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A B S T R A C T   

Gastric cancer (GC) is one of the most commonly diagnosed malignancies, threatening millions of lives world-
wide each year. Importantly, GC is a heterogeneous disease, posing a significant challenge to the selection of 
patients for more optimized therapy. Over the last decades, extensive community effort has been spent on dis-
secting the heterogeneity of GC, leading to the identification of distinct molecular subtypes that are clinically 
relevant. However, so far, no tool is publicly available for GC subtype prediction, hindering the research into GC 
subtype-specific biological mechanisms, the design of novel targeted agents, and potential clinical applications. 
To address the unmet need, we developed an R package GCclassifier for predicting GC molecular subtypes based 
on gene expression profiles. To facilitate the use by non-bioinformaticians, we also provide an interactive, user- 
friendly web server implementing the major functionalities of GCclassifier. The predictive performance of 
GCclassifier was demonstrated using case studies on multiple independent datasets.   

1. Introduction 

Gastric cancer (GC) is a leading cause of cancer-related death and 
one of the most commonly diagnosed cancers [1,2]. Surgical resection 
with subsequent adjuvant chemotherapy (CT), radiotherapy, immuno-
therapy, and targeted therapy has been proven as effective treatments 
for patients with GC, with substantial benefits in the reduction of mor-
tality [3]. However, since GC is a highly heterogeneous disease entity 
with complex genetic features, these approaches are usually accompa-
nied by overtreatment, which may result in unnecessary medical costs 
and patients’ anxieties, or undertreatment, which may lead to the 
persistence and recurrence of GC [4–8]. An effective stratification of GC 
patients is imperative to avoid such adverse outcomes [9]. 

Multiple studies on GC heterogeneity have identified distinct mo-
lecular subtypes, with comprehensive dissection of clinical characteris-
tics, biological properties, and prioritized potential druggable targets 
[10–14]. More specifically, a comprehensive study was performed by 
The Cancer Genome Atlas (TCGA) with four genomic subtypes identi-
fied: Epstein–Barr virus (EBV), microsatellite instability (MSI), genomic 
stability (GS), and chromosomal instability (CIN). The Asian Cancer 
Research Group (ACRG) performed molecular subtyping using gene 
expression profiles for 300 primary GC tumor specimens. As a result, 
ACRG identified four clinically relevant molecular subtypes, namely 
MSS (microsatellite stable)/TP53-, MSS/TP53+, MSI (microsatellite 
instability), and MSS/epithelial–mesenchymal transition (EMT), in 
which the MSS/EMT subtype was associated with the worst survival and 
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the highest recurrence rate [15]. More recently, a systematic subtyping 
study based on integrative analysis of genomic and proteomic data 
identified two distinct molecular subtypes: mesenchymal phenotype 
(MP) and epithelial phenotype (EP) [12]. The MP subtype was charac-
terized by worse overall survival (OS) and recurrence-free survival 
(RFS), lower genomic mutation, and poorer response to chemotherapy. 
These studies have identified molecular subtypes of GC with distinct 
biological features and clinical relevance, setting a strong foundation for 
better understanding the biology underlying GC subtypes and precision 
oncology. 

However, the abovementioned GC subtyping frameworks are diffi-
cult to implement due to a lack of publicly available tools, and an easy- 
to-use computational platform for GC molecular subtype prediction is 
urgently called for. To address the unmet need, we developed an R 
package GCclassifier, which utilizes publicly available gene expression 
datasets and existing classification labels to build highly concordant 
classifiers implementing the subtyping systems proposed by TCGA, 
ACRG, and MD Anderson Cancer Center. Based on independent valida-
tions on multiple public datasets, we demonstrated the accuracy and 
robustness of GCclassifier. For general applicability, we developed an 
interactive Shiny application to enable subtype prediction without 
programming, making the package more user-friendly for clinicians and 
biologists in the broad areas of GC biology and precision oncology. 

