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Abstract: The conventional Hill equation model is suitable to fit dose–response data obtained from performing (eco)toxicity
assays. Models based on quasi–quantitative structure–activity relationships (QSARs) to estimate the Hill coefficient ( )nH were
developed with the aim of predicting the response of the invertebrate species Daphnia magna to exposure to metal‐based
nanomaterials. Descriptors representing the pristine properties of nanoparticles and media conditions were coded to a
quasi–simplified molecular input line entry system and correlated to experimentally derived values of nH . Monte Carlo
optimization was used to model the set of nH values, and the model was trained on the basis of reported dose–response
relationships of 60 data sets (n= 367 individual response observations) of 11 metal‐based nanomaterials as obtained from
20 literature reports. The model simulates the training data well, with only 2.3% deviation between experimental and
modeled response data. The technique was employed to predict the dose–response relationships of 15 additional data sets
(n= 72 individual observations) not included in model development of seven metal‐based nanomaterials from 10 literature
reports, with an average error of 3.5%. Combining the model output with either the median effective concentration value or
any other known effect level as obtained from experimental data allows the prediction of full dose–response curves of
D. magna immobilization. This model is an accurate screening tool that allows the determination of the shape and slope of
dose–response curves, thereby greatly reducing experimental effort in case of novel advanced metal‐based nanomaterials or
the prediction of responses in altered exposure media. This screening model is compliant with the 3Rs (replacement,
reduction, and refinement) principle, which is embraced by the scientific and regulatory communities dealing with nano‐
safety. Environ Toxicol Chem 2022;41:1439–1450. © 2022 The Authors. Environmental Toxicology and Chemistry published
by Wiley Periodicals LLC on behalf of SETAC.
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INTRODUCTION
Engineered nanomaterials (ENMs) are widely applied, in

areas varying from healthcare, agriculture, transport, and en-
ergy to advanced materials. The worldwide production ca-
pacity of ENMs was estimated to be 50,000 tons per year in

2020 (Heggelund et al., 2014). It is reasonable to expect that
many of these ENMs end up in natural water systems, and
hazard and risk assessment frameworks are to be put into place
to estimate potential risks. The notion that nanomaterials' dis-
tinct features compared to larger counterparts should be con-
sidered in safety assessment has led to the development of
risk‐assessment frameworks that are specific to nanomaterials
as well as to testing protocols that account for nano‐specific
features (Oomen et al., 2018). One of the representative in-
vertebrate species in this respect is the crustacean species
Daphnia magna. Tests with D. magna are fully standardized
within the Organisation for Economic Co‐operation and
Development (OECD) guidance documents (OECD, 2004) and
modified for nanomaterials (the so‐called NanoReg protocols
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[Jantunen et al., 2018]). The typical test outcome is the full
dose–response relationship, describing the magnitude of the
response as a function of exposure concentration. In the case
of daphnids, immobilization is commonly used as the endpoint.

At least 200 studies have been published in recent years on
daphnids exposed to a variety of (single) metal‐based nano-
materials (Chen et al., 2015). Although many data points are
available, no systematic model has been developed so far
based on the available set of data and with the specific aim of
predicting the full dose–response curves of metal‐based ENMs.
Because various metal‐based ENMs are of major environmental
concern, a predictive model intended for approximating the
dose–response relationship of these ENMs against D. magna
immobilization would be exceptionally valuable. In addition,
this model would allow for screening untested or randomly
tested metal‐based nanomaterials, whereas the model would
also allow the prioritization of nanomaterials for which ex-
perimental data should be collected more systematically.
Thereupon, the model would be instrumental to environmental
effect assessment and would comply with the 3Rs (replace-
ment, reduction, and refinement) principle developed over
50 years ago, providing a framework for performing more
humane animal testing.

