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Abstract: Ischemic stroke is one of the leading causes of death among the aged population in
the world. Experimental stroke models with rodents play a fundamental role in the investigation
of the mechanism and impairment of cerebral ischemia. For its celerity and veracity, the 2,3,5-
triphenyltetrazolium chloride (TTC) staining of rat brains has been extensively adopted to visualize
the infarction, which is subsequently photographed for further processing. Two important tasks
are to segment the brain regions and to compute the midline that separates the brain. This paper
investigates automatic brain extraction and hemisphere segmentation algorithms in camera-based
TTC-stained rat images. For rat brain extraction, a saliency region detection scheme on a superpixel
image is exploited to extract the brain regions from the raw complicated image. Subsequently, the
initial brain slices are refined using a parametric deformable model associated with color image
transformation. For rat hemisphere segmentation, open curve evolution guided by the gradient
vector flow in a medial subimage is developed to compute the midline. A wide variety of TTC-stained
rat brain images captured by a smartphone were produced and utilized to evaluate the proposed
segmentation frameworks. Experimental results on the segmentation of rat brains and cerebral
hemispheres indicated that the developed schemes achieved high accuracy with average Dice scores
of 92.33% and 97.15%, respectively. The established segmentation algorithms are believed to be
potential and beneficial to facilitate experimental stroke study with TTC-stained rat brain images.

Keywords: image segmentation; brain extraction; hemisphere segmentation; superpixel; saliency
map; parametric deformable model; gradient vector flow

1. Introduction

A stroke is a medical condition in which the blood supply to part of the brain is
interrupted or diminished and this prevents brain tissue from receiving oxygen and nu-
trients. Particularly, ischemic stroke, which accounts for the majority of strokes, is one of
the leading causes of death among the aged population worldwide. Cerebral ischemia
can induce many injuries including energy failure, intracellular calcium overload, and
cell death, which eventually result in the loss of neurological functions and permanent
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disabilities [1]. To understand the mechanism of cerebral ischemia, evaluate the effect of
therapeutic interventions, and study the scope of behavioral manifestations, experimental
ischemic stroke models play an essential role. Among the various models, the middle
cerebral artery occlusion (MCAO) model in rodents has been widely employed. In this
model, the middle cerebral artery is occluded to cause brain tissue ischemia, which results
in a massive amount of cell deaths, called the infarct.

In addition to magnetic resonance imaging (MRI) [2,3], 2,3,5-triphenyltetrazolium
chloride (TTC) staining has been extensively employed to visualize the infarction for
its celerity, veracity and cost effectiveness [4]. The colorless TTC reacts with the living
cells, which results in the red compound, so that the red region essentially unveils the
healthy/normal tissue. In contrast, the whiteness in the ischemic tissue reflects the absence
of living cells, which generally indicates the infarct region. Consequently, TTC staining is
powerful for the macroscopic differentiation between ischemic and non-ischemic tissue [5].
Requiring manual intervention, the image acquisition of TTC staining can be classified into
two categories: scanner-based and camera-based. Figure 1 illustrates some typical camera-
based TTC-stained rat brain images, which are captured using a modern smartphone. To
process the TTC-stained rat brain images associated with the MCAO model, the first step
is to extract the rat brain slices from the originally captured image, which usually contains
a scale and a label. To further analyze the extracted brain slice, it is required to find the
midline that separates the rat brain into two hemispheres.
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Figure 1. Representative examples of three camera-based TTC-stained rat brain images (900 × 1600) after ischemic stroke
captured by a smartphone. Each image represents an individual rat subject with the MCAO model. Each image includes
eight different rat brain slices, where the massive white regions indicate infarction.

Although there are abundant techniques in the literature for brain segmentation in
medical images, the majority are dedicated to human brain investigation in MRI. Existing
human brain segmentation methods with MR images can be broadly classified into six
categories: mathematical morphology-based [6], image intensity-based [7], deformable
model-based [8], anatomy atlas-based [9], deep learning-based [10] and hybrid meth-
ods [11]. Alternatively, some approaches are devoted to rodent brain extraction in MRI.
For example, an automatic method based on the pulse coupled neural network was pro-
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posed to crop MR images of rat brain volumes [12]. An automatic brain extraction scheme
that requires a brain template mask was introduced to extract the brain tissue in rat MR
images [13]. Unfortunately, a specific computer-aided algorithm for TTC-stained rat brain
image processing has been lacking. Manual delineation [4,14] and simple thresholding [15]
of the rat brain and hemisphere regions on numerous images have been traditionally
utilized. For example, Goldlust et al. [16] described a pipeline using thresholding and
edge detection to segment the rat brain whereas a commercial image processing program
(PhotoFinish, ZSoft Software) was adopted to manually draw the midline to bisect the
brain. The Environment for Visualizing Images (ENVI 4.5) software associated with an
image analysis tool (ImageJ, https://imagej.nih.gov/ij/) (accessed on 19 October 2021)
were employed in [17] to process rat brain images. A semi-automated analysis program
was proposed to segment rodent brain sections with TTC staining [18]. While manual
delineation is time consuming, the outcome by thresholding approaches is inaccurate and
case-dependent, which requires heavier human intervention to complete the segmentation
task. To lessen the laborious burden and obtain accurate brain segmentation, an automatic
and reliable method for brain extraction and hemisphere segmentation in TTC-stained rat
brain images is fundamental.

