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Abstract: Palmitic acid (PA) is the most abundant saturated fatty acid in human milk, where it is
heavily concentrated in the sn-2-position (termed beta palmitate, BPA) and as such is conserved in all
women, regardless of their diet or ethnicity, indicating its physiological and metabolic importance.
We hypothesized that BPA improves the efficiency of nutrition-induced catch up growth as compared
to sn-1,3 PA, which is present in vegetable oil. Pre-pubertal male rats were subjected to a 17 days food
restriction followed by re-feeding for nine days with 1,3 PA or BPA-containing diets. We measured
bone length, epiphyseal growth plate height (EGP, histology), bone quality (micro-CT and 3-point
bending assay), and gene expression (Affymetrix). The BPA-containing diet improved most growth
parameters: humeri length and EGP height were greater in the BPA-fed animals. Further analysis of
the EGP revealed that the hypertrophic zone was significantly higher in the BPA group. In addition,
Affymetrix analysis revealed that the diet affected the expression of several genes in the liver and
EGP. Despite the very subtle difference between the diets and the short re-feeding period, we found a
small but significant improvement in most growth parameters in the BPA-fed rats. This pre-clinical
study may have important implications, especially for children with growth disorders and children
with special nutritional needs.
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1. Introduction

Human milk is considered the gold standard in infant feeding [1]. While the benefits of milk and its
products are generally well-established in infants, a growing number of studies focused on the positive
effects of dairy products and milk proteins on linear growth in children. In recent years researchers
focus on the question of what specifically makes milk so effective (see review [2]). In addition to
the immunomodulatory components (nucleotides, prebiotics, oligosaccharides, and probiotics) and
other essential components with metabolic and other physiological functions (polyunsaturated fatty
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acids, carnitine, choline, taurine, minerals, and vitamins), the fatty components of human milk and its
substitutes are drawing increasing interest, also reflecting their importance later in life [3].

Fat in human breast milk provides newborns with about 50% of the energy required for
development and growth. About 98% of lipids in human milk consist of triglycerides; namely, mixtures
of three fatty acids bonded to the sn-1, sn-2, or sn-3 positions of the glycerol backbone. Palmitic acid
(PA, C16:0) is the major saturated fatty acid in human milk, accounting for 17% to 25% of the total fatty
acids, and is heavily concentrated at the sn-2-position (70–75%) [4]. Oleic acid (C18:1n-9), the major
unsaturated fatty acid, is mostly esterified at the sn-1 and sn-3 positions. Unlike the other fatty acids
in human milk, the sn-2 position of palmitic acid (beta palmitate, BPA) is conserved in all women,
regardless of their diet or ethnic background, which indicates important physiological and metabolic
implications [5].

Milk fat is digested by bile-salt-stimulated lipase and by pancreatic lipase in the intestine. This
process releases free fatty acids and 2-monoacylglycerol, which subsequently form micelles with
biliary acids and are quickly absorbed [6]. Several studies have shown that PA is best absorbed in the
form of BPA and is conserved as such through digestion, absorption, and chylomicron triacylglycerol
synthesis [7–9]. When PA is esterified at the sn-1 and sn-3 positions, its digestion leads to the production
of free PA, which tends to create complexes with dietary minerals such as calcium to form fatty acid
soaps [10]. As a result, both calcium and fatty acids are lost in the stool. According to clinical studies
in preterm and term infants as well as preclinical animal models, enriching infant formula with BPA
results in increased fat [11] and calcium absorption [12,13], reduced calcium soap formation, and
stool hardness [14–16], probably leading to less crying [17,18], improved bone quality [14,19], and an
improved gut microbiota profile [20,21]. As a growing body of evidence has suggested the positive
effects of dairy products and milk on linear growth in children and because BPA concentration is
conserved in human milk, we hypothesized that BPA directly affects the growth plate and thus plays a
role in linear growth.

Skeletal linear growth is driven by chondrocytes of the cartilaginous growth center in long bones,
termed the epiphyseal growth plate (EGP). It is controlled by complex interactions among hormones,
local growth factors, and components of the extracellular matrix (ECM). The process begins with the
proliferation of resting early chondrocytes located at the most epiphyseal end of the EGP, followed by
their extensive proliferation and alignment in columns parallel to the long axis of the bones. Thereafter,
the cells enlarge, become hypertrophic chondrocytes with high secretory activity, and finally undergo
programmed cell death or trans-differentiation to osteoblasts [22,23] with calcification of the ECM,
leading to the replacement of the cartilage scaffold with bone tissue.

In children, periods of growth attenuation are usually followed by compensatory catch-up (CU)
growth, defined as ‘height velocity above the normal statistical limits for age and/or maturity during
a defined period of time, following a transient period of growth inhibition’ [24] that returns them to
their original, genetically determined, growth trajectory. However, in many cases, depending on the
child’s age, chronic illnesses, the extent of the growth deficit, and other unknown factors, CU growth
is insufficient and a permanent growth deficit remains. One means of achieving more efficient CU
growth may be dietary supplements. Our previous study showed nutritional intervention to be feasible,
effective, and safe for promoting physical growth in short and lean pre-pubertal children [25,26].