2. Materials and methods 

2.1. Data collection and processing 

Level-3 gene expression profiles for GC in the TCGA-STAD dataset 
were obtained from the University of California Santa Cruz (UCSC) Xena 
data portal [16]. The expression profiles were converted from fragments 
per kilobase million (FPKM) to transcripts per million (TPM) values, 

followed by log2-transformation. Molecular subtype classification labels 
and signature genes were downloaded from the corresponding publi-
cations to train subtyping classifiers. Curated microarray-based gene 
expression profiles and clinical information of public datasets 
(GSE26899 [12], GSE26901 [12], GSE62254 [11], GSE26942 [17] and 
GSE13861 [12]) were downloaded from Gene Expression Omnibus 
(GEO). The maximal expression level was selected if multiple probes 
were mapped to the same gene symbol, and the missing values were 
imputed by the R package ‘impute’. The detailed molecular subtype 
information of TCGA-STAD and other validation datasets were sum-
marized in Supplementary Table S1. The gene signatures used in three 
classifiers were summarized in Supplementary Table S2. 

2.2. Classifier development 

The development workflow was shown in Fig. 1A. This package 
implemented three major subtype classifiers for GC as described by 
ACRG [11], MD Anderson Cancer Center (epithelial and mesenchymal 
phenotype, EMP) [12] and TCGA [10,17]. For ACRG subtyping system, 
we utilized the identified signature genes described in the publication 
and then built a random forest classifier [18]. The classifier first 
distinguished MSI and MSS/EMT subtypes, and the remaining 
MSS/TP53- and MSS/TP53+ samples were stratified by the Youden 
index [19,20] of receiver operating characteristic curve (ROC) trained 
on the average Z-normalized expression levels of TP53 signature genes 
(MDM2 and CDKN1A) [11]. For training a classifier for the MD Anderson 
Cancer Center subtyping system, we prioritized 210 signature gene 
candidates commonly found in the microarray and RNA-seq data. Sub-
sequently, a random forest classifier was constructed using the 210-gene 
panel, and the Youden index of the ROC trained on the TCGA-STAD 
dataset was utilized to stratify the EP/MP subtypes. For the TCGA tax-
onomy, the signature genes for each subtype were downloaded [17], and 

Fig. 1. A schematic workflow illustrating the design and major functionalities of GCclassifier package. (A) Processed gene expression profiles of GC were taken as 
input, and the molecular subtypes would be predicted after data quality control, gene annotation conversion, and missing data imputation. The results of subtype 
prediction could be exported diversely either using the package or the online Shiny application depending on the used platforms. (B) Possible choices for the four 
main parameters Expr, method, idType and minPosterior are shown. 
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Fig. 2. Three case studies of EMP classification. The EMP subtypes were predicted by employing GCclassifier in GSE26899 (A), GSE26901 (B) and GSE62254 (C). The 
confusion matrices and ROC curves demonstrated high prediction accuracies and the provided evidence showed that the MP subtype was significantly associated with 
the worst RFS. In confusion matrix, true positives (TP) represent the number of correctly identified MP samples, false negatives (FN) represent the number of MP 
incorrectly classified as EP, true negatives (TN) represent the number of correctly identified EP, and false positives (FP) represent the number of EP incorrectly 
classified as MP. The definition of sensitivity is TP / (TP + FN) and specificity is TN / (TN + FP). 
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the top 200 significant genes in each subtype were selected and inter-
sected with genes in the microarray datasets to ensure cross-platform 
applicability. A random forest classifier was then trained for subtype 
prediction. The training (TCGA-STAD) and validation datasets were 
Z-normalized by R function “scale” before classifier construction and 
subtype prediction. All models were trained with default parameters in 
R package “randomForest”. The formula for Z-normalization was indi-
cated as follows: 

x∗ =
x − μ

σ  

Where x∗ denoted as new value, x as original value, μ as the mean value 
of data, and σ as the standard deviation of data. 

2.3. Data and code availability 

The GCclassifier package was written in R language and released 
under GPL-3 License. The source code and documents are publicly 
available in the GitHub repository: https://github.com/Ronlee 

12355/GCclassifier. The web tool GCclassifier was implemented as a 
Shiny application and can be freely accessed online (https://compbio-ci 
tyuhk.shinyapps.io/GCclassifier_online/). All data used in the analysis 
are publicly available in TCGA, GEO and corresponding publications. 