We have conducted a preliminary study of brain extraction and hemisphere segmen-
tation in TTC-stained rat brain images based on simple saliency detection associated with
edge detection and morphological operations [19]. From a different perspective, this paper
attempts to develop fully automatic algorithms to address the problems of brain extraction
and hemisphere segmentation starting from initially captured TTC-stained rat brain images
as shown in Figure 1. The proposed framework consists of two consecutive stages that
correspond to the two different tasks. In the first stage of brain extraction, a superpixel
oversegmentation associated with salient region detection algorithm is proposed to effi-
ciently segment the brain slices, followed by a parametric deformable model for accuracy
improvement. In the second stage of hemisphere segmentation, the midline of the brain
is obtained through brain edge detection and initial midline estimation followed by an
advanced deformable model for midline refinement. In summary, there are five and three
phases for the brain extraction and hemisphere segmentation tasks, respectively. In contrast
to our prior investigation [19], considerably distinct approaches are developed except for
the first phase of oversegmentation in the brain extraction mission. The major contributions
of the current work are summarized as follows:

1. Challenges to brain extraction and hemisphere segmentation in TTC-stained rat
images captured by a smartphone are discussed.

2. An automatic rat brain extraction algorithm in light of saliency region detection and
active contour rectification is investigated.

3. An automatic rat hemisphere segmentation scheme based on initial midline estimation
refined by the gradient vector flow is introduced.

4. Influences of light reflection and brain distortion on the segmentation accuracy are
reduced due to the proposed frameworks.

5. Massive experiments in fair comparison with competitive methods are administered
for segmentation performance evaluation.

6. A computer-aided tool is provided for closer monitoring of the rat brain region.
7. Overall rat brain processing time is reduced in contrast to manual delineation.

2. Brain Extraction
2.1. Challenges

As illustrated in Figure 1, the extraction of the individual rat brain slices from the
originally captured TTC-stained image by a smartphone is challenging according to the
following observations:

1. In addition to the stained rat brain slices, there are a scale and a label indicating the
status of the subject being experimented, both of which need to be eliminated.

2. The shape of the brains is irregular with broken and ambiguous boundaries.

https://imagej.nih.gov/ij/
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3. The colors of the brain slices range from white, pink, to cardinal with a nonuniform
distribution.

4. There are some bright stains on the brain regions due to the reflection of the moisture
in the organ.

5. The background is not clean and simple with a varying intensity distribution and a
complicated pattern of light reflection.

To address these challenges, an efficient rat brain extraction algorithm in TTC-stained
images is proposed, which consists of superpixel oversegmentation, salient feature compu-
tation, saliency trimap construction, salient region extraction, and final brain segmentation,
as described in the following.

2.2. Superpixel Oversegmentation

A superpixel is a perceptually meaningful region that comprises several pixels with
prescribed conditions, which can be employed to replace the strict structure of the pixel grid.
Features acquired from superpixels have been shown to be effective and efficient for salient
object detection [20,21]. Salient region detection has been successfully applied to many
image-processing applications including segmentation [22]. As such, our approach first
segments the TTC-stained rat brain image so that the segmented elements exhibit similar
color characteristics with comparable dimensions and salient boundaries. To achieve this,
we perform oversegmentation on the TTC-stained image to establish the set of superpixels
Z = {z1, · · · , zK}, where zi represents the ith superpixel and K is the total number of
superpixels being constructed. Considering its high efficiency and low complexity, we
utilize the simple linear iterative clustering (SLIC) method [23], which employs a k-means
clustering technique to produce superpixels. The number of superpixels is empirically set
as K = 65 to facilitate the subsequent process.

