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Prediction of the effect of a single-nucleotide variant (SNV) in an intronic region on
aberrant pre-mRNA splicing is challenging except for an SNV affecting the canonical
GU/AG splice sites (ss). To predict pathogenicity of SNVs at intronic positions −50
(Int-50) to −3 (Int-3) close to the 3’ ss, we developed light gradient boosting
machine (LightGBM)-based IntSplice2 models using pathogenic SNVs in the human
gene mutation database (HGMD) and ClinVar and common SNVs in dbSNP with
0.01 ≤ minor allelic frequency (MAF) < 0.50. The LightGBM models were generated
using features representing splicing cis-elements. The average recall/sensitivity and
specificity of IntSplice2 by fivefold cross-validation (CV) of the training dataset were
0.764 and 0.884, respectively. The recall/sensitivity of IntSplice2 was lower than the
average recall/sensitivity of 0.800 of IntSplice that we previously made with support
vector machine (SVM) modeling for the same intronic positions. In contrast, the
specificity of IntSplice2 was higher than the average specificity of 0.849 of IntSplice.
For benchmarking (BM) of IntSplice2 with IntSplice, we made a test dataset that was
not used to train IntSplice. After excluding the test dataset from the training dataset,
we generated IntSplice2-BM and compared it with IntSplice using the test dataset.
IntSplice2-BM was superior to IntSplice in all of the seven statistical measures of
accuracy, precision, recall/sensitivity, specificity, F1 score, negative predictive value
(NPV), and matthews correlation coefficient (MCC). We made the IntSplice2 web service
at https://www.med.nagoya-u.ac.jp/neurogenetics/IntSplice2.
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INTRODUCTION

RNA splicing is an essential process to generate mature mRNAs from precursor mRNAs, especially
in higher eukaryotes (Crick, 1979). RNA splicing is performed by a spliceosome complex, the
major constituents of which are five small nuclear ribonucleoproteins (snRNPs) named U1, U2,
U4, U5, and U6 (Wahl et al., 2009). In the spliceosomal E complex at the first stage of splicing, U1
snRNP binds to the 5’ splice sites (ss) spanning the “GU” dinucleotide; SF1 binds to the branch
point sequence (BPS); U2AF65 binds to the polypyrimidine tract (PPT); U2AF35 binds to the
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intron/exon boundary spanning the “AG” dinucleotide; and
accessory splicing factors like serine–arginine-rich splicing
factors (SRSFs) and heterologous nuclear ribonucleoproteins
(hnRNPs) bind to their cognate exonic/intronic sequences (Ohno
et al., 2018). Spatiotemporal regulation of the accessory splicing
factors enables tissue-specific and developmental stage-specific
regulation of alternative splicing events that are observed in 92–
94% of human multi-exon genes (Wang et al., 2008). Constitutive
and alternative splicing events are sometimes affected by single-
nucleotide variants (SNVs) located not only at “GU/AG”
dinucleotides but also at deep introns or even exons. A plethora
of tools have been reported to predict exonic SNVs that cause
aberrant splicing (Cartegni et al., 2003; Fairbrother et al., 2004;
Wang et al., 2004; Zhang and Chasin, 2004; Zhang et al.,
2005; Goren et al., 2006; Desmet et al., 2009; Divina et al.,
2009; Piva et al., 2009, 2012; Paz et al., 2010; Lim et al., 2011;
Chang et al., 2013). We previously developed a support vector
machine (SVM)-based model, IntSplice, that predicts the effects
on splicing of intronic SNVs (Int-SNVs) at positions from
intronic position −50 (Int-50) to Int-3 (Shibata et al., 2016).
The gradient boosting (GB) modeling produces competitive,
highly robust, and interpretable procedures for both regression
and classification (Friedman, 2001). In this study, we developed
IntSplice2 using newly available SNV datasets and light gradient
boosting machine (LightGBM) (Ke et al., 2017), which is a free
and open-source distributed GB framework that uses tree-based
learning algorithms.