The aim of the present study was to develop a model to
allow prediction of the dose–response relationship of a variety
of metal‐based nanomaterials. The focus is on the shape of the
dose–response curve for the commonly used laboratory test
organism D. magna, using immobilization as the endpoint. To
address this aim, (1) experimental data were collected on the
acute toxicity of daphnids to various metal‐based nano-
materials tested under different conditions; (2) based on the
Hill equation (Hill, 1910), the relationship between the dose of
the nanosuspension and the immobilization response data was
calculated; and (3) a quasi–quantitative structure–activity rela-
tionship (QSAR) model was developed to estimate the calcu-
lated relationships based on specific nanomaterial properties.
Ultimately, this mathematical estimation has the prospect of
leading to a user‐friendly model allowing calculation of the full
dose–response curve when only one effective concentration
(EC) value is reported. This way, the model assists in nano‐
safety assessment and is instrumental to efficiently prioritize,
rank, and group nanomaterials.

METHODS
Data selection and collection

Data were collected making use of different databases, in-
cluding the data entries from the Web of Science Core Col-
lection with bibliometric data search as described in Chen et al.
(2015). The Boolean operators were (TS= [“*toxicity” AND
“effect*”] AND TI= [“nano”] AND KP= [nano* AND metal* OR
“nano* AND metal oxide*”] AND KP= [crustacea* OR
daphni*]) AND LANGUAGE: (English) AND DOCUMENT
TYPES: (Article), with a time span of 2005–2020. In addition, a
literature search was done in Google Scholar (2005–2020)
using the following keywords: “toxicity,” “effect,” “nano,”
“metal,” “metal oxide,” “crustacea,” and “daphni.” This

search yielded 1001 records overall. Of these records, for 20
reports corresponding with 75 records, the full dose–response
curve was published (the criterion used to define a full dose
–response curve was that four or more data points were ex-
perimentally quantified), and these data were selected as the
basis of the databases. Model validation was performed using a
subset of 10 reports.

The database consisted of data with 11 different metal‐
based nanomaterials and included all pristine nano‐properties
and exposure conditions. A detailed overview is given in
Supporting Information, Tables S1 and S2. In brief,
dose–response relationship data on D. magna immobilization
were retrieved from 20 reports: Briffa et al. (2018), Cui et al.
(2017), Cupi et al. (2016), Dabrunz et al. (2011), Heinlaan et al.
(2008), Kim et al. (2017), Lee et al. (2012), Ma et al. (2012),
Newton et al. (2013), Oleszczuk et al. (2015), Santos‐Rasera
et al. (2019), Schiwy et al. (2016), Seo et al. (2014), Song et al.
(2015), Sovová et al. (2009), Strigul et al. (2009), Wyrwoll et al.
(2016), Xiao et al. (2015, 2016), and Yang et al. (2014). The
detailed information of each record of ENM, like size and
coating, test duration, illumination, and media composition is
listed in Supporting Information, Tables S1 and S2. The pristine
characteristics of the ENMs (i.e., shape, impurity, surface area,
and crystallinity), the characteristics of the ENMs in the test
environment (i.e., hydrodynamic size, dissolution, and zeta
potential) and acute toxicity values (i.e., whole data set of
dose–response relationships including median EC [EC50]) are
provided in the Supporting Information.

Hill equation
The Hill coefficient, nH , that is, the steepness and shape of

the response curve which was introduced as an empirical de-
scription by Hill (1910), is typically used to quantify the re-
sponse of a receptor to a stressor (Goldbeter & Dupont, 1990).
It is a sigmoidal function commonly prescribed in the OECD
guidance document on testing chemicals and nanomaterials
(OECD, 2020). The Hill equation is quite often utilized to pre-
dict the dose–response relationship of ENMs to a variety of
different organisms and different metal‐based ENMs, for ex-
ample, among anatase and rutile nTiO2 to algae (Gao
et al., 2020; Li et al., 2015), nCu to bacteria (Chatterjee
et al., 2014), and nTiO2 to crustaceans (Farner et al., 2019). The
Hill equation (Hill, 1910) was used in the present study:

( )
=

+ [ ]

E
100

1
nEC50

A

H (1)

The Hill equation requires only three parameters to determine
the dose–response relationship. In the equation, nH may be
considered as the parameter that is dependent on the char-
acteristics of the ENMs to which the biota are exposed,E is the
magnitude of the response, [ ]A is the number concentration of
ENM particles (per liter), and EC50 is the number of ENM
particle (per liter) that produces a 50% response. The values of
nH used in the Monte Carlo optimization were obtained
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from fitting dose–response relationships for 11 metal‐based
nanomaterials (60 data sets, n= 367 individual observations)
from 20 reports listed in Supporting Information, Table S1,
using the Hill equation (Equation 1), and the EC50 values that
were given in the reports.