3. Results 

3.1. Package implementations 

The GCclassifier package was written and implemented in R language 
(version >= 4.1.0 required), consisting of four major functions:  

• classifyGC: Perform the molecular subtype prediction for the 
customized input gene expression dataset (Fig. 1B). It could auto-
matically detect whether log2-transformation should be performed, 
and missing gene expression data should be imputed. 

• classifyGC_interface: Launch the internal Shiny interactive applica-
tion in the default browser. 

Fig. 3. A case study of ACRG classification. The hypergeometric test (A) and the confusion matrix (B) of reference and predicted labels showed high prediction 
consistency in GSE62254. (C) Further survival analysis using the KM method showed that the MSS/EMT subtype was consistently associated with the worst OS 
and RFS. 
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• probe_to_symbol: Aggregate gene expression profile(s) from probeset 
IDs to gene identifiers for microarray-based datasets.  

• get_signature: Extract signature genes from a specific GC molecular 
subtyping system. 

The package includes example datasets (GSE62254 and GSE26901), 
with gene expression profiles and clinical information attached, to 
demonstrate the usage of exported functions. We also provide a com-
plete vignette documentation (Supplementary File S1), including the 
explanation of function parameters, a step-by-step guide, and package 
dependencies. 

3.2. Case studies 

To assess the predictive performance of the package, we utilized four 
publicly available datasets with corresponding subtype classification 
labels (GSE26899, GSE26901, GSE62254, GSE26942 and GSE13861). 
Using gene expression profiles of these datasets, we predicted the GC 
subtypes of matched corresponding molecular subtyping systems using 
GCclassifier and evaluated the prediction performance accordingly. For 

EMP classification, we generated ROC curves and confusion matrices to 
demonstrate the prediction performance of the assigned labels and 
predicted probabilities. The accuracy for subtype prediction was 
promising in both GSE26899 (91.40% accuracy and area under the 
curve [AUC] = 0.97) (Fig. 2A), GSE26901 (91.74% accuracy and AUC =
0.97) (Fig. 2B) and GSE62254 (95.33% accuracy and AUC = 0.99) 
(Fig. 2C) datasets. Kaplan-Meier analysis of predicted labels revealed 
consistent survival differences in RFS, with the MP subtype samples 
exhibiting worse RFS compared to EP samples (all P < 0.05, log-rank 
tests). For ACRG classification, a hypergeometric test on the 
GSE62254 dataset demonstrated a significant association (all P < 0.05) 
and high subtype prediction accuracies in overall samples (~75%) and 
each subtype (sensitivity = 100% in MSS/EMT subtype and 79.41% in 
MSI subtype, respectively) were achieved compared to reference labels 
(Fig. 3A-B). Moreover, survival analysis confirmed the consistency in 
survival outcomes, with the MSS/EMT subtype patients showing the 
worst OS (P = 5.20 × 10− 4, log-rank test) and RFS (P < 1.00 × 10− 4, 
log-rank test) (Fig. 3C). For TCGA classification, the survival outcomes 
of predicted labels on GSE26942 and MDACC (GSE26942 + GSE13861) 
datasets were compared with a previous study [17], revealing consistent 

Fig. 4. Two case studies of TCGA classification. Patients were stratified by TCGA classification labels. Survival analysis showed that the GS subtype was significantly 
associated with the worst OS and RFS in GSE26942 (A-B), and MDACC (C-D). 
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findings that the GS subtype associated with the worst OS and RFS (all 
P < 0.05, log-rank tests) in GSE26942 (Fig. 4A-B) and MDACC 
(Fig. 4C-D). In conclusion, our GCclassifier package demonstrated robust 
performance in predicting molecular subtypes across independent 
public datasets, underscoring its significance as a robust tool for GC 
subtype prediction. 

