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The spectrum of clinical forms observed in leprosy and its pathogenesis are dictated 
by the host’s immune response against Mycobacterium leprae, the etiological agent 
of leprosy. Previous results, based on metabolomics studies, demonstrated a strong 
relationship between clinical manifestations of leprosy and alterations in the metabolism 
of ω3 and ω6 polyunsaturated fatty acids (PUFAs), and the diverse set of lipid mediators 
derived from PUFAs. PUFA-derived lipid mediators provide multiple functions during 
acute inflammation, and some lipid mediators are able to induce both pro- and anti- 
inflammatory responses as determined by the cell surface receptors being expressed, 
as well as the cell type expressing the receptors. However, little is known about how 
these compounds influence cellular immune activities during chronic granulomatous 
infectious diseases, such as leprosy. Current evidence suggests that specialized pro- 
resolving lipid mediators (SPMs) are involved in the down-modulation of the innate and 
adaptive immune response against M. leprae and that alteration in the homeostasis 
of pro-inflammatory lipid mediators versus SPMs is associated with dramatic shifts in 
the pathogenesis of leprosy. In this review, we discuss the possible consequences and 
present new hypotheses for the involvement of ω3 and ω6 PUFA metabolism in the 
pathogenesis of leprosy. A specific emphasis is placed on developing models of lipid 
mediator interactions with the innate and adaptive immune responses and the influence 
of these interactions on the outcome of leprosy.
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iNTRODUCTiON

Leprosy is a chronic granulomatous disease driven by interactions of the human host with 
Mycobacterium leprae an obligate intracellular pathogen that infects macrophages and Schwann 
cells of the peripheral nervous system. M. leprae is the only mycobacterial infection that causes 
widespread demyelinating neuropathy, which results in severe and irreversible nerve tissue damage. 
The prevalence of leprosy is gradually decreasing in many countries due to multidrug therapy (MDT) 
(1). However, the rates of new case detection remain relatively stable in developing countries (1). 
India and Brazil are the countries that exhibit the highest incidence and account for 60 and 13% of 
the global new cases of leprosy, respectively (1).

Leprosy is well known for its bi-polarization of the immune response, and it is established that 
the nature and magnitude of the host immune response against M. leprae are critical factors for the 
pathogenesis of leprosy and its varied clinical manifestations. At one end of the spectrum, tuberculoid 
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(TT) disease is typified by strong T-helper type 1 (Th1) cellular 
immunity and low bacterial load (2–4). This response promotes 
the protection against the pathogen via interferon-gamma  
(IFN-γ) activation of macrophage anti-microbicidal mechanisms 
(5). These patients also present robust T-helper type 17 (Th17) 
activity (6) that stimulates macrophages and enhances Th1 
responses (7). The other end of the spectrum, lepromatous lep-
rosy (LL), is characterized by a low or even absent Th1 response 
(8) but robust T-helper type 2 (Th2) and humoral responses. 
The diminished Th1 response in LL is partially explained by 
the highly suppressive activity of T  regulatory (Treg) cells and 
the reduced frequency of Th17 cells (4, 6). Consequently, these 
patients manifest the most severe form of the disease and are 
unable to control M. leprae growth (2). Between these two 
clinical forms, patients with intermediate immune responses 
develop borderline clinical forms: borderline tuberculoid (BT), 
borderline-borderline (BB), and borderline lepromatous (BL). 
BT patients present with a dominant IFN-γ response, and also a 
higher activity of Th17 cells (6), while BL patients exhibit T-cell 
anergy, because of the higher frequency of Treg cells (4, 6), and 
a higher production of interleukin-4 (IL-4) (9–11). Peripheral 
neuropathy can occur in all clinical forms of leprosy but is most 
pronounced in patients who present with an exacerbated acute 
immune-inflammatory response, designated type 1 reaction 
(T1R). Multiple studies indicate that pathogenic CD8+ and CD4+ 
T cell responses (12–14) and production of nitric oxide (NO) in 
M. leprae-infected macrophages are related with nerve injury in 
leprosy patients (15). Thus, the human immune response against 
M. leprae is involved with key aspects of leprosy pathogenesis.

Metabolomic-based studies reveal that M. leprae infection 
promotes several modifications in human metabolism. The most 
prominent of these metabolic changes is a correlation between 
the spectrum of clinical forms of leprosy and the metabolism of 
ω3 and ω6 polyunsaturated fatty acids (PUFAs) (16–18). Of par-
ticular interest are the PUFA-lipid mediators: prostaglandin E2 
(PGE2), prostaglandin D2 (PGD2), leukotriene B4 (LTB4), lipoxin 
A4 (LXA4), and resolvin D1 (RvD1). Both PGE2 and PGD2 are 
found in elevated levels in the sera of LL patients as compared 
to BT patients (17). Additionally, PGD2 levels are increased in 
leprosy patients with T1R, while PGE2 levels decrease in patients 
with a T1R (18). BT and LL patients have similar levels of the 
pro-resolving lipid mediators, LXA4 and RvD1 (17). However, 
when compared with healthy individuals, the levels of LXA4 and 
RvD1 are elevated in the sera of BT and LL patients. In patients 
with T1R, the level of RvD1 is significantly decreased, as is the 
ratio of LXA4/LTB4 (18).

It is well established that lipid mediators derived from the 
metabolism of ω3 and ω6 PUFAs are able to modulate the 
innate and adaptive immune responses (19–26). Thus, we posit 
that the PUFA-derived lipid mediators are important factors in 
the pathogenesis of leprosy. The objectives of this review are to 
bring together metabolic and immunological data that support 
our hypothesis and to provide an understanding of how lipid 
mediators potentially function across the spectrum of disease. 
Specifically, we will focus the review on the five lipid mediators 
(PGE2, PGD2, LTB4, LXA4, and RvD1) found to be differentially 
produced in leprosy patients (17, 18).

A BRieF Review OF THe ReLevANT 
LiPiD MeDiATORS

The ω6 PUFA, arachidonic acid (AA), is the precursor for a vari-
ety of lipid mediators (prostaglandins, leukotrienes, lipoxins, and 
thromboxanes) that exhibit immune-inflammatory functions 
(Figure 1; Table 1) (26–28). Importantly, AA can be metabolized 
by three separate pathways: cyclooxygenase (COX) pathway, 
lipoxygenase (LO) pathway, and epoxygenase pathway (the latter 
is not discussed in this review) (Figure 1) (29).