The assumptions underlying the Hill equation model are
(1) that there is a dose–response relationship and that the
shape of this relationship is dependent on the intrinsic char-
acteristics of the ENMs tested, and (2) that the shape of the
dose–response curve is independent of the water chemistry
conditions tested. Please note that the latter assumption
implies that the impact of varying water chemistry is assumed
to be reflected in a shift of the dose–response curves,
whereas the shape of the curve is assumed to stay un-
changed.

Quasi‐QSAR model
The quasi‐QSAR model was developed with the so‐called

quasi–simplified molecular input line entry system (SMILES)
approach (Toropova et al., 2011). Quasi‐SMILES is a string
using physicochemical features and/or biochemical conditions
as a replacement for conventional SMILES (Choi et al., 2019).
The quasi‐SMILES‐based QSAR model can be demonstrated
by the following equation:

= + × ( )n C0 C1 DCW T, NH Epoch (2)

In Equation 2, C0 and C1 are the intercept and the slope. The
correlation weight of the descriptor (DCW) is computed using
the following equation:

∑ ∑( ) = α ( ) + β ( )

+ γ × ( )

DCW T, N CW S CW SS

CW NOSP

Epoch k k

(3)

In Equation 3, Sk and SSk are SMILES attributes which contain
one and two SMILES elements, respectively; ( )CW Sk and

( )CW SSk are the correlation weights of the SMILES attributes;
NOSP is an index which represents the presence or absence of
chemical elements, that is, nitrogen, oxygen, sulfur, and
phosphorus; α, β, and γ are coefficients that can be either 1 or
0, with 1 indicating that the SMILES attribute is involved in the
calculation of the ( )DCW T, NEpoch and 0 indicating that the
SMILES attribute is not involved; and ( )DCW T, NEpoch , that is,
combinations of these values, represents the probability of
defining diverse versions of the SMILES‐based optimal de-
scriptor (for more detailed information, see, e.g., Carnesecchi
et al., 2020; Toropov et al., 2011, 2012; Toropova
et al., 2011, 2012). Note that the threshold (T) and the number
of epochs (NEpoch ) are parameters of the optimization that de-
termine the preferred statistical quality of the training set. To
develop the quasi‐QSAR models, CORAL software (http://www.
insilico.eu/coral) was employed.

The quasi‐SMILES employed in the present study was
composed of three components:

1. One code to represent the size of the ENMs. The code
for ENM size was assigned as a rounded number of
nanoparticle diameter (nanometers) to an integer.

2. One code to represent the test conditions, the exposure
duration, and/or the presence of a coating on the ENM. The
code for representing a toxicity assay and/or ENM coating
was a combination of number and plus signs (i.e., 1+, 1++,
1+++), a numeral notation ranging from 1 to 20 was used to
represent the 20 reports listed in Supporting Information,
Tables S1 and S2, and the number of plus signs represents
the number of variations of the toxicity assay/ENM coatings
in the report.

3. One code for the ENM type.

A combination of number, symbol, and SMILES was used to
build up the quasi‐QSAR string. The code for indicating the
type of ENMs employed the SMILES line notation that was
obtained from the PubChem online database (Pub-
Chem, 2021). To compose the quasi‐QSAR string, dots “.” and
parentheses “()” were used as a conjunction between the
three components. The quasi‐SMILES strings belonging to the
D. magna immobilization data after exposure to metal‐based
nanomaterials are listed in Table 1.