4. Discussion 

the GCclassifier package, of its first kind, presents a highly robust and 
user-friendly approach for predicting GC molecular subtypes. With its 
streamlined input requirements and flexible operational modes, this tool 
offers a wide range of potential applications for precision oncology and 
the development of subtype-specific therapeutics. The ability to operate 
within the R software environment or as an interactive webpage en-
hances its accessibility to researchers and clinicians alike. 

It is known that certain molecular classes of GC exhibit preferential 
associations with distinct Lauren histology classification subtypes, 
namely diffuse and intestinal. To further enhance the clinical credibility 
of our package, we have analyzed our test sets to examine the repro-
ducibility of the association. Consistent with the reference publications 
[11,12,17], our results showed the MP subtype, the MSS/EMT subtype 
and GS subtype patients showed a significantly higher association with 
the diffuse subtype (P < 0.05, Chi-square test) (Supplementary Fig. S1). 
These patterns corroborate with well-established findings in the field, 
thereby lending additional credence to the robustness and clinical 
relevance of our model. 

Recently, deep learning has been introduced to molecular subtyping, 
and we have explored the potential of deep learning by training a feed- 
forward multilayer artificial neural network and compared it with our 
random forest model. In the benchmark study, our random forest model 
outperformed in terms of sensitivity and accuracy (Supplementary 
Fig. S2), highlighting the robust generalization capabilities of our 
model. Deep learning models typically require a large volume of data to 
effectively learn and generalize. Considering the relatively small num-
ber of gene expression features, using a random forest model for clas-
sification suffices, as it consumes fewer computing resources compared 
to a deep learning model. Additionally, the limited size of the training 
dataset cannot guarantee the training effectiveness of a deep learning 
model. Together, our study contributes to the growing understanding 
that deep learning is not a one-size-fits-all solution and underscores the 
importance of matching the model to the dataset characteristics to 
achieve the best possible outcomes. 

Moreover, we would like to acknowledge some limitations of our 
study. First, for ACRG classification, the MSS/TP53- and MSS/ 
TP53+ subtypes were classified by the Youden index value of a two- 
gene TP53 signature, and such strategy was relatively small in terms 
of feature size compared to the other subtypes, thus hindering its ca-
pacity to discriminate the two TP53 related subtypes. Second, it is 
noteworthy to mention that the lack of reference subtype labels in the 
TCGA classification, as observed in independent studies, posed a chal-
lenge in assessing the performance of our model. Consequently, the 
ability to further substantiate the prediction reliability of our model was 
hindered. 

In summary, our findings suggest that the GCclassifier package holds 
promise in enhancing molecular subtype prediction for GC and serves as 
a valuable tool in precision oncology investigations of GC. 

Funding 

This work was supported by a grant from Guangdong Basic and 
Applied Basic Research Foundation (Project No. 2019B030302012), a 
grant from Shenzhen Science, Technology and Innovation Commission 
(Project No. 基2020N368), a startup fund (Project No. 4937084), and 
direct grant (2021.077) from the Chinese University of Hong Kong, 
grants from the Research Grants Council (Project No. 11103619, 

11103921, 14111522, 14104223, C4024-22GF, R4007-23) of the Hong 
Kong Special Administrative Region, China, awarded to Xin Wang. This 
work was also partially sponsored by Shenzhen Bay Scholars Program 
awarded to Xin Wang. 

CRediT authorship contribution statement 

Jiang Li: Conceptualization, Software, Methodology, Investigation, 
Formal analysis, Visualization, Data curation, Writing – original draft. 
Lingli He: Visualization, Writing - review & editing. Xianrui Zhang: 
Writing - review & editing. Xiang Li: Writing – review & editing. Lishi 
Wang: Writing - review & editing. Zhongxu Zhu: Writing - review & 
editing. Kai Song: Writing - review & editing. Xin Wang: Conceptual-
ization, Writing - review & editing, Funding acquisition, Project 
administration, Supervision. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The authors gratefully acknowledge the valuable contributions of all 
members of Dr. Xin Wang’s laboratory, who provided insightful feed-
back and shared their expertise in implementing the package and 
designing the Shiny webpage. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.csbj.2024.01.010. 