MATERIALS AND METHODS

Annotated SNVs to Generate IntSplice2
The major pipelines of our analysis are indicated in
Supplementary Figure 1. We used the human gene mutation
database (HGMD) professional release April 2020 (Stenson et al.,
2017) with mutation category DM (disease-causing mutation)
and ClinVar release March 15, 2021 (Landrum et al., 2018) with
CLNVC = single_nucleotide_variant and intron_variant, and
CLNSIG = pathogenic to obtain pathogenic SNVs on the human
genome assembly GRCh38/hg38 (NCBI Resource Coordinators,
2018). We extracted 1,787 pathogenic SNVs located from
Int-50 to Int-3 preceding internal coding exons according to
the transcript annotations of Ensembl release 101 (Howe et al.,
2021). We then randomly extracted 1,787 common SNVs out
of 5,406 common SNVs with a minor allelic frequency (MAF)
between 0.01 and 0.50 at positions from Int-50 to Int-3 preceding
internal coding exons from dbSNP build 151 (Sherry et al., 2001)
on GRCh38/hg38 with VC = SNV (Annotated Dataset-1787 in
Supplementary Figure 1). To compare common SNVs with
MAFs < 0.50 and < 0.99 in generating IntSplice2 models, we
randomly extracted 1,787 common SNVs out of 33,252 common
SNVs with 0.01 ≤MAF < 0.99.

Features to Generate IntSplice2
To make IntSplice2 models, we used essentially the same 110
features that were used to make IntSplice (Shibata et al., 2016).
Briefly, these features included exon length, the number of
pyrimidines in the PPT, the position of predicted BPS, the

sequence of predicted BPS, individual nucleotides at intron −3
and exon +1, the strength of splicing signals at the 5 and 3’
ss, and motifs of RNA-binding proteins predicted by SpliceAid
2 (Piva et al., 2012), to name a few (Supplementary Table 1).
We added these features to Annotated Dataset-1787 to make
Training Dataset-1787 (Supplementary Figure 1).

Generation and Evaluation of IntSplice2
To make IntSplice2 models using Training Dataset-1787, we first
optimized hyperparameters with Optuna (Akiba et al., 2019)
and then used LightGBM (Ke et al., 2017) with the optimized
hyperparameters on Python version 3.8. The hyperparameters
used to make an IntSplice2 model are shown in Supplementary
Table 2. We evaluated the performance of IntSplice2 models
by fivefold cross-validation (CV) with the area under the
receiver operating characteristic curve (AUROC) and the area
under the precision/recall curve (AUPR), as well as with
seven statistical measures composed of accuracy, precision,
recall/sensitivity, specificity, F1 score, negative predictive value
(NPV), and matthews correlation coefficient (MCC), which were
recommended in the Human Mutation guidelines (Vihinen,
2013; Grimm et al., 2015).

Generation of IntSplice2-BM to Be
Compared With IntSplice
For benchmarking (BM) the performance of LightGBM-based
IntSplice2 against that of SVM-based IntSplice, we made Test
Dataset-288 that was composed of 288 pathogenic and 288
common SNVs with 0.01 ≤ MAF < 0.50, which were not
included in the Training Dataset for IntSplice (Supplementary
Figure 1). Exclusion of Test Dataset-288 from Training Dataset-
1787 generated Training Dataset-1499. We made IntSplice2-BM
using Training Dataset-1499. Thus, Test Dataset-288 had no
circularity with either IntSplice2-BM or IntSplice. IntSplice2-BM
and IntSplice were evaluated by the seven statistical measures
in the Human Mutation guidelines (Vihinen, 2013; Grimm
et al., 2015). As SVM-based IntSplice was a binary classifier
with a fixed threshold, AUROC, and AUPR could not be
calculated for IntSplice.