Monte Carlo optimization based on repeated random
sampling in the CORAL package was employed to optimize the
parameters that were descriptive in the quasi‐QSAR model
and to make numerical estimations of unknown parameters
(Metropolis & Ulam, 1949; Rubinstein & Kroese, 2016). The
number of random samplings within the Monte Carlo algorithm
was set on a maximum of 60 data sets, and the optimization of
the quasi‐QSAR string was reached to provide a value of R2 of
0.82. In the present study, the optimization represented cor-
relations between the fitted nH and the quasi‐QSAR string, the
correlation weights of which are estimated as ( )DCW T, NEpoch

in Equation 2. In addition, the intercept (C0) and slope (C1) of
the quasi‐QSAR model in Equation 2 are approximated by the
CORAL software.

Verification of the quasi‐QSAR
To relate the fitted Hill equation to measured dose–

response curves, the percentage of sample deviation (SDEV),
as suggested in Crittenden et al. (1999), was adopted. The
relative error between experimental data and the model
simulation/prediction was employed to illustrate the fit be-
tween the model and the experimental data, which is
stated as

⎡
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where Pmodel calculation and Pexperimental data are the log of the
toxicity value (particles per liter) determined from the
simulation/prediction and the individual experimental response
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data for various magnitudes of the response, respectively,
and Ndata is the number of data. Model simulation/predictions
include data restricted to the EC5–EC95 range because out-
side this range the experimental noise is relatively large
(Chevalier, 2014), making the experimental data less robust for
model‐building.

RESULTS AND DISCUSSION
Descriptive analysis of data

Experimental data on the acute toxicity of daphnids to
various metal‐based nanomaterials tested ranged between
7.74 × 105 and 8.54 × 1016 particles/L, hence an immense dif-
ference of 11 orders of magnitude. All retrieved acute toxicity
data on the endpoint immobilization of daphnids within a
24–96‐h exposure duration were used. Metal‐based nano-
materials were predominantly tested as bare particles
(59 cases). A coating on the particles was applied in 16 cases,
the coating being a mixture of polyvinylpyrrolidone coatings,
gum arabic coatings, polyethylene glycol coatings, aluminum
oxide coatings, and carboxylate ligand coating. The size of the
nanomaterials and their agglomerates ranged from 4.7 to
210 nm and from 20.6 nm to 500 µm, respectively. The zeta
potential, indicative of the stability of the particles in suspen-
sion, was measured within the majority of studies (80%) and
ranged between 60 and −45.2mV. Hence, stable and non-
stable particles were present in the suspensions in which the
daphnids were exposed. All data and details are openly
accessible via the Supporting Information.

Dose–response modeling
Typical dose–response curves for different metals are pro-

vided in Figure 1A,B. The dose is expressed in the figure in
units of the log‐transformed number of particles per liter on the
x‐axis and the immobilization response (percentage) on the
y‐axis. The slope of the dose–response curves is dependent of
the type of nanoparticulate metals in the suspension, as can be
seen from comparing the dose–response curves for nAg,

TABLE 1: Fitted and calculated values of nH for all 75 dose–response
relationships studied

Identifier Quasi‐SMILES string
Fitted
nH

Calculated
nH Error (%)

