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Abstract

The organization of chromatin and modifications to the tails of histone proteins are thought to be
important in regulating the rearrangement of V, D and J gene segments, which encode
immunoglobulins and T-cell receptors. A recent study shows that methylated lysine 79 in the
core region of histone H3 also plays a role by providing a euchromatic ‘mark’ that may regulate
access of the V(D)J recombinase. 
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The organization of DNA into chromatin allows dense pack-

aging of the genetic material and protects it against damage.

Chromatin packaging also allows functional organization of

the genome into active regions of ‘open’ euchromatin, which

are accessible to regulatory factors, and silent regions of con-

densed heterochromatin [1,2]. The reversible switch from

euchromatin to heterochromatin provides a means of con-

trolling processes occurring on the DNA, such as replication

and transcription, and has been proposed - in the so-called

‘accessibility hypothesis’ - to be crucial for regulating V(D)J

recombination during immune-system development [3].

During V(D)J recombination, gene segments that encode

variable receptors within the immune system are recom-

bined and newly assembled to allow expression of distinct

immunoglobulins or T-cell receptors (TCRs) [4,5]. The

V(D)J recombinase, a dimer of the site-specific recombina-

tion proteins RAG1 and RAG2, binds to recombination

signal sequences that flank the V, D and J gene segments

and initiates the process of cleaving the DNA sequences that

are to be rearranged. Because the same recombinase is

present in both T and B cells, but only B cells fully rearrange

their immunoglobulin loci and only T cells their TCR loci, it

has been proposed that a specific modulation of chromatin

structure might open up recombination signal sequences to

provide access for the recombinase. This ‘chromatin accessi-

bility’ model could explain lineage and allele specificity of

recombination as well as the temporal order of V(D)J

rearrangement during development. A recent study from the

Struhl and Oettinger laboratories [6] has provided new evi-

dence in support of this model.

Chromatin accessibility and V(D)J recombination
The accessibility model gained support from the observation

of close association between the processes of transcription

and recombination of unrearranged V, D and J fragments.

Deletion of cis-acting enhancer or promoter sequences fre-

quently inhibited both processes [5,7], and it was proposed

that similar molecular mechanisms might open up chro-

matin to allow access for both the transcriptional machinery

and the RAG recombinase. Many of the modifications of het-

erochromatin or euchromatin and processes involving chro-

matin that are associated with transcriptional regulation

have been considered as potential regulators of V(D)J

recombination, including CpG methylation, posttransla-

tional modifications of histone tails, for example by acetyla-

tion or methylation, and chromatin remodeling driven by

ATP-dependent Swi/Snf protein complexes. Methylation of

CpG motifs, a hallmark of heterochromatin, was the first of

these to be demonstrated to inhibit V(D)J recombination

[8], but its importance has been questioned since demethy-

lation precedes rearrangement in some, but not all, TCR and

immunoglobulin loci, and global demethylation is not suffi-

cient for recombination [9].

Acetylation of histone tails, a key event in regulating tran-

scriptional processes, was found to be closely associated



with the ability of lymphocytes to recombine their V, D and

J segments [4,7]. Acetylation of histone H3 or histone H4 is

elevated at gene segments that can recombine in a specific

cell type and is reduced at segments that cannot. Moreover,

hyperacetylation (induced, for example, by histone deacety-

lase inhibitors) rescued recombination defects caused by

the elimination of enhancer elements or of extracellular

signals that induce recombination. Furthermore, hyper-

acetylation can act in concert with ATP-driven chromatin-

remodeling complexes, such as Swi/Snf, to facilitate

RAG-mediated cleavage of V(D)J DNA sequences in vitro.

These results suggest that histone hyperacetylation pre-

cedes recombination by opening chromatin and promoting

access for the recombinase.

Modification of histone tails
Although histone acetylation probably contributes to recom-

bination, several studies [10,11] have demonstrated that

acetylation is not sufficient to grant recombination factors

access to chromatin. Thus, other chromatin modifications

must be required. There is methylation of distinct lysine

residues of histones in euchromatin versus heterochromatin.

Methylated lysine 4 marks euchromatin, and this mark is

elevated within recombinationally active TCR loci (M.S.

Krangel, personal communication), whereas methylation at

lysine 9, a heterochromatic marker, is elevated in recombi-

nationally silent regions [6], and methylated lysine 27 was

recently proposed to play a role during recombination [12].

Deficiency of the histone methyltransferase Ezh2 (enhancer

of Zeste 2) leads to reduced recombination at the most distal

V gene segments of the immunoglobulin heavy chain

(VHJ558 gene cluster), suggesting that these distal V seg-

ments are regulated differently from the ones that are closer

to the D and J segments. Absence of Ezh2 causes a global

methylation defect of histone H3 that mainly affects methy-

lation of lysine 27. The reduced recombination of distal V

gene segments correlates with a specific decrease in histone

H3 methylation at these gene segments, suggesting a func-

tional role for methylated lysine 27 in controlling access by

recombination factors. The specific recombination defect at

theVHJ558 gene cluster in Ezh2-deficient cells is reminiscent

of the one reported in cells lacking the receptor for the

cytokine interleukin (IL) 7, suggesting a potential functional

relationship between IL-7 and V(D)J recombination [13].

Indeed, IL-7 signaling enhances methylation of lysine 27 of

histone H3, indicating that cytokine signaling regulates

V(D)J recombination, in part, through the control of histone

methylation.