The COX pathway converts AA into prostaglandins via two 
isoforms of COX, COX-1 and COX-2 (Figure  1) (29). Both 
enzymes convert AA into PGG2, which is reduced to PGH2 
and then converted to PGD2 or PGE2 by PGD or PGE synthase, 
respectively (Figure 1) (74). PGE2 and PGD2 are involved with 
the early stages of inflammation, and it is well established that 
both lipid mediators exhibit a dual role in immune-inflammation  
due to their capacities to exert pro- and anti-inflammatory 
responses (Table 1) (38, 75). This might be partially explained 
by the fact that both prostaglandins are recognized by more 
than one prostaglandin receptor (PGE2 – EP1, EP2, EP3, and 
EP4; PGD2 – DP1 and CRTH2) (see Table 1) (19, 37, 51, 52). 
Moreover, PGD2 and its metabolites (e.g., 15d-PGJ2) are ligands 
for the peroxisome proliferator-activated receptor gamma 
(PPAR-γ) (76, 77).

The LO pathway converts AA to leukotrienes and lipoxins 
(29). The production of LXA4 and LTB4 is dependent on 5-LO 
that converts AA to leukotriene A4 (LTA4) via 5-hydroper-
oxyeicosatetraenoic acid (5-HPETE) (Figure  1) (78–82). 
Subsequently, LTA4 hydrolase (LTA4H) catalyzes the conver-
sion of LTA4 to LTB4 (83) and platelet-derived 12-LO or 15-LO 
uses LTA4 as a substrate for the production of LXA4 (Figure 1) 
(84, 85). LTB4 is involved in the initiating steps of the immune-
inflammatory response and exerts its pro-inflammatory 
functions through two G-protein-coupled receptors BLT1 and 
BLT2 (Table 1) (86). More specifically, LTB4 has the capacity to 
act as a chemoattractant for leukocytes, activate inflammatory 
cells (30), and favor Th1 and Th17 responses (Table  1) (21, 
32, 33, 87–89). In contrast, LXA4 is a specialized pro-resolving 
lipid mediator (SPM) that acts via the G-protein-coupled 
receptors ALX/FPR2 and GPR32 (Table 1) (63). An imbalance 
between the levels of LXA4 and LTB4 exacerbate the immune-
inflammatory response and/or favor pathogen survival,  
including mycobacterial infections (21, 90). Importantly, the 
SPMs promote the resolution phase of inflammation by impair-
ing the recruitment of leukocytes, stimulating the engulfment 
of apoptotic cells by phagocytes (known as efferocytosis) and 
inducing tissue repair (28, 69).

Lipid mediators derived from the essential ω3 PUFAs, 
eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) 
include the resolvins, maresins, and protectins, all of which 
are SPMs (Figure  2) (28). The E-series resolvins (resolvins 
E1 to E3) are synthesized directly from EPA, while maresins 
(maresin-1 and maresin-2), protectins (protectin-1 and neu-
roprotectin-1), and D-series resolvins (resolvins D1 to D6)  
are produced from DHA (Figure 2). However, DHA itself can be 
produced from EPA by two elongation steps, desaturation and 
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FigURe 1 | Formation of PGD2, PGE2, LTB4 and LXA4. This scheme shows that arachidonic acid (AA) is converted to several ω6 PUFA-derived lipid mediators 
through cyclooxygenase (COX) and lipoxygenase (LO) pathways. COX enzymes (constitutive COX-1 or inducible COX-2) exhibit a COX activity that incorporates two 
molecules of oxygen into AA to form PGG2 (not shown) and peroxidase activity that catalyzes a 2-electron reduction of PGG2 to PGH2. PGH2 is the direct precursor 
of PGD2 and PGE2. Formation of LTB4 occurs via the precursors 5-HPETE and LTA4. LXA4 is derived from 15-HPETE and/or LTA4. FLAP, 5-lipoxygenase-activating 
protein; LTA4H, leukotriene A4 hydrolase.
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subsequent β-oxidation in the peroxisome (91, 92). Important 
in this review is the D-series resolvins and specifically RvD1. 
This SPM has overlapping activities with LXA4 and acts via 
the same G-protein-coupled receptors, ALX/FPR2 and GPR32 
(Table 1) (63).

ANALYTiCAL APPROACHeS TO iDeNTiFY 
AND MeASURe LiPiD MeDiATORS

The identification and quantitation of PUFA-derived lipid media-
tors have been a challenge due to the small quantities produced 

within tissues and cells. Thus, highly sensitive methods of gas and 
liquid chromatography-based separations coupled with detection 
by mass spectrometry (e.g., GC–MS, GC–MS/MS, LC–MS, and 
LC–MS/MS) and immunology-based assays [enzyme-linked 
immunosorbent assay (ELISA)] have played a pivotal role in the 
analysis of lipid mediators (93, 94).

The separation of individual lipid mediators by GC or LC 
allows the analyses of multiple lipid mediators in a single biologi-
cal sample, and the detection of the lipid mediators by MS or MS/
MS provides a means for their identification and quantification 
(95). It is noted that many of the ω3 and ω6 PUFA-derived lipid 
mediators are isomers, therefore the fragmentation patterns 
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TABLe 1 | Functions of the lipid mediators discussed in this review.

Lipid mediators Receptor(s) and cell expression Functions

Leukotriene B4 BLT1 – neutrophils, monocytes/macrophages, dendritic 
cells, mast cells, effector CD8+ T cells, naive CD4+ T cells, 
differentiated T-helper type 1 (Th1), T-helper type 2 (Th2), and 
T-helper type 17 (Th17) cells, and endothelial cells (30, 31)

BLT2 – expressed ubiquitously (30, 31) 

Recruit neutrophils, monocytes and macrophages (30)

Enhance Th1 response (22)

Recruits Th1, Th2, and Th17 cells (32, 33)

Enhances TNF-α expression and also the production of pro-inflammatory  
cytokines associated with Th1 responses [interferon-gamma (IFN-γ)  
and interleukin (IL)-12] (21, 22)

Prostaglandin E2 EP1 – endothelial cells (34)

EP2 – mast cells, neutrophil, naive T cells, monocytes, 
macrophages, Th17 cells, and endothelial cells (34–37)