RESULTS

IntSplice2 Models Generated by
LightGBM Modeling
In an effort to make a new dependable model to predict the
splicing effects of Int-SNVs at positions from Int-50 to Int-3,
we made IntSplice2 using newly available SNVs and LightGBM
modeling. We first asked whether the inclusion or exclusion of
major SNVs that are observed in more than 50% in humans
would improve the performance of generated models. We
compared IntSplice2 models generated using common SNVs
with 0.01≤MAF < 0.50 and with 0.01≤MAF < 0.99 by fivefold
CV. SNVs with MAF > 0.50 indicate that the reference nucleotide
represents a minor nucleotide. We found that common SNVs
with 0.01 ≤ MAF < 0.50 gave rise to better scores in seven out
of nine statistical measures than those with 0.01 ≤ MAF < 0.99
(Supplementary Table 3). We thus chose 0.01 ≤MAF < 0.50 to
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generate IntSplice2 (Training Dataset-1787). The seven statistical
measures (accuracy, precision, recall/sensitivity, specificity, F1
score, NPV, and MCC) of IntSplice2 by fivefold CV of the
Training Dataset-1787 are shown in Table 1. IntSplice2 exhibited
an average recall/sensitivity [true-positive rate (TPR)] of 0.764
and an average specificity of 0.884. We previously reported
that IntSplice had an average recall/sensitivity of 0.800 and an
average specificity of 0.849 (Shibata et al., 2016). Thus, IntSplice2
had a lower false-positive rate (FPR) at the cost of a higher
false-negative rate (FNR) compared to IntSplice. The receiver
operating characteristic (ROC) and precision/recall (PR) curves
of IntSplice2 by fivefold CV are shown in Figure 1. The average
AUROC and AUPR were 0.898 and 0.914, respectively. ROC and
PR curves of IntSplice could not be drawn because IntSplice
was a binary classifier with a fixed threshold (Shibata et al.,
2016). The best feature importance of IntSplice2 was “Gain of
AG dinucleotide” (Figure 2). Similarly, the following features
were ranked from second to fifth: “MaxEntScan::score3ss” (Yeo
and Burge, 2004), “G at Int-3,” “A at Int-3,” and “Shapiro
Senapathy score at the 3’ ss,” respectively. We previously reported
that “G at Int-3” is frequently observed in exons that are
alternatively skipped in the human genome (Shibata et al.,
2016). In addition, both cryo-electron microscopy and isothermal
titration calorimetry show that “G at Int-3” decreases a binding
affinity for U2AF35 (Yoshida et al., 2020).

Comparison of IntSplice2-BM Model
With the IntSplice Model
Training Dataset-1787 was divided into Test Dataset-288, which
was not used to train IntSplice, and Training Dataset-1499.
We generated the IntSplice2-BM model using Training Dataset-
1499. The average recall/sensitivity and the average specificity of
IntSplice2-BM by fivefold CV were 0.764 and 0.889, respectively.
We next compared the performances of IntSplice2-BM and
IntSplice models using Test Dataset-288 and found that all the
seven statistical measures were higher with the IntSplice2-BM
model than the IntSplice model (Table 2).

Comparison of LightGBM With Four
Other Machine Learning (ML) Methods
We next compared LightGBM with random forest (RF), SVM,
extremely randomized trees (ERT), and multilayer perceptron
(MLP). The best hyperparameters of RF, SVM, ERT, and MLP
were searched for by fivefold CV grid search, and the models
were generated using scikit-learn libraries (Pedregosa et al.,
2011) on Python version 3.8. Fivefold CV of five models
including IntSplice2 made by Training Dataset-1787 showed that
LightGBM was ranked first in six of nine statistical measures
(Supplementary Table 4A). Similarly, five additional models
including IntSplice2-BM made by Training Dataset-1499 were
evaluated by Test Dataset-288. We found that LightGBM was

TABLE 1 | Seven statistical measures indicated in the Human Mutation guidelines (Vihinen, 2013; Grimm et al., 2015) of IntSplice2 by fivefold CV of Training
Dataset-1787.