Although the association of nutrition with linear growth is well known, the exact elements of
nutrition that are necessary for growth have not been fully elucidated [27,28]. Linear growth is an
excellent example of the fact that the utilization of food is not solely dependent on calories or the
protein/fat ratio but also on the complex organization and configuration of the individual proteins or
fatty acids. We recently reported on the effect of the different milk proteins on CU growth [29], and in
the present study we investigated if BPA can affect linear growth during CU growth. The study was
conducted in an animal model established in our laboratory [30], in which pre-pubertal male rats were
subjected to food restriction followed by re-feeding in order to establish reversible growth attenuation
and CU growth.
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2. Materials and Methods

2.1. Animals and Feeding Regimens

Experiments were performed on pre-pubertal male Sprague Dawley rats weighing 50 g on average
(purchased from Envigo Laboratories Ltd., Jerusalem, Israel). All animals were maintained under the
same experimental conditions; mean ambient temperature 22 ± 1 ◦C, mean relative humidity 50 ± 2%,
12 h light/dark cycle from 6 a.m. to 6 p.m., with free access to tap water. The animals were housed
individually to allow the monitoring of food intake. Before the start of the experiments, animals
were given three days to become accustomed to the solitary conditions, and the experiment began
at the age of 23 days. All experiments were conducted at the animal care facility of the Felsenstein
Medical Research Center in accordance and with the approval of the Institutional Animal Care and
Use Committee of Tel Aviv University.

The diets used in this study were provided by Teklad (South Easton, MA, USA). One diet contained
PA mostly in the sn-1, sn-3 configuration (Control diet-CD, TD140107), while the other, which we called
the Infat Oil (IO) diet to match the commercial name of Enzymotec, Ltd. (Enzymotec, Ltd., Migdal
HaEmeq, Israel) contained PA mostly in the sn-2 position (TD140108). All other ingredients (corn
starch, sucrose, cellulose, oil, and vitamins and minerals) were identical in both diets. The contents
were confirmed and approved by Enzymotec Ltd. (Migdal HaEmeq, Israel) upon arrival (Table S1).

2.2. Procedure

In a preliminary experiment, the tolerability of the diets was tested in two groups of individually
housed Sprague Dawley rats (n = 10 each) fed either the CD or IO diet ad libitum for 30 days. The animals
were housed in separate cages and allowed unrestricted feeding with either the CD or IO diets for 30
days; the animals were closely monitored, and none showed any sign of disease.

Next, to test whether the study diets have differential growth-stimulation effects during CU
growth, all rats were initially fed normal rat chow (2018Sc, 3.2 kcal/h; see Table S1) on a restricted
protocol (60% of the normal daily intake) for 17 days. The 40% restriction was calculated based on
previous studies in which animals were housed individually, and the amount of food consumed each
day was measured together with the animal’s weight and weight gain [30]. Body weight was measured
two to three times weekly. On day 17, the rats were randomly allocated to receive the CD or IO diet
(n = 8 each) for unrestricted re-feeding for 9 days. On day 26 of the experiment, the rats were killed
by CO2 inhalation. The animals were observed daily throughout the study, and all remained healthy
with no evidence of gastrointestinal disorder. The experiment was terminated when the rats were 49
days old in order to avoid the confounding effects of sex hormones [31], as the surge in sex hormones,
particularly estrogen, causes shrinkage of the EGP and growth cessation (in humans) or attenuation
(in rats) [32,33].

At sacrifice, blood was collected by cardiac puncture, and the serum was separated and kept at
−20 ◦C until analyzed. The internal organs were removed, weighed, and stored at −70 ◦C. Tibiae
and humeri were carefully cleaned of soft tissue and humeri were measured with a digital caliper,
and humeri were prepared for further analysis. The EGPs were collected from the tibias, snap-frozen
in liquid nitrogen, and kept at −70 ◦C.

2.3. Serum Analysis

Serum was separated by centrifugation at 450 g for 10 min at 4 ◦C and stored at −70 ◦C.
The chemical analysis of the serum was performed by American Medical Laboratories (AML) Ltd.
(Herzlia, Israel). Serum levels of insulin-like growth factor-1 (IGF-1) and leptin were measured using
commercial kits according to the manufacturer’s recommendations: Quantikine Mouse/Rat IGF-1
assay kit, detection limit 8.4 pg/mL (Cat. No. MG100, R & D Systems, Minneapolis, MN, USA);
Rat Leptin ELISA kit, detection limit 22 pg/mL (Millipore, Billerica, MA, USA).
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2.4. Measurement of Crude Liver Lipid Content (Folch Method)

Chloroform/methanol at a relative volume of 2:1 was added to 100 mg of homogenized liver
tissue. The liquid phase was washed with water and centrifuged, and the lower phase was air-dried,
weighed, and calculated per 100 mg of tissue [34].