2.3. Salient Feature Computation

To retrieve each individual brain slice from the initial oversegmentation map, we
compute a series of salient features for each superpixel zi. Since our biological vision system
is highly perceptive to color contrast, a histogram-based contrast scheme is introduced to
define saliency values based on color statistics. Let ci denote the color of the i th superpixel
zi; the global color saliency is defined in light of its color contrast to all other superpixels as

GCS(zi) =
K

∑
j=1,i 6=j

∆
(
ci, cj

)
(1)

where GCS(zi) represents the global color saliency of zi and ∆
(
ci, cj

)
indicates the color

distance metric between ci and cj that corresponds to superpixels zi and zj respectively.
The metric ∆

(
ci, cj

)
is computed according to the Euclidean distance between the ith and

the jth superpixels in both the RGB and CIELab color spaces. Specifically, there are six
dimensions in the color distance computation to accommodate sharp color variation in the
TTC-stained brain image.

In addition to the global color saliency, a local color saliency feature is defined as

LCS(zi) =
K

∑
j=1,i 6=j

α
(

pi, pj

)
∆
(
ci, cj

)
(2)

where LCS(zi) represents the local color saliency of superpixel zi and α
(

pi, pj

)
denotes the

local proximity weight with

α
(

pi, pj

)
=

1
Np

exp

(
− 1

2σ2
p
‖pi − pj‖

2

)
(3)
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where Np is a normalization term, σp is the standard deviation, and pi and pj are the
coordinates of superpixels zi and zj respectively. For long distance pairs, the value of

α
(

pi, pj

)
is small, the local color saliency feature would be similar to the central peripheral

contrast. If α
(

pi, pj

)
is constant, LCS(zi) is analogous to the local contrast in [24]. In

contrast to the global color saliency, the local color saliency introduces the proximity
weight to reinforce the relevance of neighboring superpixels. This is advantageous to
aggregate adjacent superpixels into a large component in the brain region while reducing
the light reflection effect.

As the histogram is one of the most powerful saliency measures, we integrate color
histogram characteristics into a histogram-based contrast feature. This color histogram
feature is defined using the chi-square distance between different histogram pairs using
quantized colors, i.e.,

CHC(zi) =
K

∑
j=1

∑B
k=1

(
hi(k)− hj(k)

)2

hi(k) + hj(k)
(4)

where CHC(zi) represents the color histogram contrast of superpixel zi, B is the total
number of histogram bins, and hi(k) and hj(k) indicate the kth histogram bins of superpixels
zi and zj respectively.

Based on the observation of the TTC-stained rat brain images, the color of the back-
ground is generally more diversified whereas the foreground color is more concentrated,
which implies saliency. To understand the occurrence probability of each superpixel, a
feature pertinent to the spatial coordinate distribution of superpixels is defined as

SCD(zi) =
K

∑
j=1

β
(
ci, cj

)
‖pj − µi‖2 (5)

where SCD(zi) represents the spatial coordinate distribution of superpixel zi and µi sym-
bolizes the weighted mean position of zi, which is computed using

µi =
K

∑
j=1

α
(

pi, pj

)
(6)

and β
(
ci, cj

)
indicates the color affinity weight between the colors of superpixels zi and zj,

which is similar to the form of α
(

pi, pj

)
with

β
(
ci, cj

)
=

1
Nc

exp
(
− 1

2σ2
c
‖ci − cj‖2

)
(7)

where Nc is a normalization term and σc is the standard deviation for controlling the shape
of the function.

2.4. Saliency Trimap Construction

Once the saliency features for all superpixels are computed, a classification algorithm
is employed to inspect whether each region is salient or not. In respect to effectiveness and
generalization, the random forest classifier [25] is exploited. A random forest or random
decision forest is an ensemble learning scheme mainly for classification and regression.
By constructing multiple decision trees at training time, it operates in such a way that
each individual tree generates a class indicator and the class with the most votes grows
into the model’s prediction. The fundamental concept behind the random forest is to
integrate the bootstrap aggregating idea with random feature selection to maximize the
prediction accuracy. Specifically, the code provided in [26] is adopted for our random
forest classification implementation, which is trained using the image dataset with labeled
images as described in [27]. A three-class classification design is utilized because the trimap
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strategy has been commonly manipulated in matting [28] and saliency [29] methods. In our
approach, a superpixel is judged by two different thresholds to generate the trimap. If the
prediction value of a superpixel is larger than Tf , where Tf denotes the threshold for the
foreground, it is designated to the foreground class. Alternatively, if the prediction outcome
is smaller than Tb, where Tb signifies the threshold for the background, the superpixel
belongs to the background class. However, if the prediction score is in between Tf and Tb,
it is regarded as the unidentified candidate. Comparing to the strict binary map, the trimap
with an additional ambiguous class provides more reliable and flexible segmentation of
salient regions in the TTC-stained rat brain images.