Accuracy Precision Recall/sensitivity Specificity F1 score NPV MCC

IntSplice2 0.826 0.861 0.764 0.884 0.809 0.800 0.654

Accuracy = TP+TN
TP+FP+TN+FN

Rate to predict true positives and true negatives in the whole dataset

Precision/Positive Prediciton Value (PPV) = TP
TP+FP

Rate of true positives in predicted positives

Recall/Sensitivity = TP
TP+FN

Rate of true positives in actual positives

Specificity = TN
FP+TN

Rate of true negatives in actual negatives

F1 score = 2 Precision × Recall
Precision+Recall

Harmonic mean of precision and recall. Higher precision and higher recall increase F1 score, but discrepancy between precision and recall lowers F1 score

NPV = TN
TN+FN

Rate of true negatives in predicted negatives

MCC = TP × TN−FP × FN
√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)

A correlation coefficient between the actual and predicted binary conditions while the numbers of each condition are balanced. Unlike the other parameters,
MCC balances the ratio between actual positives and actual negatives.

Confusion matrix:

Actual condition

Actual positive Actual negative

Predicted condition Predicted positive True positive (TP) False positive (FP)

Predicted negative False negative (FN) True negative (TN)
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FIGURE 1 | Evaluation of IntSplice2 by fivefold CV. (A) Five iterated and mean ROC curves with AUROCs. (B) Five iterated and mean PR curves with AUPRs.

FIGURE 2 | The top 10 important features of IntSplice2 in 110 features.
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TABLE 2 | Seven statistical measures of IntSplice2-BM and IntSplice models using Test Dataset-288, which has no circularity with the respective training datasets.

Accuracy Precision Recall/Sensitivity Specificity F1 score NPV MCC

IntSplice2-BM 0.826 0.873 0.764 0.889 0.815 0.790 0.658

IntSplice 0.802 0.854 0.729 0.875 0.787 0.764 0.611

IntSplice2-BM, which is a BM model to be compared with IntSplice, is made by Training Dataset-1499.

FIGURE 3 | A representative screenshot of the output of IntSplice2 web service. As previously reported, g.73550880G > A on chromosome 10 (GRCh37/hg19)
identified in a patient with Usher syndrome is at the ninth nucleotide from the 3’ end of intron 45 of CDH23. When a user chooses “GRCh37/hg19” and enters the
chromosome number “10” and the genomic coordinate “73550880,” the IntSplice2 web service returns the result on the same window on a browser.

ranked first in seven of nine statistical measures (Supplementary
Table 4B). Thus, LightGBM was likely to be the best modeling
method for our study.

IntSplice2 Web Service
We generated a web service of IntSplice2 at https://www.med.
nagoya-u.ac.jp/neurogenetics/IntSplice2. The IntSplice2 web
service accepts a genomic coordinate according to either
GRCh37/hg19 or GRCh38/hg38. A given coordinate is mapped to
all the annotated coding transcripts in Ensembl release 101, and
the web service program analyses all the transcripts. The program
automatically generates three possible SNVs at the coordinate
and predicts a probability of aberrant splicing, where 0 indicates
that the SNV should have no effect on splicing and 1 indicates
that the SNV should affect splicing of the downstream exon.
A probability of aberrant splicing less than 0.5 was predicted
to be a splicing-insensitive SNV, whereas that of 0.5 or more
was predicted to be a splicing-affecting SNV. When an SNV is
located at Int-50 to Int-3 of two or more transcripts, the web
service program predicts the effects on splicing for all the relevant
transcripts. Representative results are shown in Figure 3. In this
example, g.73550880G > A on chromosome 10 (GRCh37/hg19)
was predicted to cause aberrant splicing by IntSplice2. This
mutation is at intervening sequence (IVS)45−9G > A of CDH23
and activates a cryptic splice acceptor site with the insertion of
seven intronic nucleotides (von Brederlow et al., 2002).