2.5. Histological Staining and Measurement of EGP Height

The cleaned humeri (one per rat) were fixed in 4% neutral buffered formalin (NBF) for 48 h at
room temperature, decalcified with Ethylenediaminetetraacetic acid (EDTA) and hydrogen chloride
(Calci-Clear Rapid, Cat. No. HS-105, National Diagnostics, Atlanta, Georgia) for 7 h, dehydrated
through graded ethanol series (70%, 95%, 100%), and stabilized by two sequential changes of
chloroform for paraffin embedding. A general histomorphological evaluation was performed on
deparaffinized sections stained with hematoxylin-eosin and Alcian blue. EGP height was measured
from the reserve zone to the ossification front of the metaphyseal bone in stained paraffin sections of
5 µm thickness. The slides were photographed under an Olympus BX40 microscope equipped with
an Olympus DP71 camera (Olympus Optical Co. GmbH, Hamburg, Germany) and analyzed using
Image-Pro software (version 4.5.1.22, Media Cybernetics, Inc., Rockville, MD, USA).

2.6. RNA Extraction and Affymetrix Analysis

Total RNA was extracted from the liver and EGP tissues using the miReasy Mini Kit (Cat. No./ID:
217004, Qiagen, Valencia, CA, USA) according to the manufacturer’s protocol (n = 4 in each group).
The quantity and quality of the RNA were evaluated using a Nanodrop spectrophotometer (Thermo
Scientific Corp., Wilmington, DE, USA) and an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA) with values of A260/A280 >2.0 and A260/A230 >1.7 and RNA integrity number (RIN)
>6.1. Equal amounts of RNA were used for the analysis by the Rat Affymetrix Gene Chip expression
array (Rat Gene 2.X ST, Affymetrix, Thermo Scientific). The whole procedure was performed at the
Functional Genomics Unit of Tel Aviv University. Quality control approved all samples. For internal
quality control, we confirmed the differential expression of a panel of genes known to be specific for
each of the tissues (e.g., CPS-1 for the liver [35] and collagen types II and X for the EGP). Clustering
and analysis of variance (ANOVA) calculations were done using the Partek Genomics Suite, v 6.6
(Partek Inc., St. Louis, MO, USA)

2.7. Reverse Transcription and Real Time PCR for GDF-5

To measure the expression of growth and differentiation factor 5 (GDF-5) in EGP, first-strand
cDNA synthesis was performed with the PrimeScript First-Strand cDNA Synthesis Kit (Takara Bio,
Mountainview, CA, USA) using 1 µg of the total RNA as a template, according to the manufacturer’s
instructions. A real-time quantitative polymerase chain reaction (qPCR) was performed with the ABI
Prism 7000 Sequence Detection System (Applied Biosystems Inc., Foster City, CA, USA), according to
the manufacturer’s instructions and using specific FAM- labeled probes (TaqMan® assay on demand
Rn0043356-m1 for GDF5); Rn00667086 for Aco2 served as the internal control [30]). The following
thermal cycling conditions were used; one cycle at 50 ◦C for 2 min and at 95 ◦C for 10 min, followed
by 45 cycles of 15 s at 95 ◦C and 1 min at 60 ◦C. The probes, reaction mixture, and 7000 Sequence
Detection System were all obtained from Applied Biosystems. Relative expression was determined
using the 2−∆∆Ct method. Each sample was examined in triplicate.

2.8. µCT Analysis

Humeri were maintained in 4% NBF for 48 h at room temperature and then stored in 70% ethanol.
Whole humeri (one per rat) were scanned using a micro-computed tomography (µCT) system (µCT50,
Scanco Medical AG, Brüttisellen, Switzerland). Scans were acquired at 90 kVp, 200 µA, and 1000 ms
for energy, intensity, and integration time, respectively, generating images with an isotropic nominal
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resolution of 17.2 µm. Two-dimensional CT images were reconstructed in 2048× 2048 pixel matrices using
a standard convolution-back projection procedure (Scanco µct_reconstruction version 6.1; Scanco Medical
AG, Brüttisellen, Switzerland). A three-dimensional Gaussian filter was used to attenuate the background
noise (σ = 0.8; support = 1). The scans were segmented using a global thresholding procedure (trabecular
attenuation = 130; cortical attenuation = 200; in permille of the total gray value range). The morphometric
parameters were determined by a direct three-dimensional approach in three different pre-selected regions
using customized software developed on the proprietary Image Processing Language version v5.15
(Scanco). In the whole bone, we measured length and full volumetric bone mineral density (vBMD). In
the cortical bone, we used a 1-mm-height diaphyseal segment starting at the 6th tenth of the total length
(slightly distal to the midshaft) distal to the deltoid tuberosity. The cortical measurements included total
area (Tt.Ar, mm2), cortical area (Ct.Ar, mm2), cortical area fraction (Ct.Ar/Tt.Ar, %), and cortical thickness
(Ct.Th, mm). To analyze the trabecular bone, we used the secondary spongiosa of the proximal metaphysis
of the humerus, separated manually from the cortical bone. The trabecular bone region of interest (tROI)
started at the distal tip of the primary spongiosa and extended 3.44 mm distally. This ROI was further
divided into two 1.72 mm proximal (pROI) and distal (dROI) halves to depict region-specific changes. The
measurements included the bone volume fraction (BV/TV), trabecular number (Tb.N, mm−1), trabecular
thickness (Tb.Th, mm), and trabecular separation (Tb.Sp, mm). All parameters were analyzed according to
standardized guidelines and nomenclature [36].