2.5. Salient Region Extraction

The construction of the trimap is for initial saliency estimation, which requires further
processing to refine the three-class classification into rigid foreground and background
segmentation. This is achieved by the use of the SaliencyCut algorithm [30], which takes
the computed saliency trimap to facilitate automatic salient region segmentation. Founded
on the GrabCut [31], the SaliencyCut accomplishes automation by two enhancements:
iterative refining and adaptive fitting. Particularly, the SaliencyCut algorithm iteratively
refines the initial salient regions to handle noisy initialization given a high recall of potential
foreground regions and enables the iterative optimization process to boost the precision.
Based on the observation that regions closer to an initial salient object are presumably part
of that object, the SaliencyCut adaptively adjusts the initial condition to fit with newly
segmented salient regions. As such, the new initialization scheme in the SaliencyCut allows
the GrabCut to include adjacent salient superpixels and exclude non-salient superpixels in
the trimap of the TTC-stained rat brain image. After each GrabCut iteration, the algorithm
incorporates the restraints provided by the updated trimap into consideration to output
the final segmentation.

2.6. Final Brain Segmentation

After obtaining the TTC-stained image segmentation outcome, the rat brain regions
indicating saliency are often with ragged boundaries. This is primarily due to the fact of
inevitable bright stains inside the brain regions and around the brain surfaces, which are
caused by the light reflection effect. These bright stains exhibit quite a different color tone
from the brain so that they are excluded from the salient regions, i.e., the segmented brain
slices. In consequence, the interior bright stains result in holes in the brain regions, which
are resolved with a morphological hole-filling process

Xk = (Xk−1 ⊕ Eh) ∩Mc
s k = 1, 2, 3, . . . (8)

where ⊕ symbolizes the dilation operator, Eh is a 3× 3 symmetric structuring element of
cross, and Mc

s is the complement of Ms, which is the binary mask produced from the salient
region extraction process. This procedure terminates at iteration step k when Xk = Xk−1,
where Xk contains all the filled holes in Ms. The final segmentation mask without holes is
attained by superimposing Xk on Ms:

Mh = Xk ∪Ms (9)

where ∪ denotes the union operator and Mh is the improved segmentation mask without
interior holes.

To tackle the ragged boundary problem, a parametric deformable model is suggested.
Thanks to its simplicity and popularity, the parametric active contour (also known as
Snakes) [32], which has been broadly applied in image segmentation and object tracking,
is exploited. A snake is defined as a set of ordered points or snaxels v(s) = [x(s), y(s)],
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s ∈ [0, 1], which are usually generated counter-clockwise. A parametric active contour
advances through the spatial domain of an image to minimize the energy functional

Esnake =
∫ 1

0
Eint(v(s)) + Eext(v(s))ds (10)

where Eint and Eext denote the internal energy and external energy, respectively. The
internal energy in Equation (10) is defined as

Eint(v(s)) = α(s)|vs|2 + β(s)|vss|2 (11)

where α(s) and β(s) are weighting functions that control the tension and rigidity of the
contour, respectively. The first order derivative vs with respect to s adjusts the distance
between adjacent snaxels. During energy minimization, the second order term vss enables
the contour to resist flection.

Alternatively, the external energy in Equation (10) is designed to let the contour interact
with the image. To handle the blurred boundaries of the rat brain in the TTC-stained image, the
segmented color image Ic after the hole filling process is transformed using

Î(x, y) =

{
2Ir(x, y)− Ig(x, y)− Ib(x, y) if |Ir(x, y)− Ib(x, y)| ≤ Ts

2Ir(x, y)− Ig(x, y) + Ib(x, y) otherwise
(12)

where Î is the transformed gray scale image; Ts is a threshold; and Ir, Ig and Ib are the
red, green and blue channels of Ic respectively. Since the rat brain is primarily red, for
the blurred brain boundaries the absolute difference between the red and blue channels
should be relatively small. As such, the intensity in the brain regions is boosted whereas
the intensity in the blurred boundaries is diminished. Subsequently, the external energy is
derived from Î using

Eext(x, y) = −γ|∇[Gσ(x, y) ∗ Î(x, y)]|2 (13)

where γ is the weight, ∇ symbolizes the gradient operator, ∗ denotes the convolution
operation and Gσ(x, y) represents a 2-D Gaussian function with a standard deviation σ.
The boundary of the segmented brain mask after hole filling is utilized for the initial
contour of the proposed deformable model. The contour evolves towards the brain surface
based on Equation (10) until convergence is achieved, where the entire rat brain extraction
procedure is completed. The extracted brain slices are saved in each individual image with
a fixed dimension to facilitate subsequent processing.

3. Hemisphere Segmentation
3.1. Challenges

After extracting the rat brain slices, the next stage is performing hemisphere segmen-
tation, which is also challenging as detailed in the following:

1. Due to the manual placement of the rat brain slices, the midline is randomly oriented,
not vertically.

2. The rat brain can be seriously distorted due to the infarction of the induced stroke so
that the midline is convoluted.