Modifications to core portions of histone H3 
The posttranslational histone modifications discussed so far

occur within the amino-terminal histone tails, which pro-

trude from the nucleosome core that is composed of an

octamer of the four core histones H2A, H2B, H3 and H4 and

146 base-pairs of DNA wrapped around the histones. The

‘histone code’ theory [14] suggests that different combina-

tions of histone modifications may form a code and thereby

serve as platform for the recruitment of other chromatin-

remodeling activities. Because histone tails are exposed on

the nucleosome surface, one can easily imagine how tail

modifications could fit with this model. Over the last year,

however, lysine 79, which is at the surface of the nucleoso-

mal core, has also been identified as a site of histone H3

methylation [15,16]. New evidence from the Struhl and Oet-

tinger laboratories [6] suggests that methylated lysine 79 acts

as a general marker for active chromatin and may be involved

in controlling access for recombination factors. Previously,

the Struhl laboratory [17] had identified Dot1 as a histone

methyltransferase that can methylate lysine 79 of histone H3.

In the more recent study [6], the same group determined the

methylation pattern of this residue in vivo using Saccha-

romyces cerevisiae as a model organism. Low levels of lysine

79 methylation were observed at heterochromatic regions,

such as telomeric or mating-type loci. Spreading of hete-

rochromatin caused by overexpression of Sir3 (silent infor-

mation regulator), which is involved in formation of

telomeric heterochromatin, resulted in spreading of regions

in which lysine 79 was hypomethylated, whereas disruption

of heterochromatin by Sir3 deletions resulted in increased

lysine 79 methylation. High lysine 79 methylation levels were

also found at non-heterochromatic sites that contained either

actively transcribed or inactive genomic loci. These results

support the idea that lysine 79 hypomethylation is closely

associated with heterochromatin and that hypermethylated

lysine 79 serves as a marker for euchromatin.

In order to extend this observation to mammalian species,

the authors [6] examined immunoglobulin and TCR loci in

murine progenitor B- and T-cell lines derived from mice

lacking the RAG recombinase. Because the recombinase

cannot be assembled in these cells, they are developmentally

arrested before V(D)J rearrangement and serve as models

for the regulation of chromatin accessibility. Lysine 79

methylation and lineage specificity was found to be corre-

lated: B cells, which have the potential to rearrange

immunoglobulin but not TCR genes, showed elevated lysine

79 methylation at an immunoglobulin but not a TCR locus,

whereas a reciprocal pattern was detected in T cells. Further-

more, the lysine 79 methylation pattern reflected develop-

mental stages: B and T cells that were arrested before

rearrangement of D and J segments, which are combined

first, had high lysine 79 methylation at D and J regions, but

not at their V regions, which are recombined with the joint

DJ segment later. Thus, methylation of lysine 79 precedes

V(D)J rearrangement and may be important for promoting

access to recombination signal sequences.

How is lysine 79 methylation regulated? Dot1 methylated

lysine 79 in S. cerevisiae, and mammalian homologs of Dot1

have been identified [1,16]. In contrast to most of the other
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known histone methyltransferases, Dot1 does not methylate

isolated histones but prefers nucleosomal substrates; thus,

other histone modifications are expected to influence Dot1

activity. Indeed, ubiquitination of histone H2B at lysine 123

is required for methylation of histone H3 lysine 79 in vitro

(reviewed in [1]). In addition, methylation of lysine 79 of

histone H3 shows an inverse relationship with acetylation of

lysine 16 of histone H4 [6], and hypomethylation of lysine 79

of histone H3 depends on the presence of Sir proteins,

because Sir proteins preferentially interact with unmethy-

lated lysine 79 and block further Dot1-mediated methylation

of this residue [6]. According to the authors’ model [6],

similar silencing proteins may play a role in murine cells,

where they could create a chromatin structure that inhibits

methylation by Dot1 homologs and thus prevent access of

the RAG recombinase. Alternatively, lysine 79 methylation

might prevent the association of silencing proteins with

chromatin and promote Dot1 recruitment, stimulating addi-

tional lysine 79 methylation and recombinase accessibility.

The accessibility hypothesis has been nourished over the last

few years by studies that revealed correlations between a

number of different histone modifications and the recombi-

nationally active state of specific genes. The data support the

idea that a histone code determines accessibility of chromatin

to proteins that ultimately controls V(D)J recombination.

What is the future outlook? We do not yet know how the

various chromatin-modifying activities are recruited to spe-

cific cis-acting enhancer elements, but undoubtedly addi-

tional novel histone modifications will be identified as being

closely associated with controlling access of recombination

factors to DNA. Because many of the findings to date are cor-

relative, we will have to discriminate in future which histone

modifications are truly crucial for regulating access. It will be

challenging to study the cascade of events that ultimately

leads to the final chromatin structure that is required for

recombinase access. If a histone code serves as a platform for

the recruitment of other chromatin-associated complexes and

proteins, such as SWI/SNF complexes, heterochromatin

protein 1 (HP1) or silencing proteins, how will these factors fit

into the cascade of events that regulates access for RAG-

mediated cleavage? Finally, will there be a universal histone

code identified that defines all recombination-competent

sites, and will this code be distinct from the code that defines

transcriptional competence? The uniqueness of the V(D)J

recombination process, which can cause serious disease when

defective, might demand a unique control mechanism. To

date, no histone modifications specific to V(D)J recombination

sites have been identified, but the search is still on.
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