EP3 – platelets, mast cells, monocytes, and endothelial cells 
(34, 37)

EP4 – mast cells, eosinophils, monocytes, dendritic cells, naive 
T cells, Th1 cells, Th17 cells, B lymphocytes, and endothelial 
cells (35–37) 

Promotes local vasodilation, attraction and activation of neutrophils,  
macrophages, and mast cells at early stages of inflammation (38)

Regulates the production of IL-23 in dendritic cells (23)

Inhibits the synthesis of IL-12 in dendritic cells (19)

Impairs the proliferation of T cells (39, 40)

Regulates the production of nitric oxide (41)

Modulates Th1 cells differentiation (24, 42–44)

Promotes the expansion of T regulatory (Treg) cells (45)

Up-regulates the transcription factor FOXP3 (46)

Inhibits the activation of macrophages by IFN-γ (47)

Induces apoptosis (48, 49)

Prostaglandin D2 DP1 – mast cells, monocytes, and immature and mature 
dendritic cells (19, 50)

CRTH2 – Th2 cells, basophils, eosinophils, mast cells, 
macrophages, and dendritic cells (19, 51–54)

Promotes the myelination of neurons (55)

Induces vasodilation, erythema, edema and induration (56–58)

Down-modulates the synthesis of IL-12 in dendritic cells (19, 59)

Enhance the ability of Th2 cells to produce IL-2, IL-4, IL-5, and IL-13

Reduces the numbers of CD4+ and CD8+ T cells that produces IL-2 and  
IFN-γ (60, 61)

Induces chemotaxis of Th2 cells, eosinophils, and basophils (62)

Lipoxin A4 ALX/FPR2 and GPR32 – monocytes macrophages, neutrophils, 
and T cells (Th1, Th17, and Tregs) (26, 63)

Inhibits the recruitment of neutrophils (64)

Promotes macrophage efferocytosis (65)

Down-regulates Th1-derived cytokines like IFN-γ, TNF-α, and IL-6 (20, 21, 66, 67)

Induces the synthesis of the anti-inflammatory cytokine IL-10 (66)

Inhibits the synthesis of LTB4 (68)

Resolvin D1 ALX/FPR2 and GPR32 (see Lipoxin A4) (26, 63) Shortens resolution of inflammation

Inhibits the recruitment of leukocytes (28, 69)

Down-modulates the production of TNF-α, IL-6, IL-8, IFN-γ, and IL-12 (70–72)

Up-modulates the production of IL-10 (70)

Efferocytosis (73)

Inhibits LTB4 production (68)

Decreases the capacity of Th1 and Th17 cells to produce IFN-γ and IL-17,  
respectively; prevents Th1 and Th17 generation from naive CD4 T cells; promotes  
the de novo generation of Treg cells; and induces the expression of CTLA-4 (26)
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generated my MS/MS provide additional structural information 
over what is obtained with an accurate mass measurement (MS) 
(96). However, some isomeric lipid mediators produce similar 
fragment ion profiles. Thus, it is important to apply authentic 
standards with rigorous chromatographic separation to confirm 
the identity of specific lipid mediators. A major advantage of 
LC–MS or LC–MS/MS as compared to GC–MS or GC–MS/MS 
is that derivatization to ensure volatility of the lipid mediators 
is not required (97). Nevertheless, GC-based approaches remain 
an important tool for confirming the structure and abundance 

of lipid mediators obtained via LC–MS or LC–MS/MS analyses 
(93, 94, 98).

Enzyme-linked immunosorbent assay is an orthogonal 
approach for the quantification of lipid mediators and offers rela-
tively high sensitivity and selectivity (97). However, ELISA-based 
assays are commercially available for only certain lipid mediators, 
typically those that are best characterized for their biological 
activity. Cross-reactivity of antibodies between lipid mediators is 
a potential limitation of this technique; thus, antibody specificity 
should be checked with authentic standards (99).
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FigURe 2 | The biosynthesis of resolvin D1 (RvD1). The resolvins from the 
E-series (resolvins E1–E3) are synthesized from eicosapentaenoic acid (EPA), 
while maresins (maresin-1 and maresin-2), protectins (protectin-1 and 
neuroprotectin-1), and resolvins of the series-D (resolvins D1–D6) are 
produced from docosahexaenoic acid (DHA). RvD1 is generated from the 
sequential oxygenation of DHA, a process catalyzed by 15-lipoxygenase 
(15-LO) and 5-lipoxygenase (5-LO). The initial conversion of DHA to 
17S-HpDHA is catalyzed by 15-LO, followed a second lipoxygenation via 
5-LO, which gives a peroxide intermediate that is transformed to 7S-,8S-
epoxid-17S-hydroxy-DHA. Subsequently, the enzymatic hydrolysis of this 
compound generates the trihydroxylated product RvD1.

5

Silva  and Belisle Lipid Mediators in Leprosy

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 134

THe SPeCiALiZeD PRO-ReSOLviNg RvD1 
iN LePROSY: BAD wiTH iT, wORSe 
wiTHOUT iT

The Potential Role of RvD1 in Down-
Modulation of the immune Response  
of Leprosy
Amaral et al. revealed that sera levels of RvD1 in BT and LL leprosy 
patients were similar, but increased in comparison with the sera 
of healthy individuals (17). Interestingly, after MDT serum levels 
of RvD1 in BT and LL patients were reduced to those of healthy 
controls (17). These data indicated that RvD1 is being produced 
in response to inflammation and possibly also associated with 
the presence of the pathogen or pathogen products. However, 

induction of RvD1 production via M. leprae infection has not 
been investigated.

