Uzairu, A.; Uba, S. QSAR, molecular docking studies, ligand-based design and pharmacokinetic analysis on
Maternal Embryonic Leucine Zipper Kinase (MELK) inhibitors as potential anti-triple-negative breast cancer (MDA-MB-231 cell
line) drug compounds. Bull. Natl. Res. Cent. 2021, 45. [CrossRef]

37. Shukla, A.; Tyagi, R.; Meena, S.; Datta, D.; Srivastava, S.K.; Khan, F. 2D- and 3D-QSAR modelling, molecular docking and in vitro
evaluation studies on 18β-glycyrrhetinic acid derivatives against triple-negative breast cancer cell line. J. Biomol. Struct. Dyn.
2020, 38, 168–185. [CrossRef]

38. Masand, V.H.; Rastija, V. PyDescriptor: A new PyMOL plugin for calculating thousands of easily understandable molecular
descriptors. Chemom. Intell. Lab. Syst. 2017, 169, 12–18. [CrossRef]

39. Gramatica, P.; Cassani, S.; Chirico, N. QSARINS-chem: Insubria datasets and new QSAR/QSPR models for environmental
pollutants in QSARINS. J. Comput. Chem. 2014, 35, 1036–1044. [CrossRef] [PubMed]

40. Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. QSARINS: A new software for the development, analysis, and
validation of QSAR MLR models. J. Comput. Chem. 2013, 34, 2121–2132. [CrossRef]

41. OECD Validation of (Q)SAR Models–OECD. Available online: https://www.oecd.org/env/ehs/riskassessment/validationofqsarmodels.
htm (accessed on 17 July 2021).

42. OECD. Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models; OECD Series on
Testing and Assessment; No. 69; OECD Publishing: Paris, France, 2014. [CrossRef]

http://doi.org/10.1016/j.ejmech.2019.112024
http://www.ncbi.nlm.nih.gov/pubmed/31923858
http://doi.org/10.1016/j.ejmech.2019.111954
http://www.ncbi.nlm.nih.gov/pubmed/31838326
http://doi.org/10.1016/j.ejmech.2019.06.055
http://doi.org/10.1007/s40242-016-6159-6
http://doi.org/10.1016/j.ejmech.2020.112745
http://doi.org/10.4103/0975-8453.59519
http://doi.org/10.1007/s12272-015-0640-5
http://doi.org/10.1021/jm4004285
http://doi.org/10.1021/ci300084j
http://www.ncbi.nlm.nih.gov/pubmed/22721530
http://doi.org/10.1021/ci300338w
http://www.ncbi.nlm.nih.gov/pubmed/23030316
http://doi.org/10.1021/acs.jcim.5b00229
http://doi.org/10.1021/mp100423u
http://www.ncbi.nlm.nih.gov/pubmed/21370915
http://doi.org/10.1007/s00044-014-1193-8
http://doi.org/10.1002/minf.201200075
http://doi.org/10.1007/978-1-62703-059-5_21
http://doi.org/10.1021/ci900115y
http://doi.org/10.1002/minf.201800029
http://www.ncbi.nlm.nih.gov/pubmed/30142701
http://doi.org/10.1021/ci200211n
http://www.ncbi.nlm.nih.gov/pubmed/21800825
http://doi.org/10.1186/s42269-021-00541-x
http://doi.org/10.1080/07391102.2019.1570868
http://doi.org/10.1016/j.chemolab.2017.08.003
http://doi.org/10.1002/jcc.23576
http://www.ncbi.nlm.nih.gov/pubmed/24599647
http://doi.org/10.1002/jcc.23361
https://www.oecd.org/env/ehs/riskassessment/validationofqsarmodels.htm
https://www.oecd.org/env/ehs/riskassessment/validationofqsarmodels.htm
http://doi.org/10.1787/9789264085442-en


Molecules 2021, 26, 4795 15 of 15

43. Group, Q.E. The report from the expert group on (Quantitative) Structure-Activity Relationships [(Q)SARs] on the principles for
the validation of (Q)SARs. Organ. Econ. CO-OPERATION Dev. Paris 2004, 49, 206.

44. 37th Joint Meeting of the Chemicals Committee, OECD principles for the validation, for regulatory purposes, of (quantitative)
structure-activity relationship models These principles were agreed by OECD member countries at the 37. Biotechnology 2004, 3–4.
Available online: https://www.oecd.org/chemicalsafety/risk-assessment/37849783.pdf (accessed on 29 July 2021).

https://www.oecd.org/chemicalsafety/risk-assessment/37849783.pdf

	Introduction 
	Results 
	GA-MLR QSAR Models 
	Model-1.1 (Divided Set: Training Set–80% and Prediction Set–20%) 
	Model-1.2 (Divided Set: Training Set–80% and Prediction Set–20%) 


	Discussion 
	Materials and Methods 
	Dataset Selection 
	Molecular Structure Drawing and Optimization 
	Molecular Descriptor Calculation and Molecular Descriptor Pruning 
	QSAR Model–Development and Validation 

	Conclusions 
	References