Simulation set
+1 (6.1+)O=[Ce]=O 6.2 5.3 17.5
+2 (5.1+)O=[Zn] 2.6 2.4 7.5
+3 (57.2+)[Ag] 7.4 7.8 5.2
+4 (57.2++)[Ag] 6.4 7.9 18.2
+5 (18.3+)[Ag] 4.9 5.2 5.0
+6 (18.3++)[Ag] 4.3 5.2 17.2
+7 (151.3+)O=[Zn] 4.0 1.8 124.0
+8 (151.3++)O=[Zn] 0.9 1.8 49.7
+10 (6.4+)O=[Ti]=O 0.8 1.6 51.2
+11 (6.4++)O=[Ti]=O 2.9 1.6 76.4
+12 (60.5+)O=[Zn] 0.8 1.9 55.9
+13 (30.5+)O=[Cu] 1.4 −0.3 560.5
+14 (40.6++)O=[Cu] 1.5 2.5 39.4
+15 (40.6+++)O=[Cu] 2.5 2.5 0.6
+16 (25.6+)O=[Zn] 2.2 2.8 20.7
+18 (25.6+++)O=[Zn] 2.2 2.9 24.4
+19 (80.7+)[Ag] 22.5 21.0 7.4
+20 (13.7+)[Ag] 25.1 23.6 6.2
+21 (21.8+)O=[Ti]=O 2.1 0.7 197.4
+22 (21.8++)O=[Ti]=O 0.8 0.7 9.3
+23 (6.9+)[Ag] 10.8 9.3 15.8
+24 (5.9++)[Ag] 16.7 9.6 73.5
+25 (25.9+++)[Ag] 2.3 8.3 72.3
+26 (6.9++++)[Ag] 5.8 9.4 38.7
+28 (25.9++++++)[Ag] 6.0 8.4 29.2
+29 (6.9+++++++)[Ag] 11.7 9.5 22.7
+30 (5.9++++++++)[Ag] 5.9 9.8 40.1
+31 (25.9+++++++++)[Ag] 15.2 8.5 77.6
+32 (100.10+)O=[Zn] 0.9 0.8 25.9
+34 (100.10+++)O=[Zn] 0.5 0.8 41.1
+35 (100.10++++)O=[Zn] 0.5 0.9 36.6
+36 (21.10+)O=[Ti]=O 0.2 −0.2 244.8
+37 (100.10+)[Ni] 0.3 −1.0 134.7
+38 (80.11+)O=[Cu] 4.0 7.3 45.1
+39 (40.11+)O=[Cu] 4.1 2.2 88.4
+40 (25.11+)O=[Cu] 3.0 2.1 41.2
+41 (62.12+)O=[Fe]O[Fe]=O 1.0 1.0 0.2
+42 (15.13+)[Ag] 3.9 5.9 33.2
+43 (15.13++)[Ag] 3.5 5.9 41.1
+45 (40.13+)O=[Cu] 1.4 1.1 34.0
+47 (40.13+++)O=[Cu] 1.2 1.1 6.8
+48 (25.13+)O=[Zn] 1.9 1.5 28.0
+49 (25.13++)O=[Zn] 2.7 1.5 77.4
+50 (25.13+++)O=[Zn] 2.0 1.5 28.9
+51 (25.14+)[Cu] 3.9 4.3 8.4
+52 (50.14+)[Cu] 5.6 5.5 2.2
+54 (50.15+)O=[Cu] 1.4 1.8 22.7
+56 (15.16++)[B] 2.8 0.9 207.0
+57 (100.16+++)[Al] 0.9 0.5 77.7
+59 (100.16+++++)[Al] 0.3 0.6 50.7
+62 (210.17+)O=[Ti]=O 3.6 4.8 24.8
+64 (9.17+++)O=[Ti]=O 1.8 3.3 46.2
+65 (20.17+++)O=[Ti]=O 1.0 0.5 113.1
+67 (43.18+)O=[Zn] 3.5 5.3 33.8
+69 (50.19++)[Cu] 4.3 3.7 18.2
+70 (50.19+++)[Cu] 1.6 3.7 56.4
+71 (50.19++++)[Cu] 7.1 3.7 90.5
+72 (50.19+++++)[Cu] 3.2 3.8 16.0
+73 (50.19++++++)[Cu] 2.3 3.8 38.8
+75 (15.20+)O=[Si]=O 0.7 0.7 6.5

Prediction set
#9 (25.3+)O=[Ti]=O – 3.1 –
#17 (25.6++)O=[Zn] – 2.9 –

TABLE 1: (Continued )

Identifier Quasi‐SMILES string
Fitted
nH

Calculated
nH Error (%)