A comprehensive study to define the biological activity of 
the D-series resolvins (RvD1 and RvD2) and maresin-1 on the 
adaptive immune response demonstrated that these SPMs 
reduce the production of IFN-γ and IL-17 by Th1 and Th17 cells, 
respectively (26). Moreover, RvD1 was shown to promote the de 
novo generation of FoxP3+ Treg cells, the expression of CTLA-4 
(a surface marker of Treg cells) and IL-10 secretion. The similar 
levels of RvD1 in BT and LL patients, does not correlate well with 
this laboratory assessment of RvD1 activity, since BT patients 
present a strong Th1 and Th17 responses (3, 4, 6) and LL patients 
are characterized by T-cell anergy and increased frequency of Treg 
cells (4, 6). Nevertheless, it would be premature to conclude that 
RvD1 does not participate in the dichotomous immune responses 
of TT/BT and BL/LL patients. It is possible that the higher level 
of RvD1 down-modulates the Th1 immune response in TT/BT as 
well as BL/LL patients. Martins et al. demonstrated that peripheral 
mononuclear cells (PBMCs) from paucibacillary (TT/BT) leprosy 
patients possess a lower capacity to produce IFN-γ than healthy 
individuals exposed to M. leprae (3). Thus, the adaptive immune 
response in TT/BT individuals is still reduced as compared to 
healthy controls. Furthermore, it could be that RvD1 activity is 
related to the level of expression of its cognate receptors, GPR32 
and ALX/FPR2. Thus, studies that assess the presence of these 
receptors in the T cells of TT/BT and BL/LL patients are required 
to fully understand the potential influence of RvD1 on the adaptive 
immune response across the spectrum of leprosy. Polymorphisms 
in the promoter region of the ALX/FPR2 gene resulting in a 
reduced expression of this receptor are known (100, 101). Thus, it 
would also be interesting to investigate whether polymorphisms 
exist between TT/BT and BL/LL patients in the promoter or 
functional regions of the GPR32 and ALX/FPR2 genes.

RvD1 Regulation of Macrophage Activity: 
A Possible Factor That Sustains 
Paucibacillary infection
Besides the ability to reduce the activity of Th1 and Th17 cells, 
RvD1 also controls the activity of macrophages (102, 103). 
RvD1 induces efferocytosis in monocytes/macrophages (73), 
a process that engulfs apoptotic cells and is reported to play an 
important role in the clearance of Mycobacterium tuberculosis 
and Mycobacterium avium (104, 105). However, De Oliveira 
and colleagues indicated that this process might promote the 
persistence of M. leprae (106). Specifically, in the presence of  
M. leprae, efferocytosis alters the phenotype of the pro-inflammatory  
M1 macrophage toward anti-inflammatory M2 phenotype with 
increased the uptake and survival of M. leprae. Therefore, in 
paucibacillary patients, where apoptotic bodies are present in 
higher number (107, 108), efferocytosis may play an important 
role in the in vivo persistence of M. leprae. The increased levels of 
RvD1 in TT/BT patients could help drive this process (Figure 3).

Adding to the immunomodulatory activity of efferocytosis, it 
is recognized that M. leprae inhibits the capacity of macrophage 
to respond to IFN-γ stimulation (47) and impairs the production 
of pro-inflammatory cytokines (e.g., IL-6 and TNF-α) (109). 
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FigURe 3 | The proposed role of resolvin D1 (RvD1) in leprosy. (Left side) The levels of RvD1 (dotted line) are higher before the start (T0) of multidrug therapy (MDT). 
The higher levels of RvD1 are hypothesized to increase the host’s susceptibility to M. leprae infection. The increased levels of RvD1 prior to MDT could enhance the 
capacity of macrophages to engulf M. leprae antigens as well as the pathogen itself via efferocytosis. This would lead to antigen clearance, decreased antigen 
stimulation of T-helper type 1 (Th1) and T-helper type 17 (Th17) cells and favor the survival of M. leprae. Moreover, increased levels of RvD1 could directly inhibit Th1 
and Th17 cells’ response and promote the activity of T regulatory (Treg) cells. (Right side) After the start of MDT, the levels of RvD1 decrease (dotted line), while the 
abundance of M. leprae antigens increase (solid line) due to lysis and degradation of the bacilli, especially in multi-bacillary patients. The reduction of RvD1 could 
eliminate the suppression of the Th1 and Th17 responses, reduce the activation of Treg cells, and also decrease the ability of macrophages to promote efferocytosis. 
This impairment in efferocytosis would favor antigen accumulation. Thus, response to mycobacterial antigens by Th1 and Th17 cells would increase resulting in an 
immune-inflammatory response and potentially a T1R. The red color represents an intensification or increase in a process or abundance of a product, while the blue 
color symbolizes an attenuation of the process or product abundance. Arrows with solid lines indicate that a process related to the associated RvD1 level is favored, 
while an arrow with a hashed line indicates the process is not favored. (⊢) Represents inhibition of a process or activity. MΦ1 – M1, pro-inflammatory macrophages.
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Macrophages infected with M. leprae have been found to prefer-
entially prime Treg cells over Th1 or cytotoxic T cells (110). Thus, 
RvD1 may have an additive or synergistic effect on macrophage 
function that further reduces the innate responses against  
M. leprae and consequently allows the survival of the pathogen 
in leprosy patients with a robust Th1 and Th17  cells response 
(Figure 3). However, studies are required to determine whether 
RvD1 preferentially drives the response of M. leprae-infected 
macrophage, as well as enhancement of M. leprae uptake in the 
context of efferocytosis. While we would hypothesize that RvD1 
would influence macrophage polarization in the context of  
M. leprae infection, the involvement of other lipid mediators in 
this process cannot be excluded.

The Reduction of RvD1 Levels in T1R:  
The worse
T1R is a major complication in borderline leprosy patients (BT, 
BB, and BL) and occurs before, during and after MDT (111).  

The increased inflammation of T1R driven by Th1 and Th17 cells 
in skin lesions and/or nerves can result in permanent loss of nerve 
function (112, 113).

A higher bacillary load and MDT are factors associated with 
the development of T1R pathology (114–116). Thus, it has been 
hypothesized that the release of M. leprae antigens promoted 
by MDT drive an enhanced immune-inflammatory response, 
especially in multi-bacillary patients (116, 117). Interestingly, 
the levels of RvD1 in leprosy patients decrease after the conclu-
sion of MDT (17). Thus, a reduction in circulating SPM may 
remove suppressive activity being placed on Th1/Th17 cells and 
contribute to susceptibility of developing T1R in the presence of 
M. leprae antigens (Figure 3). Recently, a metabolomics study of 
sera from leprosy patients with and without T1R, and that had not 
started MDT, confirmed that the level of RvD1 was significantly 
increased (9.01-fold) in non-T1R leprosy patients as compared 
to T1R leprosy patients and healthy controls (18). These find-
ings indicate a direct correlation with reduced RvD1 levels and 
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destructive inflammation due to enhanced Th1/Th17 activity 
and revealed that reduced RvD1 production could occur during 
active disease.