2.9. Biomechanical Analysis

Twenty-four hours before biomechanical testing, humeri were rehydrated in phosphate-buffered
saline to restore the mechanical properties of the tissue [29,37–39]. The three-point bending test was
performed using a loading machine (Bose ElectroForce 5500, TA Instruments, New Castle, DE, USA)
equipped with a 200 N load cell. The bone specimens were placed in a custom-made device with
a span length of 20 mm, with the middle probe located at the same diaphyseal segment analyzed
by µCT. Specimens were loaded until failure at a cross-head speed of 1 mm/min, and force versus
displacement data were acquired automatically. The load-displacement curve yielded three parameters
for evaluation: bending stiffness (N/mm), calculated as the slope of the load-deflection curve at its
linear portion; ultimate/maximal load (N); and energy to maximal load (N*mm), calculated as the
area under the curve (AUC).

2.10. Statistical Analysis

Data are presented as mean ± standard deviation (SD). The significance of differences between
experimental groups was determined with Student’s t-test. Differences were considered statistically
significant at p < 0.05. SPSS v23 software (IBM, Armonk, NY, USA) was used for statistical analysis of
the data.

3. Results

3.1. Effect of the CD and IO Diets on Weight Gain and Serum Values in the Preliminary Experiment

The preliminary experiment in which animals were fed ad libitum showed that both the Control
Diet (CD) and the Infat Oil diet (IO) were very well tolerated by the rats, with no adverse effects. Weight
and weight gain at the termination of this first experiment were similar in the two groups (and similar
to those of rats fed the normal chow diet [29]), and there were no significant between-group differences
in the weight of the internal organs (liver, heart, lungs, and kidneys), humerus length, or humeri
EGP height (Table S2). Chemical analysis of the serum showed that all values, including IGF-1 and
leptin, were within normal range for Sprague-Dawley rats, with no significant differences between the
groups (normal range provided by AML Ltd.; leptin and IGF-I levels were similar to those of previous
experiments [29]). Calcium and triglyceride levels were above the normal range, but they did not
differ between the two groups (Table S3).
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3.2. Effect of the Study Diets on Weight Gain and Serum Values during CU Growth

On the refeeding experiment, after dietary restriction, body weight and weight gain were similar
in the two groups, as were liver weight and total fat content (Table 1). Chemical analysis of the serum
showed that all values were within the normal range, including IGF-1 and leptin (Table 1), with no
significant differences among the groups (Table S4).

Table 1. Effect of the diets on growth parameters.

Growth Parameters Control 1,3 Diet (CD)
(n = 8) (Mean ± SD)

Infat Oil (BPA) Diet (IO)
(n = 8) (Mean ± SD) T-Test (p Value)

Weight (g) 131.3 ± 7.9 135.6 ± 8.4 0.31
Weight gain (g) 83.5 ± 5.1 87.9 ± 6.4 0.17
Liver weight (g) 6.9 ± 0.3 6.8 ± 0.5 0.81

Liver fat content (mg/100 mg tissue) 4.5 ± 0.5 4.7 ± 0.7 0.64
Full humerus length (mm) 19.86 ± 0.5 20.4 ± 0.3 0.042

EGP height (mm) 0.39 ± 0.02 0.41 ± 0.02 0.06
Proliferative (mm) 0.22 ± 0.04 0.21 ± 0.03 0.44

Hypertrophic (mm) 0.18 ± 0.02 0.2 ± 0.02 0.02
Proliferative/hypertrophic 1.21 ± 0.18 1.03 ± 0.14 0.05

IGF-I (ng/mL) 868.1 ± 193.7 894.2 ± 108.1 0.78
Leptin (pg/mL) 1461 ± 196 1448 ± 434.8 0.94