3. The midline exhibits a similar color tone to its surrounding tissues and is visible in
short segments to the naked eyes.

4. There are merely few anatomically salient structures around the midline that can
provide meaningful information for the identification.

We tackle the rat hemisphere segmentation problems with the described difficulties
using a series of image processing steps containing medial subimage extraction, initial
midline detection, and final midline estimation.
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3.2. Medial Subimage Extraction

Since the midline is across the medial part of the brain, an efficient approach for
hemisphere segmentation is to restrict the processing region to the proximity of the midline.
To achieve this, in each extracted rat brain image, e.g., Figure 2a, we first compute the
center of mass using the corresponding binary mask. A rectangular subimage containing
the medial brain based on the coordinates of the center of mass with a width, w is then
computed as illustrated in Figure 2b. Herein, an appropriate size is empirically determined
by setting w = 36 pixels. In our experience, this setting suffices for the inclusion of most
midlines in the extracted subimage. If necessary, the value of w can be increased to involve
greatly convoluted midlines. To facilitate the subsequent processing, in Figure 2c, only
the red channel of the TTC-stained subimage is utilized, which is denoted as Sr. This gray
scale image is further enhanced using the adaptive histogram equalization method [33] to
increase the contrast as shown in Figure 2d and denoted as Sc.
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Figure 2. Illustration of the proposed rat hemisphere segmentation algorithm. (a) Extracted rat brain slice. (b) Segmented
medial subimage from (a). (c) Red channel image Sr of (b). (d) Enhanced image Sc of (c). (e) Edge map Se of (d). (f) Initial
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3.3. Initial Midline Detection

Subsequently, the edge map of Sc is computed using the Sobel operator and denoted
as Se. The edge map presents apparent brain borders, which are managed for the initial
midline estimation. The computation starts from the searching of the superior groove and
inferior concave points in the edge map of the subimage as illustrated in Figure 2e. In our
approach, the superior groove point is detected by searching for the lowest position from
the highest location along the superior brain boundary towards the medial axis. A vertical
line is drawn from the identified groove point to intersect the inferior brain boundary. The
inferior concave point is then detected by exploring the deepest position with the longest
length around the intersection to accommodate distorted brain shapes. As depicted in
Figure 2f, an initial straight midline is generated from the superior groove point to the
inferior concave point for further evolution.

3.4. Final Midline Estimation

Because the cerebral hemispheres are rarely symmetric, especially in ischemic rat
brains, the preceding midline usually provides no accurate estimation of the midsurface
that separates the rat brain. A parametric deformable model that is derived from snakes [32],
which is called the gradient vector flow (GVF) [34], is exploited to address this issue. The
GVF improves the traditional snake model by introducing the GVF field, which is a vector
field with v(x, y) = [u(x, y), v(x, y)] that minimizes the energy functional

EGVF =
x

µg

(
u2

x + u2
y + v2

x + v2
y

)
+
∣∣∇Sg

∣∣2∣∣v−∇Sg
∣∣2dxdy (14)
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where µg is a regularization parameter controlling the weight between the first term
and the second term in the integrand; Sg(x, y) is an edge map produced from the input
subimage Sc(x, y); and u(x, y) and v(x, y) are the vector field component in the x- and
y- axes, respectively. An open GVF contour is initialized using the straight midline as
delineated in Figure 2g. To guide the contour advancing towards the rat brain midsurface,
the GVF field is computed by solving the following Euler equations

µg∇2u−
(
u−

(
Sg
)

x

)((
Sg
)2

x +
(
Sg
)2

y

)
= 0

µg∇2v−
(

v−
(
Sg
)

y

)((
Sg
)2

x +
(
Sg
)2

y

)
= 0

(15)

where ∇2 indicates the Laplacian operator. The GVF field is interpolated from the image
edge map that reflects a kind of competition among the boundary vectors, which helps
restrict the curve evolution inside Sc. When the stopping criterion is reached, the contour
locates in the proximity of the midsurface as shown in Figure 2h. A morphological op-
eration of thinning is applied to the GVF curve to produce a one-pixel-wide contour to
reinforce segmentation accuracy, which is superimposed on the input image to separate
the rat brain as illustrated in Figure 2i. The abovementioned procedures are independently
applied to each extracted rat brain TTC-stained image.