As the balance of pro-inflammatory and pro-resolving lipid 
mediators are important in the development and control of 
inflammation, it is important to note that RvD1 also down-
regulates the production of the pro-inflammatory lipid mediator 
LTB4 (68). LTB4 promotes chemotaxis of Th1 (32) and Th17 cells 
(33) and enhances the production of pro-inflammatory cytokines 
associated with Th1 responses (TNF-α and IFN-γ) (22). Although 
the concentration of LTB4 in BT and LL patients are similar to 
healthy individuals (17), Silva and colleagues observed a signifi-
cantly increased level of serum LTB4 during T1R (18). Studies to 
define the mechanisms of RvD1 activity revealed that this SPM 
inhibits the translocation of 5-LO to the nucleus and this inhibits 
the synthesis of LTB4 (68). This mechanism would explain why 
the levels of LTB4 were not increased in leprosy patients without 
T1R, but with a reduction of RvD1, they become elevated in T1R 
patients. However, it does not explain why the levels of LTB4 did 
not increase after MDT in leprosy patients without T1R since this 
treatment reduced RvD1 concentrations (17). It is possible that 
therapeutic elimination of infection reduces signals and stimuli 
leading to LTB4 production, as well as those that drive RvD1 
production.

In conclusion, although increased RvD1 levels may favor  
M. leprae infection by modulating the protective innate and adap-
tive immune responses (i.e., bad with it), at the same time, RvD1 
is likely important to avoid exacerbated inflammation that may 
cause skin and nerve injuries. Once the levels of the RvD1 drop 
in a leprosy patient (e.g., because of MDT or other factors), we 
hypothesize that this increases susceptibility to pathogenic Th1 and 
Th17 responses against M. leprae antigens (i.e., worse without it).

THe BALANCe BeTweeN THe PRO-
iNFLAMMATORY LTB4 AND THe 
SPeCiALiZeD PRO-ReSOLviNg LXA4  
iN LePROSY

The Higher Levels of LXA4 in Leprosy:  
A Possible Association with the Chronic 
Nature of M. leprae infection
The study of Amaral et al. demonstrated that LXA4 is increased in 
leprosy patients (17). However, the biological function of LXA4 in 
M. leprae infection is not well understood, but has been studied 
in M. tuberculosis infection, another model of chronic infectious 
disease. In the murine model of tuberculosis, Bafica et al. showed 
that after 1 week of M. tuberculosis infection, LTB4 and LXA4 
increase in abundance as compared to uninfected animals, but the 
levels of LTB4 decrease after 10 days while those of LXA4 persist 
during chronic M. tuberculosis infection (20). Interestingly, mice 
deficient for 5-LO (5-lo−/−) did not produce LXA4 increasing the 
resistance against M. tuberculosis due to higher production of 
Th1-derived cytokines (INF-γ and IL-12). Conversely, the 5-lo−/− 
mice treated with a LXA4 analog reduce the levels of Th1 cytokines 
resulting in increased susceptibility to M. tuberculosis (20). These 
results indicate that LXA4 has a more predominant effect than 

LTB4 during M. tuberculosis infection and that a high LXA4 favors 
the mycobacterial infection. Similar to the animal studies with 
M. tuberculosis, infection of humans by M. leprae and the pres-
entation of leprosy, are associated with increased levels of LXA4, 
but not LTB4 (17). This likely reflects the capacity of an M. leprae 
infection to pass unnoticed for years (1–10 years), presumably due 
to a protective and non-pathogenic immune response. However, 
as observed for household contacts, a gradual increase in bacillary 
load and continuous exposure to antigen, down-modulates the 
immune response against M. leprae (3, 118). Thus, we hypothesize 
that the reduced capacity of the host to respond to M. leprae, even 
during an increase in the bacillary load, is exacerbated by a higher 
production of LXA4. Once this SPM and RvD1 are produced in 
sufficient amounts they would inhibit the production of LTB4 (68), 
and thus elevated levels of LXA4, together with RvD1, might favor 
the chronic infection of M. leprae.

The Link between LXA4/LTB4 Ratios and 
the expression of TNF-α in Leprosy
It is suggested that LTB4 and LXA4 modulate the expression or 
the effects of TNF-α, a pro-inflammatory cytokine involved with 
the resistance/susceptibility to leprosy (21, 22, 119). Moreover, 
an imbalance in the ratio of the pro-resolving LXA4 to pro-
inflammatory LTB4 (LXA4/LTB4) is related with a poor control 
of the immune-inflammatory response in humans (120, 121). 
Collectively, metabolomics data produced with sera of leprosy 
patients indicate that the balance between LXA4 and LTB4 is 
altered (17, 18). However, the mechanisms by which altered ratios 
of LXA4/LTB4 affect the immunopathology of leprosy remain 
undefined.

Previous works from Tobin et al. demonstrated that the LXA4/
LTB4 ratio was an important factor in susceptibility of zebrafish 
larvae to Mycobacterium marinum, due to the modulation of 
TNF-α expression (21, 88, 89). Specifically, shunting LTA4 into 
LXA4 synthesis resulted in an increase in the LXA4/LTB4 ratio 
and consequently a down-modulation of TNF-α expression (21, 
88, 89). This culminated in a high bacterial burden, death of 
infected macrophages and increase in the severity of the disease. 
In contrast, accumulation of LTB4 enhanced TNF-α expression 
and enabled macrophage control of infection, but an excess 
of TNF-α results in the necrosis of macrophages and a higher 
burden of infection (88, 89). Previous findings support a correla-
tion between the levels of TNF-α and LXA4/LTB4 ratio in leprosy 
patients. Both paucibacillary and multi-bacillary leprosy patients 
exhibited similar levels of TNF-α, LTB4 and LXA4 (11, 17, 122). 
On the other hand, leprosy patients with T1R possess a lower 
LXA4/LTB4 ratio (18), which agrees with increased inflammation 
and higher levels of TNF-α observed in these patients (123). Thus, 
the balance between pro-inflammatory and pro-resolving lipid 
mediators is important to the outcome of infection.