#27 (5.9+++++)[Ag] – 9.7 –
#33 (100.10++)O=[Zn] – 0.8 –
#44 (15.13+++)[Ag] – 6.0 –
#46 (40.13++)O=[Cu] – 1.1 –
#53 (100.14+)[Cu] – 4.2 –
#55 (15.16+)[B] – 0.9 –
#58 (100.16++++)[Al] – 0.6 –
#60 (9.17+)O=[Ti]=O – 3.2 –
#61 (20.17+)O=[Ti]=O – 0.4 –
#63 (9.17++)O=[Ti]=O – 3.3 –
#66 (50.18+)[Cu] – 2.1 –
#68 (50.19+)[Cu] – 3.6 –
#74 (50.19+++++++)[Cu] – 3.8 –

nH = Hill coefficient; SMILES = simplified molecular input line entry system.
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nSiO2, and nZnO in Figure 1A. The fitted nH values for nZnO,
nAg, and nSiO2 are 2.6, 22.5, and 0.7, respectively. Details on
the fitted dose–response curves, with an average R2 of 0.95,
are provided in the Supporting Information. As shown in
Figure 1A and as can be deduced from the percentage of
SDEV, the models fitted the data well with an average SDEV of
0.8%. The simulated nH values by the quasi‐QSAR model for
these three metal‐based ENMs were significantly different, that
is, 2.4, 21.0, and 0.7 for nZnO, nAg, and nSiO2, respectively.

The Hill coefficient is the parameter that is dependent
primarily on the characteristics of the ENM to which the biota
are exposed. We therefore assumed that for different chemistry
conditions the Hill coefficient remains the same. This assump-
tion is confirmed by the dose–response curves obtained for
nCu exposure at different pH values. As shown in Figure 1B, it

can first of all be concluded that the quasi‐QSAR model fitted
the data well with an average SDEV of 0.9%. The simulated
(indicating that the experiment at pH 6.5 was randomly in-
cluded in the data set used for model development) and pre-
dicted (indicating that the experiments at pH 7.8 and 8.5 were
included in the data set used for model validation) nH values for
the three pH values were very close, that is, 3.6, 3.7, and 3.7 for
pH 6.5, 7.8, and 8.5, respectively. The quasi‐QSAR descriptors
gave a good fit of the overall set of dose
–response data with an average R2 of 0.93.

Another example of showcasing the typical accuracy of the
fitted nH values concerns the case of nZnO. Dose–response
data for nZnO of different sizes and coatings were obtained
from seven literature sources: Briffa et al. (2018), Cupi et al.
(2016), Heinlaan et al. (2008), Kim et al. (2017), Oleszczuk et al.

(A)

(B)

FIGURE 1: Modeled dose–response curves for Daphnia magna immobilization, where (A) shows the model simulations for three metal‐based
nanomaterials, that is, nZnO, nAg, and nSiO2. The experimental data were retrieved from Briffa et al. (2018), Lee et al. (2012), and Yang et al. (2014).
(B) Model simulations and predictions for nCu at three pH values, that is, 6.5, 7.8, and 8.5, for which the data were reported by Xiao et al. (2016).
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(2015), Seo et al. (2014), and Xiao et al. (2015). The fitted values
of the experimental dose–response data yielded values of nH

which ranged from 0.5 to 4.0 with an average R2 of 0.91. The
quasi‐QSAR model calculated a value of nH of 2.4, which is well
within the range of experimental values. Another example re-
lates to the fitted values of nH for nAg. The underlying data
were retrieved from five literature sources (Cui et al., 2017;
Cupi et al., 2016; Lee et al., 2012; Newton et al., 2013; Seo
et al., 2014), and the values of nH ranged from 2.3 to 25.1 with
an average R2 of the fit of the dose–response data of 0.97. Our
quasi‐QSAR model calculated an nH value for nAg of 21.0. The
finding that the modeled nH values for nCu, nZnO, and nAg
are very similar to the values fitted from dose–response data
suggests that the present approach provides a proper com-
putational means to calculate nH for metal‐based ENMs under
different conditions. It is to be noted that the large variation of
the fitted nH values of nAg might be related to differences
in the stability of the nanosuspensions, as can be deduced from
the values of the zeta potential. In a high‐hardness exposure
media, the nAg particles (this specific data set is included in the
data set given in Supporting Information, Table S1, as experi-
ment “+20 of nAg Ø 13.3 nm”) had a zeta potential of
−45.2mV, and the fitted nH value was equal to 25.1 (R2= 0.99).
The nAg in a moderate‐hardness exposure media (experiment
“+42 of nAg Ø 15 nm” in the Supporting Information) was re-
ported to have a zeta potential of −22.5± 1.2 mV, and the
fitted nH value was equal to 3.9 (R2 = 0.99). Values of the zeta
potential of more than +30mV or less than −30mV are com-
monly considered as being indicative of electrostatic