4. Results and Discussion
4.1. Implementation and Image Acquisition

The proposed brain extraction and hemisphere segmentation algorithms in rat TTC-
stained images were implemented and programmed in MATLAB R2019a (The MathWorks
Inc. Natick, MA, USA). All experiments were executed on an Intel® Core (TM) i5-3210M
CPU @ 2.50GHz with 8 GB RAM running 64-bit Windows 10. The deformable model pa-
rameters were set as follows: α = 1.4, β = 1.4, γ = 1 and µg = 0.2. This study employed an
ischemia-reperfusion model based on MCAO on the right side with a silicon-coated nylon
filament. Different ischemic durations were designed to develop a wide range of infarcts.
Male Sprague-Dawley rats with ages of 7–9 weeks old and body weights of 180–340 g were
adopted as experimental specimens. There were 40 rats sacrificed for in vitro TTC staining
to evaluate the proposed brain extraction and hemisphere segmentation algorithms. Each
stained rat brain was cut into eight slices along the coronal direction with each slice 2 mm
in thickness. The experiments were carried out in accordance with the principles of the
Basel Declaration. All eight stained slices were coded and photographed together using a
modern smartphone (Zenfone Z00D, ASUSTeK Computer Inc., Taipei, Taiwan) located at a
fixed position for the experiments as illustrated in Figure 1.

4.2. Evaluation Metrics

We computed different similarity metrics between the segmentation and gold standard
masks to evaluate the performance of the proposed brain extraction and hemisphere
segmentation frameworks. The gold standard outlines of the brains and hemispheres were
delineated by an experienced neurologist in our team while referring to the rat brain atlas.
Particularly, the conformity metric κc was adopted to evaluate the overall accuracy by
measuring the unity subtracted by the ratio of the number of mis-segmented pixels to the
number of correctly segmented pixels using [35]

κc = 1− θFP + θFN
θTP

× 100% (16)

where θFP indicates false positives, θFN indicates false negatives, and θTP indicates true
positives. Two other global similarity metrics, Jaccard κJ [36] and Dice κD [37], were also
utilized to understand the segmentation performance with

κJ =
θTP

θTP + θFN + θFP
× 100% (17)
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and
κD =

2θTP
2θTP + θFN + θFP

× 100% (18)

Additionally, two local similarity metrics of sensitivity ηst and sensibility ηsb [35] were
employed to evaluate the degree of under-segmentation and over-segmentation using

ηst =
θTP

θTP + θFN
× 100% (19)

and
ηsb = 1− θFP

θTP + θFN
× 100% (20)

Finally, a pixel number difference measure ∆N was included to compute the absolute
difference between the pixel number of the segmentation result Ns and the pixel number
of the gold standard Ng with

∆N =
∣∣Ns − Ng

∣∣ (21)

Another pixel number distinction metric ∆F was adopted to realize the number of
wrong pixels with spatial correlation:

∆F = θFP + θFN (22)

A pixel number error ratio metric εF indicating the percentage of the pixel number
distinction to the ground truth pixel number was exploited to understand the overall
segmentation error with

εF =
∆F
Ng
× 100% (23)

4.3. Evaluation of Rat Brain Extraction

The performance of the proposed brain extraction algorithm in the experimental
image data was first evaluated. The input images were the original camera-based TTC-
stained rat brain slices as illustrated in Figure 1. The segmentation goal is to generate eight
individual brain slices per specimen from the big photographic images with complicated
scenes. Figure 3 visually demonstrates the rat brain extraction results of a representative
example (Subject 37) in comparison with the gold standard slices. To facilitate subsequent
processing, each brain slice was stored in a 480 × 320 image. It was noted that the extracted
brain slices in Figure 3a overcame the influences of light reflection and exhibited quite
clean boundaries and complete structures. Another brain extraction instance (Subject
20) is depicted in Figure 4, where the green contours represent the segmented brain
boundaries and the yellow contours indicate the gold standard outlines. The two different
contours mostly overlapped each other but with apparent distinction in some segments.
The separation distances between our automatic extraction curves and the gold standard
outlines were relatively larger as the brain regions were getting smaller, especially for the
first two slices. This is mainly because the rat brain is roughly an ellipsoid with varied
cross sections. The inevitable thickness inherited in each cut brain slice results in two
different brain sections being captured, where the top brain region is the desired target not
the bottom brain section. Particularly for the first slice, which belongs to the olfactory bulb,
the upper brain section is considerably smaller than the bottom brain section due to the
rapidly changed geometry. Since the distinction between the bottom brain section and the
background is stronger than the discrimination between the top and bottom brain sections,
the proposed rat brain extraction algorithm mistakenly selected the bottom brain boundary
as the segmentation output.
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To further understand the characteristics of the proposed algorithm and demonstrate
the difficulty of rat brain extraction in TTC-stained images, we compared our segmentation
results with two different approaches: one is the color thresholding method (CTM) [38]
and the other is the two phase segmentation (TPS) using active contours [39]. Without
available codes of rat brain extraction methods for comparison, the reasons for choosing
these two methods are that the simple CTM provides a benchmark whereas the popular
TPS enables perceiving the improvement with an advanced scheme. Figure 5 illustrates the
extracted brain slices of three different subjects using the CTM, TPS and proposed methods
along with the gold standard. The segmentation results produced by the CTM included
visible background pixels around the brain surfaces, which led to relatively larger brain
areas. Fewer background pixels were observed in the TPS brain slices comparing to the
CTM results. It was our rat brain extraction algorithm that outperformed the competitive
methods generating the brain slices that best resembled the gold standard in all scenarios.
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Figure 5. Visual comparison of brain extraction results in rat TTC-stained images using different methods. Top row: slice 1
of Subject 2. Middle row: slice 2 of Subject 20. Bottom row: slice 3 of Subject 37.