Furthermore, support for the importance of a LXA4/LTB4 
balance is provided through population genetics in humans (21). 
Vietnamese and Nepali individuals homozygous for a common 
promoter polymorphism at the human LTA4H locus display 
lower protection against tuberculosis and multi-bacillary leprosy, 
respectively. This polymorphism is associated with deficient (low 
activity alleles) or excessive (high activity alleles) expression of 
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FigURe 4 | The relationships between LTA4H gene polymorphisms, the LXA4/LTB4 ratios and TNF-α production to the outcome of Mycobacterium leprae infection. 
(A) Individuals homozygous for LTA4H locus with two low activity alleles display a higher concentration of LXA4 than LTB4 (high LXA4/LTB4 ratio). This would impair 
the production of TNF-α resulting in increased susceptibility to M. leprae. The higher levels of LXA4 not only inhibit the expression of TNFA but also block the 
immune-inflammatory responses. In addition, the lower levels of TNF-α do not stimulate the expression of LTA4H and therefore do not increase the synthesis of 
LTB4. (B) Subjects homozygous for LTA4H locus with two high activity alleles display a higher concentration of LTB4 than LXA4 (low LXA4/LTB4 ratio). The increased 
abundance of LTB4 stimulates the expression of TNFA and production of TNF-α. Increased levels of TNF-α further enhance expression of LTA4H. Thus, an intense 
immune-inflammatory response to M. leprae would occur resulting in damage to the host tissue. (C) Individuals heterozygous for LTA4H locus, with a high and a low 
activity allele, synthesize a balanced amount of LXA4 and LTB4 (moderated LXA4/LTB4). This results in the production of TNF-α to levels that promote an effective 
immune-inflammatory response against M. leprae and promote a balance in the LXA4/LTB4 ratio. This balance in product abundance or gene expression is 
represented by the purple font. The red font represents an increased abundance of a product or increased gene expression, while the blue font symbolizes an 
attenuation of product abundance or gene expression. Arrows with solid lines indicate that the production of a lipid mediator or cytokine is favored, while an arrow 
with a hashed line indicates that the production is not favored. (⊢)Indicates that LXA4 attenuates or impairs the expression of TNF-α.
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the LTA4H gene. Conversely, heterozygous individuals displayed 
a moderated expression of LTA4H gene and consequently a more 
balanced production of LXA4 and LTB4, due to the presence of 
both a low-activity allele and a high-activity allele (21, 88). As a 
consequence, heterozygous LTA4H individuals exhibited better 
protection against mycobacteria infection.

The connection between LTA4H and TNF-α is reciprocal, as 
TNF-α is able to modulate the expression of LTA4H (124–126). 
This suggests that the synthesis of TNF-α and the LXA4/LTB4 ratio 
could be regulated by a feedback loop generated by expression of 
TNFA and LTA4H (details in Figure 4). Interestingly, polymor-
phisms in the promoter region of the TNFA are associated with 
human susceptibility to leprosy (119, 127, 128).

Existing data strongly support the hypothesis that the LXA4/
LTB4 ratio in leprosy disease is an important factor in regulation 
of TNF-α and hence the susceptibility or resistance to M. leprae 
infection. We hypothesize that an increase in the LXA4/LTB4 ratio 
leads to lower TNF-α secretion and reduced control of M. leprae 
replication (Figure 4). However, a decrease in LXA4/LTB4 ratio 
would promote higher TNFA expression and an intense inflam-
matory response as observed for leprosy patients with T1R.

A POSSiBLe LiNK BeTweeN THe PRO/
ANTi-iNFLAMMATORY Pge2 AND PgD2 
wiTH iMMUNe PATHOLOgiCAL eveNTS 
iN LePROSY PATieNTS

Pge2: A Potential Dual Role in M. leprae 
infection
PGE2 and PGD2 are increased in LL patients (17), and previous 
studies indicate that foamy macrophages/Schwann cells, a classical 

hallmark of LL patients, are the main source of prostaglandins 
(129, 130). The higher levels of PGE2 in LL patients (17) together 
with the lower levels in T1R patients (18) suggest that PGE2 is 
related to the different clinical forms of leprosy. Indeed, this lipid 
mediator impairs the proliferation of T cells (39, 40) and inhibits 
the activation of macrophages by IFN-γ in M. leprae infection 
(47). Thus, levels of PGE2, produced by foamy macrophages/
Schwann cells, can contribute to the inhibition of Th1 responses 
against M. leprae in LL patients. This may also indicate that 
lower levels of PGE2 in T1R patients favors the exacerbated acute 
responses of Th1 cells. Moreover, PGE2 has the ability to augment 
the suppressive capacity of human CD4+CD25+ Treg cells and up-
regulate the expression of transcription factor FOXP3 (46). Garg 
and colleagues demonstrated that PGE2, but not PGD2, promotes 
the expansion of Treg cells during M. tuberculosis infection (45). 
Thus, the higher frequency of Treg cells, as well as the anergy 
of Th1 and Th17  cells in LL individuals, could be related with 
increased amounts of PGE2 secreted by foamy macrophages/
Schwann cells (Figure  5). Other mechanisms through which 
higher levels of PGE2 might affect the differentiation of Th17 
and Th1 cells in LL patients include, modulating the secretion of 
IL-23 by dendritic cells (Figure 5) (23) and impairment of IL-12 
production by dendritic cells (19).