DISCUSSION

In this study, we generated IntSplice2 using an updated dataset
of pathogenic and common SNVs with LightGBM modeling.
In contrast to IntSplice2, our previous tool IntSplice used SVM
modeling (Shibata et al., 2016). We compared LightGBM-based
IntSplice2-BM with SVM-based IntSplice by avoiding circularity
between the training and test datasets and found that all the
seven statistical measures were better in IntSplice2-BM than in
IntSplice (Table 2). We also compared LightGBM-based models
with RF-, SVM-, ERT-, and MLP-based models made by two
training datasets and found that LightGBM performed the best in

most of the nine statistical measures (Supplementary Table 4).
Thus, the modeling strategy and the training dataset that we
used in IntSplice2 were likely to have enabled us to make a
better model compared with IntSplice. The fivefold CV of the
training datasets of IntSplice and IntSplice2 showed that the
recall/sensitivity of IntSplice2 (0.764) was lower than that of
IntSplice (0.800), whereas the specificity of IntSplice2 (0.884) was
higher than that of IntSplice (0.849). IntSplice2 was generated
using 1,787 pathogenic SNVs, whereas IntSplice was generated
using 1,162 pathogenic SNVs. In general, models generated using
a larger dataset should be more dependable. In addition, we
used LightGBM modeling in IntSplice2. The higher specificity in
IntSplice2 was likely to represent that identification of splicing-
insensitive nonpathogenic SNVs became more convincing with
a larger dataset and with a newer modeling method. The
recall/sensitivity, however, was reduced at a cost of increased
specificity. The reduced recall/sensitivity may also indicate
that features associated with the splicing-affecting SNVs were
more diverse than those we predicted with 1,162 pathogenic
SNVs in IntSplice.

Recently, four prediction tools were developed using ML
approaches for Int-SNVs (Abramowicz and Gos, 2018; Rowlands
et al., 2019): RF-based TraP (Gelfman et al., 2017), GB-based
S-CAP (Jagadeesh et al., 2019), deep neural network (DNN)-
based MMSplice (Cheng et al., 2019), and RF-based RegSNPs-
intron (Lin et al., 2019). TraP predicts the effect on splicing of
Int-SNVs at any intronic positions, as well as of synonymous
exonic SNVs (Gelfman et al., 2017). S-CAP divided an intron–
exon–intron region into six subsets of 3′ intronic, 3′ AG core,
exonic, 5′ GU core, 5′ extended, and 5′ intronic regions and
made a model for each subset (Jagadeesh et al., 2019). The
prediction range of the 3′ ss intronic S-CAP model was the
same as IntSplice2. RegSNPs-intron predicts the splicing effects of
SNVs from Ex-3 to Int+7 for donor sites and from Int-13 to Ex+1
for acceptor sites (Lin et al., 2019). The training datasets and the
features used in TraP, S-CAP, and RegSNPs-intron were similar
to those in our IntSplice2 and IntSplice models. In these models,
the datasets were composed of pathogenic and common SNVs
annotated in various databases. Particularly, S-CAP, RegSNPs-
intron, IntSplice2, and IntSplice used pathogenic SNVs in the
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HGMD as annotated data and splicing cis-elements as features.
RegSNPs-intron additionally used the protein structure and
the evolutionary conservation as features. In contrast to these
models, MMSplice was a DNN-based model that was trained
by true donor and acceptor sites to predict the effects of
genetic variants on splicing (Cheng et al., 2019). We compared
IntSplice2-BM with TraP, S-CAP, and RegSNPs-intron, whose
scores were downloadable, using Test Dataset-288 and found that
the statistical measures of IntSplice2-BM were not as good as
those of the other three ML tools (Supplementary Table 5). ML
tools can be easily overestimated by the presence of circularity,
in which a subset of the training dataset is used to evaluate
the efficiency of a tool (Grimm et al., 2015; Takeda et al.,
2020). In contrast to IntSplice2-BM, TraP, S-CAP, and RegSNPs-
intron should have been trained using a substantial number
of SNVs in Test Dataset-288, which gave rise to overestimated
statistical measures. We hope that the authors of these models
will collaborate with each other to make their own models using
an identical training dataset for unbiased comparison of the ML
models without circularity.
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