The segmentation outcomes of all brain slices of the representative examples in
Figure 5 were demonstrated in Figure 6 with 3-D view. While the CTM results exhib-
ited larger geometry differences to the gold standard, the difference was diminished by
the TPS method and further reduced by the proposed framework. Table 1 presents the
segmentation accuracy in terms of κD for the brain extraction outcomes in Figures 5 and 6,
where our scheme obtained the highest scores in all instances. Quantitative performance
assessment of all experimented methods using the 40 rat brain subjects in the acquired
dataset in light of five different evaluation metrics was summarized in Table 2. Both CTM
and TPS methods produced high average ηst scores but low average ηsb values, which
corresponded to the observation in Figures 5 and 6 that excessive background regions
were involved in the segmentation results. The proposed rat brain extraction algorithm,
in contrast, provided a much higher average ηsb score than the CTM and TPS methods,
which resulted in the greatest average κc value. Indeed, our segmentation scheme yielded
the best average scores in all performance evaluation metrics. Nevertheless, the efficacy of
the proposed method can be deteriorated if the light reflection region is tightly connected
to the brain boundaries or the light reflection region inside the brain produces a deep cave.
The computation times were approximately 0.53 s, 1.67 s and 1.52 s for the CTM, TPS and
proposed methods, respectively.

Table 1. Rat brain segmentation accuracy analyses based on κD in Figures 5 and 6.

Method Subject 2 Subject 20 Subject 37

CTM 79.54% 80.47% 76.86% 79.53% 85.22% 77.58%
TPS 82.37% 82.15% 83.22% 81.75% 90.79% 80.02%

Proposed 84.21% 94.95% 94.36% 94.34% 95.24% 93.73%
The preceding number indicates the κD value in Figure 5 and the following number for Figure 6.

Table 2. Quantitative performance analyses of the rat brain extraction methods applied to the
TTC-stained image. dataset.

Method κD(%) κJ(%) κc(%) ηst(%) ηsb(%)

CTM 78.76 ± 9.14 72.55 ± 8.34 45.12 ± 9.95 96.42 ± 2.96 71.32 ± 6.02
TPS 80.87 ± 6.86 73.54 ± 7.02 52.50 ± 8.96 96.13 ± 1.94 73.49 ± 5.02

Proposed 92.33 ± 2.18 85.78 ± 1.26 83.35 ± 2.97 97.73 ± 0.93 85.99 ± 3.12
Listed values are the average ± standard deviation.
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4.4. Evaluation of Rat Hemisphere Segmentation

After accomplishing the individual rat brain slices, an important task is to separate
the brain into two hemispheres for further processing and analysis. Figure 7 illustrates
the split left brain regions of a representative specimen using the proposed hemisphere
segmentation algorithm along with the gold standard hemisphere. The segmented left
brain slices approximately conformed to the gold standard brain surfaces with a volumetric
κD = 97.91%. Figure 8 shows the eight separated right brain regions and their 3-D
view of the same subject in Figure 7, where the segmentation contours overlapped the
gold standard contours. The midlines estimated by our framework were quite close to
the midlines delineated by the expert in most brain slices, leading to high evaluation
scores of ηst = 97.03%, ηsb = 99.83% and κc = 96.77%. It was noted that some midlines
were convoluted due to the distorted brain caused by the infarction, which increased the
difficulty of accurate segmentation. Since rat hemisphere segmentation in TTC-stained
images is a particular task and, to the best of our knowledge, no other available code has
been publically released for comparison, the uniquely developed scheme for our dataset
was evaluated by computing the abovementioned performance measure metrics based
on the gold standard. Table 3 presents the quantitative similarity evaluation scores of our
rat hemisphere segmentation results in the TTC-stained image dataset. The segmentation
accuracy of both left and right hemispheres was comparable in all performance measure
metrics, which exhibited high overall average values of κD = 97.15%, ηst = 96.51% and
ηsb = 97.83%. Finally, Table 4 summarized our hemisphere segmentation error analyses,
where the left hemisphere outcome indicated a lower average ∆N score whereas the
right hemisphere outcome revealed a smaller average ∆F score. The overall volumetric
segmentation error attained a low average εF = 5.66%.
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Figure 7. Visual evaluation of the left hemisphere segmentation results of Subject 16. (a) The proposed algorithm. (b) The
gold standard. The κD values were 93.06%, 98.29%, 97.92%, 98.22%, 98.51%, 97.53%, 99.02% and 96.52% from top left to
bottom right, respectively.
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Figure 8. Visual comparison between the rat hemisphere segmentation contours (green) and the gold standard outlines
(yellow). From top left, the κc values were 88.58%, 97.58%, 97.01%, 97.24%, 98.03%, 96.26%, 98.78% and 92.79%, respectively.
Top right: 3-D view of the segmented right hemisphere, κc = 96.77%. Bottom right: 3-D view of the segmented hemisphere
superimposed with the gold standard, κD = 98.41%.