There is evidence that at the proper concentration and in the 
presence of a co-stimulatory signal, PGE2 also stimulates Th1 
response. Yao and colleagues showed that treatment of naive 
T cells with PGE2 and antibody stimulation of CD28 induces the 
differentiation of Th1 cells (24, 44). It is well known that PGE2, 
through interaction with EP2 and EP4, inhibits the differentia-
tion of Th1 cells by increasing intracellular levels of cAMP (42, 
43). However, with a concomitant stimulation of CD28, T cells 
are rescued from the inhibitory effects of cAMP and therefore 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigURe 5 | Prostaglandin E2 is hypothesized to exhibit different functions in pauci- and multi-bacillary leprosy patients. Tuberculoid (TT)/borderline tuberculoid (BT) 
leprosy patients (top panel) display a lower concentration of PGE2 in comparison with borderline lepromatous (BL)/lepromatous leprosy (LL) patients (lower panel). 
The lower concentration of PGE2 in TT/BT patients is hypothesized to facilitate the differentiation of T-helper type 17 (Th17) cells through upregulation of interleukin 
(IL)-23 cytokine production by dendritic cells. Findings from Yao et al. (44) provide evidence that small amounts of PGE2 may favor the differentiation of T-helper type 
1 (Th1) cells in TT/BT individuals. The levels of PGE2 in TT/BT patients may also promote the production of nitric oxide (NO) in M. leprae-infected macrophages 
leading to the control of the bacterial load. In BL/LL patients M. leprae-infected foamy macrophages/Schwann cells produce a higher level of PGE2 that is 
hypothesized to inhibit the differentiation of Th1 cells through impairment of the production of IL-12p70 by dendritic cells. The higher concentration of PGD2, 
possibly secreted by foamy macrophages/Schwann cells from BL/LL patients, may also inhibit the production of IL-12p70. Additionally, the increased levels of PGE2 
could potentially inhibit the production of IL-23 in dendritic cells, thus blocking the differentiation of Th17 cells. Increased release of insulin-like growth factor I (IGF-I) 
stimulated via PGE2 might potentially inhibit NO synthesis and apoptosis. The capacity of PGE2 to prevent NO production and apoptosis favors the multiplication of 
M. leprae. The red color represents an intensification or increase in a process or abundance of a product, while the blue color symbolizes an attenuation of the 
process or product abundance. Arrows with solid lines indicate processes (production/secretion of cytokines, helper T-cell differentiation, apoptosis, and/or 
mycobacteria survival) that are favored or induced, while an arrow with a hashed line indicates processes that are not favored. (⊢) Represents inhibition of a process 
or activity.
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differentiate to Th1  cells (24). Interestingly, M. leprae antigens 
are able to reduce the expression of B7-1 and CD28 molecules 
in PBMC cultures from healthy controls (131), and the levels 
of B7-1 and CD28 molecules in BL/LL patients, but not in BT 
patients, are reduced. Therefore, the higher levels of PGE2 that 
leads to an increase in the intracellular levels of cAMP together 
with lower expression of CD28 could inhibit the differentiation 
of Th1 cells in LL patients. Conversely, BT patients that secrete 
basal levels of PGE2 and express higher levels of CD28 would be 
expected to propagate and maintain a Th1 response. T1R patients 
also exhibit a basal level of PGE2 (18). Hence, our hypothesis is 
that lower PGE2 levels promote Th1 and Th17 cell activities in BT 
and T1R patients, but in LL patients, the higher concentration of 

this prostaglandin inhibits Th1 and Th17 responses (Figure 5). 
Together, these studies highlight the controversial role of PGE2 in 
the human adaptive immune response and underscore the need 
for studies to determine other possible roles of PGE2 in leprosy.

The Control of NO Production by Pge2
The prostaglandin PGE2 has been shown to also interfere with 
the control of cell death (48) and the production of NO by 
phagocytic cells (41). Studies using an experimental animal 
model of pulmonary tuberculosis demonstrated that at the early 
phase of M. tuberculosis infection, BALB/c mice produce lower 
amounts of PGE2 and this promotes the expression of the induc-
ible form of NO synthase (iNOS). In contrast, at later stage of 
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infection, higher amounts of PGE2 are produced and inhibit the 
expression of iNOS (41). These assays support the idea that lower 
production of PGE2 favors the bacterial control, and at higher 
concentrations, PGE2 inhibits microbicidal mechanisms in the 
murine model. In line with these observations, skin lesions of 
BT leprosy patients exhibit a higher expression of iNOS than 
those of BL patients (11), and macrophages isolated from BT 
patients secrete higher concentrations of nitrite, a marker for 
iNOS activity, than macrophages derived from LL patients (132). 
Thus, we hypothesize that the lower levels of PGE2 in BT patients 
(17) directly promote the microbicidal activities of phagocytic 
cells to control M. leprae replication as well as enhance the Th1 
responses. Interestingly, the higher production of NO may cause 
nerve damage in BT patients as hypothesized in previous work 
(15). On the other hand, higher concentrations of PGE2 secreted 
by foamy macrophages/Schwann cells would inhibit these same 
antimicrobial activities and thus favor multi-bacillary disease 
(Figure 5).

Pge2 Might Differently influence Apoptosis 
in Tuberculosis and Leprosy Patients
A potential mechanism by which PGE2 would inhibit the produc-
tion of NO in LL patients is through the induction of insulin-like 
growth factor I (IGF-I). PGE2 induces the expression of IGF-I 
in murine macrophages (133) and osteoblasts (134, 135), and 
IGF-I inhibits the NOS2 pathway (136). A recent study has dem-
onstrated that increased amounts of IGF-I are found in the skin 
lesions of LL patients and that IGF-I inhibits signaling cascades 
required for NO production (137). Therefore, it is possible that 
the elevated levels of PGE2 could be linked to the inhibition of NO 
production via the induction of IGF-I in LL patients.

The production of IGF-I, possibly mediated by PGE2, may 
also promote M. leprae survival by inhibition of apoptosis. Live  
M. leprae induces the production of IGF-I in Schwann cells and 
this was found to prevent apoptosis (138). The inhibition of 
apoptosis could be a significant advantage for M. leprae since this 
mechanism of cell death promotes the presentation of mycobac-
terial antigens to T cells (139). Thus, via an IGF-I network, PGE2 
may directly impact antigen presentation and favor M. leprae 
replication (Figure 5). However, a direct functional link between 
increased IGF-I and PGE2 levels in LL individuals and apoptotic 
activity needs to be experimentally established.

It is interesting to highlight that the role of PGE2 in M. leprae 
infection may greatly differ from the function of PGE2 during  
M. tuberculosis infection. It appears that, during the early phase of 
infection, virulent M. tuberculosis (H37Rv) inhibits the synthesis 
of PGE2, by inducing synthesis of LXA4, to prevent apoptosis and 
consequently inhibit early T-cell activation and promote necrosis 
of macrophages (48, 49, 139, 140). In contrast, at the chronic 
stage, PGE2 is highly produced (41), which could control the 
bacillary load by apoptosis. Furthermore, macrophages infected 
by the avirulent strain of M. tuberculosis (H37Ra) produced 
increased levels of PGE2 (48), promoting the protection against 
mitochondrial inner membrane perturbation and induced plasma 
membrane repair, crucial processes to avoid necrosis and induce 
apoptosis (48, 49). Thus, PGE2 might be crucial for the resistance 
against M. tuberculosis but promote susceptibility to M. leprae. 