3.3. Effect of the Study Diets on Linear Growth during CU Growth

Despite their similar body weight after the refeeding period, rats given the IO diet showed
improved growth parameters. Humerus length was higher in IO group relative to the CD group
(Table 1; p = 0.042). Animals fed the IO diet showed a trend toward a 5% higher EGP than the
CD-fed rats (p = 0.06, Figure 1). Further analysis of the EGP revealed that the greater height was due
to an increase in both the proliferative and hypertrophic zones, with the hypertrophic zone being
significantly higher in the IO than the CD group (p = 0.02). The EGP morphology remained intact
(Figure 1), indicating that there were no adverse effects from any of the diets.
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Figure 1. Representative stained sections of the epiphyseal growth plate (EGP) of Sprague Dawley rats, 
49 days old. Hematoxylin and eosin and Alcian blue staining shows the margins of the cartilaginous 
EGP. (A,C) Control Diet; (B,D) Infat Oil diet. (A,B) show a magnification X4, scale bar = 200 μm; (C,D) 
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Figure 1. Representative stained sections of the epiphyseal growth plate (EGP) of Sprague Dawley rats,
49 days old. Hematoxylin and eosin and Alcian blue staining shows the margins of the cartilaginous
EGP. (A,C) Control Diet; (B,D) Infat Oil diet. (A,B) show a magnification X4, scale bar = 200 µm;
(C,D) show a magnification X10, scale bar = 100 µm; six sections were measured in each group.
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3.4. Effect of the Study Diets on Bone Quality during CU Growth

Bone microstructure and quality were evaluated by µCT and biomechanical testing. Cortical
thickness (Ct.Th) was significantly higher in the IO group (Table 2; Figure 2; p = 0.026), and the ratio of
cortical area (Ct.Ar) to total area (Tt.Ar) tended to be higher in the IO group (p = 0.058).

In the trabecular bone compartment, all values (BV/TV, Tb.Th, and Tb.N) seemed to be higher
in the IO group, but the difference did not reach statistical significance. Only when the distal half of
the proximal metaphysis (dROI) was analyzed separately, were the difference in the BV/TV values
statistically significant.

Interestingly, although the results were not statistically significant, on three-point bending analysis,
the IO group showed a lesser bone stiffness and higher energy to maximal force.

Table 2. Effect of the diets on bone parameter values by µCT and 3-point bending assay.

Bone Parameters Control 1,3 Diet (CD) (n = 8)
(Mean ± SD)

Infat Oil (BPA) Diet (IO)
(n = 8) (Mean ± SD) T-Test (p Value)

Full volumetric bone mineral
density (vBMD) (mg HA/cm3g) 296.7 ± 14.85 306.58 ± 15.2 0.262

(A) Cortical bone parameters
Tt.Ar (mm2) 3.15 ± 0.07 3.07 ± 0.11 0.51
Ct.Ar (mm2) 1.75 ± 0.1 1.83 ± 0.12 0.31

Ct.Ar/Tt.Ar (%) 55 ± 0.02 59 ± 0.04 0.058
Ct.Th (mm) 0.31 ± 0.01 0.35 ± 0.03 0.026

(B) Trabecular bone parameters (tROI)
BV/TV (%) 3.9 ± 1.31 5.26 ± 2.02 0.17
Tb.Th (mm) 0.05 ± 0.004 0.06 ± 0.01 0.11
Tb.N (mm-1) 1.06 ± 0.15 1.19 ± 0.26 0.28
Tb.Sp (mm) 0.96 ± 0.14 0.89 ± 0.15 0.41

(B1) Proximal ROI (proximal metaphysis)
BV/TV (%) 5.7 ± 2 7.5 ± 3 0.22
Tb.Th (mm) 0.05 ± 0.004 0.06 ± 0.01 0.11

Tb.N (mm−1) 1.46 a ± 0.2 1.54 ± 0.29 0.55
Tb.Sp (mm) 0.71 ± 0.09 0.69 ± 0.11 0.73

(B2) Distal ROI (proximal metaphysis)
BV/TV (%) 0.72 ± 0.15 1.25 ± 0.5 0.015
Tb.Th (mm) 0.05 ± 0.0 0.05 ± 0.01 0.98

Tb.N (mm−1) 0.71 ± 0.1 0.84 ± 0.21 0.154
Tb.Sp (mm) 1.42 ± 0.21 1.25 ± 0.23 0.21

(C) Bone biomechanical properties
Stiffness (N/mm) 41.68 ± 14.4 36.37 ± 7.6 0.43
Maximal load (N) 22.8 ± 4.3 21.54 ± 3.5 0.53

Energy to maximum (N*mm) 14.02 ± 3.5 16.5 ± 5.0 0.3

Superscripts denote significant between-group differences as follows (p < 0.05); cortical thickness and the bone
volume fraction (BV/TV) of the distal bone were significantly different. vBMD, full volumetric bone mineral density;
Tt.Ar, total area; Ct.Ar, cortical area; Ct.Th, cortical thickness; BV/TV, bone volume fraction; Tb.Th, trabecular
thickness; Tb.N, trabecular number, Tb.Sp, trabecular separation.
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Figure 2. Three-dimensional cortical (left) and trabecular (right) bone images obtained by µCT. (A,B,E,F)
Control Diet; (C,D,G,H) Infat Oil diet (Two representative figures are presented per each group).
The calculations were done on the cortical ring only, without the trabeculae.