Table 3. Quantitative performance analyses of the rat hemisphere segmentation results in the TTC-
stained image dataset based on similarity measure metrics.

Hemisphere κD(%) κJ(%) κc(%) ηst(%) ηsb (%)

Left 96.94 ± 0.83 94.07 ± 1.56 93.66 ± 1.78 96.63 ± 1.44 97.26 ± 1.53
Right 97.37 ± 0.76 94.88 ± 1.43 94.58 ± 1.61 96.39 ± 1.55 98.40 ± 1.32

Overall 97.15 ± 0.82 94.47 ± 1.54 94.12 ± 1.75 96.51 ± 1.49 97.83 ± 1.53
Listed values are the average ± standard deviation.
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Table 4. Quantitative performance evaluation of the rat hemisphere segmentation results in the TTC-stained image dataset
based on error analysis metrics.

Hemisphere Ns Ng ∆N ∆F εF (%)

Left 172,566 ± 138,157 173,566 ± 138,805 3574 ± 3567 9781 ± 6949 6.11 ± 1.66
Right 172,570 ± 136,660 175,326 ± 137,243 3853 ± 4136 8668 ± 6508 5.21 ± 1.48

Overall 3714 ± 3831 9224 ± 6698 5.66 ± 1.63

Listed values are the average ± standard deviation.

Thanks to the stimulation of the assistance in experimental stroke investigation with
TTC-stained rat images, we exclusively developed brain extraction and hemisphere seg-
mentation algorithms in this work. To manage the raw TTC-stained image data captured by
a smartphone and to handle the light reflection and background noise issues caused by the
camera sensor, the brain extraction framework consisted of five different processing phases.
By aggregating similar pixels into superpixels, the subsequent application of the salient
region extraction scheme efficiently separated the brain foreground from the complicated
background while reducing the influence of the sensor-related headaches. To eliminate the
thickness regions contained in the initial brain extraction results, the parametric deformable
model associated with the color image transformation scheme adequately achieved rat
brain refinements as demonstrated in Figures 3 and 4. Qualitative and quantitative com-
parisons between the proposed approach and other competitive methods further validated
the effectiveness of our tactics as presented in Figures 5 and 6 as well as Tables 1 and 2,
respectively. On the other hand, three different phases were designed in the hemisphere
segmentation framework to deal with the difficulty of the midline computation. By re-
stricting the estimation in the medial subimage followed by the GVF model, more accurate
hemisphere segmentation results were acquired as shown in Figures 7 and 8, and evaluated
in Tables 3 and 4. Lastly, the average hemisphere segmentation processing time was 0.85 s.

5. Conclusions

Devoted to brain extraction and hemisphere segmentation in TTC-stained rat images,
this paper introduced various strategies to tackle these two individual tasks. To diminish
the influence caused by the optical and sensor-related issues, the proposed rat brain
extraction algorithm was founded on the integration of superpixel saliency detection and
parametric contour segmentation. For rat hemisphere segmentation, open curve evolution
guided by the gradient vector flow in a restricted subimage was exploited. A wide variety
of TTC-stained rat brain images captured by a smartphone were generated and employed
to evaluate our established frameworks. Experimental results on the segmentation of rat
brains and cerebral hemispheres suggested high segmentation accuracy. The developed
segmentation algorithms are promising and beneficial in facilitating experimental stroke
studies with TTC-stained rat brain images. It is worth investigating the discrimination
between the desired brain surfaces and the color tone-oriented segmentation to diminish
the gap between human interpretation and machine recognition.
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