These possible differences between M. tuberculosis and M. leprae 
infections could be partially related with different modulation of 
EP1-4 receptors by the two pathogens and should be explored in 
future studies.

PgD2 in Leprosy: A Lipid Mediator 
exploited by the Pathogen or a Host 
Response to Nerve Damage
Based on the several findings regarding PGD2 and its effects on 
the modulation of T cells we suggest that PGD2 production via 
foamy macrophages/Schwann cells promotes Th2 response in LL 
patients. It is well established that PGD2 decreases the numbers 
of CD4+ and CD8+ T cells that produce IFN-γ and IL-2, through 
interactions with the DP1 receptor, while contributing to the Th2 
responses with induction of IL-4, IL-5, and IL-13 by binding the 
CRTH2 receptor (60, 61). Besides a direct effect on T cells, PGD2 
modulates the T-cell response through dendritic cells and their 
production of IL-12 (19, 59). Braga et al. has revealed that mono-
cyte-derived dendritic cells from LL patients produced less IL-12 
(25), and although a direct association has not been made, the 
decreased IL-12 levels in LL patients could be driven by increased 
PGD2 production and secretion by foamy macrophages/Schwann 
cells (Figure 5).

One observation that does not fit with the PGD2 immune sup-
pressing scenario in leprosy is that PGD2 levels increase during 
a T1R (18). T1R is considered a delayed type hypersensitivity 
(DTH) reaction (141) and several works indicate that PGD2, or 
its metabolite 15d-PGJ2 (142), is highly produced during DTH to 
control the inflammatory activity in animal models (143). Thus, 
the increasing of PGD2 in T1R patients may be a response by the 
host to control inflammation.

Individuals with acute inflammatory demyelinating polyneu-
ropathy, an autoimmune disease that directly attack the periph-
eral nerve myelin (144), have increased levels of PGD synthase 
enzyme in their cerebrospinal fluid (145). In a murine model of 
spinal cord contusion injury, the levels of PGD synthase are also 
elevated (146). Interestingly, although the expression of PGD 
synthase was never determined, COX-2 is increased during T1R 
(147, 148). Thus, an increase in PGD2 is not unexpected during 
T1R as these leprosy patients suffer the most severe nerve dam-
age. PGD2 is known to promote the myelination of neurons (55). 
In addition, mice that lack PGD synthase are unable to promote 
myelination of the neurons. These studies, as well as the fact that 
mast cells that are in close proximity to the peripheral nerve fib-
ers in the tissue are the major producers of PGD2, support the 
hypothesis that increased PGD2 is a consequence of the T1R in 
leprosy and not a driver of the pathology.

Given the potentially varied activities of PGD2 at different 
stages of leprosy, it is important to determine not only the source 
of this prostaglandin, foamy macrophages/Schwann cells versus 
mast cells, but also the receptors that bind PGD2 during the dif-
ferent manifestations of leprosy and the cells that are expressing 
these receptors. Additionally, PGD2 potentiates the formation 
of edema (56, 57), a factor that might contribute to the nerve 
damage in leprosy (149). Therefore, further studies are required 
to determine if PGD2, through edema formation, can contribute 
to the pathology of leprosy lesions.
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SUMMATiON AND CONCLUSiON

Through the multiple metabolomics studies performed with clini-
cal samples from leprosy patients it is clear that alterations in the 
metabolism of lipid mediators derived from ω3 and ω6 PUFA occur 
with this disease. However, there is a lack of research that directly 
links these lipid mediators to the breadth of immune responses 
that occur across the clinical manifestations of leprosy. Detailed 
investigations to define enzymes and biochemical pathways for 
lipid mediator synthesis, along with elucidation of lipid mediator 
receptors and mechanisms by which lipid mediators influence 
both innate and adaptive immune responses, has nevertheless 
allowed the development of well supported hypothesis on the 
function of various lipid mediators in different manifestations of 
leprosy. A common theme that has emerged from existing studies 
is that several of the lipid mediators identified in the metabolomics 
studies of leprosy patients and discussed here (RvD1, LXA4, PGE2, 
and PGD2) down-regulate the immune-inflammatory responses 
promoted by Th1 and Th17 cells and facilitate the activity and 
proliferation Treg cells. This would indicate that M. leprae might 
exploit the pro-resolving activities of lipid meditators to maintain 
a persistent infection. Nonetheless, some of these lipid media-
tors such as PGE2 and PGD2, as well as LTB4 can influence the 
protective response against M. leprae. Another emerging theme 
is that alteration of the balance between pro-inflammatory and 
pro-resolving lipid mediators has the potential to dramatically 
skew the Th1/Th17 and Treg responses in leprosy. This same 
concept also applies to variations in the relative concentration 
of individual products such as PGE2. Thus, a coordination of the 
dynamics of the lipid mediator response and that of the adaptive 
and innate immune systems seems to be a driving factor in the 
specific presentation of leprosy.

As existing and future data are interpreted to develop models 
of lipid mediator involvement in the pathology and immunol-
ogy of leprosy, it is important to consider the complexity of lipid 
mediator metabolism, and that most lipid mediators can serve 
as ligands for multiple receptors. Additionally, the spatial and 

temporal aspects of lipid mediator metabolism and receptor 
expression, along with the complementary or opposing activities 
of multiple lipid mediators must be addressed to fully elucidate 
the role lipid mediators play in leprosy. Mathematical models, as 
performed for M. tuberculosis infection (150), may be important 
to elucidate the influence PUFA-derived lipid mediator complex-
ity in disease outcomes that might occur in individuals infected 
with M. leprae. It is also important to highlight that lipid media-
tors not identified or targeted in previous metabolomics studies 
on leprosy, may also contribute to immuno-pathogenesis. Thus, 
further targeted metabolomics investigations supported by 
orthogonal approaches, such as transcriptomics and proteom-
ics, are needed to elucidate the full complement lipid mediators 
involved in leprosy and define how systemic alterations in their 
levels modify the phenotype of innate and adaptive immune 
cells in different presentations of leprosy. Future research efforts 
will not only provide an understanding of the contribution of 
lipid mediators to chronic infectious diseases but also provide 
the basis for the development of new diagnostic/prognostic 
and treatment approaches to address leprosy as a public health 
problem.
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