stabilization of nanoparticle suspensions (Honary &
Zahir, 2013a, 2013b), which in turn warrants lack of particle
aggregation. Lack of aggregation maximizes the potential for
uptake of the stabilized particles and the likelihood of adverse
effects on D. magna (Panzarini et al., 2018), hence yielding a
steeper dose–response curve in the case of stabilized nano-
particles at the same exposure doses.

Predictions and simulations of the
dose–response relationships

Figures 2 and 3 show examples of the model simulations
and predictions of the dose–response curves for different
metal‐based nanomaterials and environmental conditions
against D. magna immobilization. The term model simulations
refers to data used for model development, and the term
predictions refers to the model application for a data set not
included in model development. Modeled dose–response
curves are shown in Figure 2 for three metal‐based nano-
materials: nAg, nCuO, and nZnO. The data were obtained
using the same experimental conditions (OECD test guideline
no. 202 [OECD, 2004], 20± 2 °C and 16:8‐h light: dark cycle)
with three different media (moderately hard water [Interna-
tional Organization for Standardization, 2012] and hard water),
as reported by Seo et al. (2014). Modeled dose–response
curves are shown in Figure 3 for the same spherical nCu particle
as obtained using the same experimental conditions in seven
different exposure media (pH 6.5–8.5 and dissolved organic

FIGURE 2: Model simulation and prediction of dose–response curves for impacts of three metal‐based nanomaterials, that is, nAg, nCuO, and
nZnO, on Daphnia magna immobilization. Data were obtained from Seo et al. (2014).
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carbon [DOC] 0–10mg/L) as reported by Xiao et al. (2016).
Figures 2 and 3 demonstrate that the models account for the
experimental data reasonably well, with on average 1.2%
SDEV. The quasi‐QSAR model was further applied to simulate
and predict the dose response of the remaining 18 reports, as
shown in Supporting Information, Figures S3–S20. The per-
centage SDEV for the overall array of 75 data sets (60 simu-
lation sets, 15 prediction sets) is listed in Table 2. Note that the
average SDEV of all studied data sets is 2.1%, and 95% of the
data sets were successfully modeled with SDEV< 6.0%. It is
also to be noted that “N/A” in Table 2 indicates that calculated
nH values were negative. This is either an error of the quasi‐
QSAR model calculation or an indication of a case where the
number of data points was <2 because in the latter case the
SDEV cannot be calculated.

Figure 4A,B shows the model simulation and prediction of
all individual experimental response data in the data sets pre-
sented in Supporting Information, Tables S1 and S2, re-
spectively. The number of data points and the magnitude of
the responses are listed in Supporting Information, Table S3.
The calculated nH values of these 75 data sets are listed in
Table 1. It is noted that among the 60 data sets (including 11
metal‐based nanomaterials: nAg, nAl, nB, nCeO2, nCu, nCuO,
nFe, nNi, nSiO2, nTiO2, and nZnO) used in Monte Carlo opti-
mization, three data sets have calculated nH values that were
negative, that is, data sets +13, +36, and +37, which is an error
of the quasi‐QSAR model calculation. The negative nH value
has no meaning in quantifying the response of a receptor to a
stressor because it implies lower responses on increasing ex-
ternal particle concentrations. These data sets were therefore
not included in the data set used for evaluating the model
simulations. Figure 4A shows a typical model simulation of the