3.5. Effect of the Different Diets on Gene Expression during CU Growth

To study the molecular mechanism underlying the differences in linear growth as well as bone
microstructure and quality among the groups, we performed gene expression analysis on liver and EGP
samples. Only a small number of genes were found to be differentially expressed among the groups.

In the liver, changes were found mainly in metabolic genes (annotation ‘metabolism’ according to
the David website (https://david.ncifcrf.gov/). Of the 112 metabolic genes that were significantly
different between the two diet groups, none has been previously associated with PA metabolism.
The 20 genes that were most affected are presented in Table S5. Three genes, Nampt, Alas1, and Mllt3,
were significantly higher (by >1.5 fold) in the IO than the CD group; gene expression levels for Egr1,
Rnf125, and Lox were significantly lower in the OI group.

A similar analysis performed on RNA extracted from the EGP showed that most of the known
cartilage-specific genes were not significantly affected, although some tended to be more highly
expressed in samples from the IO than the CD group. Of the genes with a significant differential
expression, the 20 that were most affected are shown in Table 3 (and Figure 3). Of those known to be
associated with growth, four were upregulated in the IO group, namely, Mt2a, Rbp4, Ngf, and Gdf-5,
and four were downregulated, namely, Aspn, Tnn, Postn, and Soc-3.

Since we previously showed that growth differentiation factor-5 (Gdf-5), was associated with both
fat and growth regulation [40], we evaluated the RNA transcript levels of this gene by qPCR. A similar
tendency for a higher Gdf-5 expression in the IO group was noted, but the results were not statistically
significant (data not shown).

https://david.ncifcrf.gov/
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Table 3. Top 20 genes in the EGP significantly affected by the position of palmitic acid in the diet
(all data are significant at p < 0.05 (ANOVA).

Gene Symbol Gene Name Gene ID Fold Change (IO/CD)

Mt2A Metallothionein 2A NM_001137564 1.56
Rbp4 Retinol binding protein 4 NM_013162 1.5
Calcr Calcitonin receptor NM_001034015 1.42
Reln Reelin NM_080394 1.37
Clu Clusterin NM_053021 1.36

Sh2b2 SH2B adaptor protein 2 NM_053669 1.35
Ngf Nerve growth factor (beta polypeptide) NM_001277055 1.35

Pdcd4 Programmed cell death 4 NM_022265 1.34
Cyp4a3 Cytochrome P450, family 4, subfamily a, polypeptide 3 NM_175760 1.3

Gdf5 Growth differentiation factor 5 ENSRNOT00000073736 1.28
Zbtb16 Zinc finger and DTD domain containing 16 NM_001013181 1.28
Actb Actin, beta ENSRNOT00000034844 −1.26
Socs3 Suppressor of cytokine signaling 3 NM_053565 −1.26
Arl4a ADP-ribosylation factor like GTPase 4A NM_019186 −1.26

Mir212 microRNA 212 NR_031925 −1.27
RGD1309821 Similar to KIAA1161 protein NSRNOT00000033235 −1.34

Rpl18 Ribosomal protein L18 FQ229993 −1.35
Postn Periostin, osteoblast specific factor NM_001108550 −1.43
Tnn Tenascin N NM_001107189 −1.56

Aspn Asporin NM_001014008 −1.72

4. Discussion

Observational studies conducted mainly in deprived geographic regions have highlighted several
nutritional components that are required for proper growth, including macronutrients like proteins,
lipids, and carbohydrates and micronutrients like minerals and vitamins. However, can we also
affect the efficiency of the growth process in the presence of sufficient basic nutrition? This study and
our previous one [29] suggest that we can. In the current study, we show that a subtle change, the
esterification position of fatty acid, may also affect bone elongation and quality.
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Our data show that a modification as seemingly minor as a shift in the ratio of BPA to sn-1,3 PA,
significantly affected EGP height, bone thickness, strength, and even gene expression in the liver and
EGP. The differences in most of the parameters were small, as expected by the very subtle change we
imposed on the system, but all supported the advantage of BPA over sn-1,3 PA. Thus, different diets
may affect the microstructure and quality of the growing skeleton even when they are matched in
composition for calories as well as macro- and micro-nutrients, at least in the short term.

In our previous studies, 40% food restriction in young, weaned rats led to a significant reduction in
total body weight, bone, and EGP lengths, as well as bone quality [29,41]. Subsequent nutrition-induced
CU growth was associated with a rapid increase in weight, EGP height, bone length, and bone quality.
The degree of improvement was time-dependent [29]. In the present study, although we did not find
differential effects on bone length and EGP height under baseline conditions (as in the preliminary
experiment), there were significant differences when the diets were given after a period of food
restriction. The best explanation for this discrepancy may be that as ad libitum feeding is already above
the normal food requirements [35], a loss of fat and calcium will have no effect as they are already in
excess. However, after an insult of food restriction, the body requires all the calcium and fat that are
available, and even marginally sub-optimal nutrients can affect the efficiency of bone growth.