References 

[1] Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global 
cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide 
for 36 cancers in 185 countries. CA Cancer J Clin 2021;71:209–49. 

[2] Ilic M, Ilic I. Epidemiology of stomach cancer. World J Gastroenterol 2022;28: 
1187–203. 

[3] Joshi SS, Badgwell BD. Current treatment and recent progress in gastric cancer. CA 
Cancer J Clin 2021;71:264–79. 

[4] Bang Y-J, Kim Y-W, Yang H-K, Chung HC, Park Y-K, Lee KH, et al. Adjuvant 
capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): a 
phase 3 open-label, randomised controlled trial. Lancet 2012;379:315–21. 

[5] Aoyama T, Yoshikawa T, Watanabe T, Hayashi T, Ogata T, Cho H, et al. Survival 
and prognosticators of gastric cancer that recurs after adjuvant chemotherapy with 
S-1. Gastric Cancer 2011;14:150–4. 

[6] Smyth EC, Nilsson M, Grabsch HI, van Grieken NCT, Lordick F. Gastric cancer. 
Lancet 2020;396:635–48. 

[7] Jiang Y, Xie J, Huang W, Xi S, Li T, Chen C, et al. Overtreatment of younger adults 
with gastric cancer: More chemotherapy use with unmatched survival gains. SSRN 
Electron J 2019. https://doi.org/10.2139/ssrn.3393684. 

[8] Liu N, Molena D, Stem M, Blackford AL, Sewell DB, Lidor AO. Underutilization of 
treatment for regional gastric cancer among the elderly in the USA. J Gastrointest 
Surg 2018;22:955–63. 

[9] Ho SWT, Tan P. Dissection of gastric cancer heterogeneity for precision oncology. 
Cancer Sci 2019;110:3405–14. 

[10] Cancer Genome Atlas Research Network. Comprehensive molecular 
characterization of gastric adenocarcinoma. Nature 2014;513:202–9. 

[11] Cristescu R, Lee J, Nebozhyn M, Kim K-M, Ting JC, Wong SS, et al. Molecular 
analysis of gastric cancer identifies subtypes associated with distinct clinical 
outcomes. Nat Med 2015;21:449–56. 

[12] Oh SC, Sohn BH, Cheong J-H, Kim S-B, Lee JE, Park KC, et al. Clinical and genomic 
landscape of gastric cancer with a mesenchymal phenotype. Nat Commun 2018;9. 
https://doi.org/10.1038/s41467-018-04179-8. 

[13] Tan IB, Ivanova T, Lim KH, Ong CW, Deng N, Lee J, et al. Intrinsic subtypes of 
gastric cancer, based on gene expression pattern, predict survival and respond 
differently to chemotherapy. Gastroenterology 2011;141:476–85. , 485.e1-11. 

[14] Lei Z, Tan IB, Das K, Deng N, Zouridis H, Pattison S, et al. Identification of 
molecular subtypes of gastric cancer with different responses to PI3-kinase 
inhibitors and 5-fluorouracil. Gastroenterology 2013;145:554–65. 

[15] Liao P, Jia F, Teer JK, Knepper TC, Zhou H-H, He Y-J, et al. Geographic variation in 
molecular subtype for gastric adenocarcinoma. Gut 2019;68:1340–1. 

J. Li et al.                                                                                                                                                                                                                                         

https://doi.org/10.1016/j.csbj.2024.01.010
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref1
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref1
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref1
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref2
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref2
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref3
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref3
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref4
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref4
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref4
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref5
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref5
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref5
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref6
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref6
https://doi.org/10.2139/ssrn.3393684
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref8
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref8
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref8
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref9
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref9
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref10
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref10
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref11
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref11
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref11
https://doi.org/10.1038/s41467-018-04179-8
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref13
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref13
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref13
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref14
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref14
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref14
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref15
http://refhub.elsevier.com/S2001-0370(24)00008-4/sbref15


Computational and Structural Biotechnology Journal 23 (2024) 752–758

758
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