The increase in bone length and EGP height in the IO diet group point to the beneficial effect of
dietary BPA on linear growth, as a higher yet organized EGP may suggest better growth potential.
Despite the greater bone length, bone quality was not hampered, indicating that enough calcium
was obtained from the diet for proper mineralization of the nascent bone, and resistance to fracture
was enhanced. These observations are supported by previous data on the effect of BPA on calcium
absorption [11,13], but they may also suggest a better endochondral ossification process (in the
metaphysis) and bone apposition (in the mid-diaphysis), leading to higher EGP and stronger bones,
respectively. The tendency to lesser bone stiffness in the IO groups relative to the CD group suggests
that the bone midshaft was slightly less brittle. Since the maximal force was similar, the resulting
displacement to failure was extended, indicating a tendency for the bones of the IO-fed rats to be more
resistant by being more flexible (or pliable) and therefore absorb more energy before failure.

In the serum analysis, we measured two systemic factors, leptin and IGF-1, previously shown to
be most affected by diet. IGF-1 concentrations are responsive to changing nutritional status and the
intake of amino acids and free fatty acids [42–44]. Leptin is associated with obesity and is used as a
surrogate marker of energy level. We found that re-feeding increased the levels of IGF-1 and leptin to
a similar extent in both groups, and the values were within the normal range. IGF-1 circulates in the
plasma tightly bound to specific binding proteins (IGF-BP) and to the acid labile subunit (IGF-ALS),
which stabilizes IGF-I and extends the serum half-life of IGF-I [35]. No differences were observed in
the expression levels of IGF-1, IGF-BPs, or IGF-ALS in the liver, and, as the liver is the major organ
synthesizing and secreting these factors, it is reasonable to assume (although it was not tested) that the
level in the blood was also unaffected.

An analysis of gene expression in the liver and EGP yielded, as expected, a very low number of
affected genes. In the liver, most of those were genes controlling metabolic enzymes, in line with the
metabolic function of the liver. Only three genes, Nampt, Alas1, and Mllt3, showed a significantly greater
increase (by more than 1.5-fold) in the IO group than the CD group. Although a literature search to
determine the function of these genes failed to identify any known association with linear growth, these
genes may still be associated with growth. Nampt (nicotinamide phosphoribosyl transferase) encodes
a protein that catalyzes the condensation of nicotinamide with 5-phosphoribosyl-1-pyrophosphate to
yield nicotinamide mononucleotide, an intermediate agent in the biosynthesis of nicotinamide adenine
dinucleotide (NAD) [45]. The association of this with growth may reside in the critical role apparently
played by Sirt1 and Nampt in regulating insulin sensitivity and secretion throughout the body [46]
and the reported effect of nutrition on Sirt1 expression [44,47]. Alas1 (5′-aminolevulinate synthase 1)
encodes the mitochondrial enzyme that catalyzes the rate-limiting step in heme biosynthesis and was
reported to be involved in the regulation of lipid metabolism by peroxisome proliferator-activated
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receptor alpha (PPARα) [48]. Mllt3 (myeloid/lymphoid or mixed-lineage leukemia; translocated
to 3) encodes a component of the complex required to increase the catalytic rate of RNA polymerase
II transcription, which we found to be significantly increased during re-feeding. However, on a
proteomic analysis of the liver, the entire transcription machinery, and not just one gene, was found to
be upregulated [35].

Three genes for which expression was lower in the liver samples from the IO compared to the CD
group were Egr1, Rnf125, and Lox. Egr1 (early growth response 1) encodes a zinc finger protein that
functions as an early transcriptional regulator responsive to cues of differentiation and mitogenesis
such as changes in insulin and IGF-I [49]. Rnf125 (ring finger protein 125) encodes E3 ubiquitin ligase,
which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. Several
mutations in Rnfl25 were recently reported in patients with overgrowth syndrome, pointing to its
importance in growth regulation [50]. Lox (Lysyl oxidase) encodes an extracellular amine oxidase
that functions in the crosslinking of collagens and elastin. In the liver, it is mostly associated with
fibrosis [51], but, in osteoblasts, the organization of the collagen fibers in the extracellular matrix is an
important regulator of osteoblastogenesis [52].

In the EGP, we found a different battery of affected genes, grouped under the classification of
‘growth and development’. Several interesting genes were upregulated in the IO fed rats, including
Mt2a, Rbp4, Ngf, and GDF5, and several were downregulated, including Aspn, Tnn, Postn, and Soc3.
Mt2a (metallothionein 2A) is affiliated with the lncRNA class. Rbp4 (retinol binding protein 4) belongs
to the lipocalin family and is the specific carrier for retinol (vitamin A alcohol) from the liver stores to
the peripheral tissues. The Drosophila orthologue of Rbp4, Neural Lazarillo (NLaz), was found to be a
secreted protein that suppresses insulin signaling [53]. Furthermore, NLaz mutant flies were bigger
in size; however the process by which it negatively regulates larval growth in normal nutritional
conditions is still unresolved. Ngf (nerve growth factor) exerts nerve-growth-stimulating activity. The
level of the Ngf protein receptor is regulated by growth hormone, suggesting a cross-talk of Ngf with
the growth-regulating process [54]. A downregulated gene, Aspn (asporin) encodes a class I small
leucine-rich proteoglycan (SLRP) that is expressed in very low levels in the EGP and was shown to be
responsive to different cytokines in human articular chondrocytes and involved in osteoarthritis [55].
Tnn (tenascin N) encodes a protein involved in the degradation of ECM and in miRNA regulation [56].
Postn (Periostin) encodes a protein secreted by the ECM that functions in tissue development and
regeneration by binding to integrins and heparin in the ECM to support the adhesion and migration of
cells. The Postn protein enhances the incorporation of bone morphogenic protein (BMP)-1 into the
fibronectin matrix of connective tissues and the subsequent proteolytic activation of Lox, and it serves
both as a structural molecule of the bone matrix and a signaling molecule through integrin receptors
and Wnt-beta-catenin pathways, whereby it stimulates osteoblast functions and bone formation [57].
Socs (suppressor of cytokine signaling)-3 encodes a member of the Signal transducer and activator
of transcription (STAT)-induced STAT inhibitor (SSI) and cytokine-inducible negative regulators of
cytokine signaling, including gp130, LIF, erythropoietin, insulin, IL12, G-CSF, and leptin receptors.

The increase in Gdf-5 in the IO compared to the CD group is interesting, as a recent study by
our group revealed that GDF-5 is produced and secreted by adipocytes in culture and stimulates the
growth of metatarsals in vitro. Its level was also increased under conditions of nutritional CU growth
in vivo [40]. The induction of GDF5 by the IO diet may explain the beneficial effect of the diet on
EGP height. GDF5 is a member of a subfamily of the highly conserved group of BMPs. It is active
during mesenchymal cell condensation, initiating the first stages of chondrogenesis by promoting cell
adhesion [58]. It may also increase the size of skeletal elements [58], stimulate proteoglycan production
in chondrocytes [59], and serve as a positive regulator of bone healing [60–62]. In a large multinational
genetic study, a locus near the GDF5 gene on chromosome 20 was found to be associated with final
height in humans [63].

The changes in the above mentioned genes, although small, were statistically significant by
Affymetrix analysis and may point to their involvement in the growth response.
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The present study shows that the conformation of dietary PA has a significant effect on skeletal
growth. This may be due, as previously shown, to the effect of PA on calcium absorbance (although
bone marrow density and calcium serum levels were similar in the study groups) or on gut
microbiota [20] or its effects on the expression of specific genes in the liver and EGP.

The main limitation of this study is our use of an animal model, which has inherent differences
from a human model, including the short time period from weaning to puberty, necessitating a short
time of follow up after re-feeding to avoid the involvement of sex steroids. However, animal models
are of the utmost importance because they allow for relatively rapid evaluation of the efficiency of
nutritional manipulation and the results may be meaningful as rats and humans are quite similar in the
physiology and anatomical structures of their gastrointestinal tracts (see [64–66]). Another limitation
is that we followed the animals for only a short period, just until puberty; further long term studies are
required to identify the effect of BPA on final height and adult bone quality. In addition, the differences
in gene expression were difficult to reproduce by qPCR, although a trend was noted, possibly due to
the small changes.

5. Conclusions

We have shown in our model of nutrition induced catch up growth that despite the very subtle
modification between the diets, rats fed a diet with BPA had improved EGP height and longer bones
with better bone microstructure and quality. This may be due, as previously shown, to the effect of
BPA on calcium absorbance or on gut microbiota or its effects on the expression of specific genes in
the liver and EGP. The diet affected the expression of several genes associated with metabolism in the
liver and with growth and development in the EGP. Among them the most important seem to be Gdf-5,
known to stimulate growth, that was increased and Socs3, a negative regulators of cytokine signaling,
including GH and leptin that was reduced. This pre-clinical study may have important implications,
especially for children with growth disorders and children with special nutritional needs.

Supplementary Materials: The following are available online at www.mdpi.com/2072-6643/9/7/764/s1,
Table S1: Macronutrient, vitamin, and mineral content of the experimental diets, Table S2: Growth parameters for
the preliminary experiment, Table S3: Serum chemical analysis from the preliminary experiment, Table S4: Serum
chemical analysis after re-feeding, Table S5: Top 20 metabolic genes that were affected in the liver by the position
of palmitic acid in the diet. Reference [29] is cited in the supplementary materials.
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