dose–response data representing the impacts of 10 metal‐
based nanomaterials (nAg, nAl, nB, nCeO2, nCu, nCuO, nFe,
nSiO2, nTiO2, and nZnO) on D. magna immobilization. On the
x‐axes, the dose is expressed as the log‐transformed measured
dose with units of number of particles per liter. On the y‐axes,
the dose is expressed as the log‐transformed simulated or
predicted dose in the same units of number of particles per
liter. The model was also employed for the prediction of the
dose–response curves of a series of new data sets of seven
metal‐based nanomaterials (nAg, nAl, nB, nCu, nCuO, nTiO2,
and nZnO), as shown in Figure 4B. The experimental data were
extracted from a subset of 10 reports as listed in Supporting
Information, Table S2. In these data sets the relevant exposure
dose that covers the 5%–95% response levels of the daphnids
ranges from 2.43 × 108 to 8.54 × 1016 particles/L, as listed in the
Supporting Information.

The results in Figure 4A,B demonstrate that the model is
able to simulate and predict the experimental data well, with
an overall 2.7% SDEV (R2 = 0.96). The model performance is
as good as the model fitting in the sense that the overall
SDEV is equal to 5.7% (R2 = 0.94, n = 390), as shown in Sup-
porting Information, Figure S1. The 95% confidence and
prediction intervals are shown in Supporting Information,
Figure S2.

Applicability and limitations of the model
The quasi‐QSAR model developed in the present study has

been successfully tested in simulations and predictions of the
dose–response relationships of metal‐based ENMs against
D. magna immobilization in various test media. The model

FIGURE 3: Model simulation and prediction of dose–response relationships for impacts of nCu on Daphnia magna immobilization. Data were
obtained from Xiao et al. (2016).
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was first optimized for simulation of the dose–response rela-
tionship of 80% of the nanoparticles in the overall data set
(60 data sets), with a good agreement between model esti-
mates and experimental data of 2.3% SDEV, as shown in
Figure 4A. The model was tested by the dose–response re-
lationships collected from 20 reports for 10 metal‐based
ENMs under 38 different environmental conditions, proving that
the model is applicable to various combinations of metal‐based
ENMs and experimental conditions. In optimizing the model, a
key parameter was determined, that is, nH . Combing the pre-
dicted value of nH with any ECx value available (in the present
study we used the EC50 value because this effect level is most
commonly reported), the dose–response relationship of a given
metal‐based combination of ENMs and experimental conditions
may be simulated by combining the output of the quasi‐QSAR
model and the ECx value. The model was tested by an in-
dependent set of dose–response relationships collected from 10
literature reports for seven metal‐based ENMs, as tested in 14
different environmentally relevant exposure media. The results
(Figure 4B) of this model validation show that the model is ca-
pable of properly predicting new data sets.

Although the present quasi‐QSAR model has been found to
be successful for treating many combinations of metal‐based
ENMs and testing conditions, the model still has limitations. As
with any QSAR model, the model is only capable of predicting
the response of D. magna for metal‐based ENMs that were
present in the test set (applicability domain) and for which
the model was optimized. The same is true with regard to the
testing conditions, albeit this is less of a limitation because the
ecological niche for daphnids is quite narrow in terms of water
properties like pH, DOC, temperature. The boundaries for
these water conditions are actually given in OECD guideline
202 (OECD, 2004), and the water conditions used in all tests

TABLE 2: Summary of the parameters used in the quasi‐quantitative
structure–activity relationship‐Hill model

Identifier
EC50

(particles/L) Fitted nH
Number of data

points % SDEV

Simulation set
+1 14.3 5.3 2 0.2
+2 14.1 2.4 4 0.5
+3 10.7 7.8 4 0.3
+4 10.7 7.9 4 0.4
+5 12.2 5.2 4 0.5
+6 12.4 5.2 4 0.4
+7 9.7 1.8 1 –
+8 11.7 1.8 5 2.6
+10 15.9 1.6 5 2.0
+11 15.2 1.6 2 0.9
+12 12.5 1.9 5 2.0
+13 13.5 −0.3 N/A N/A
+14 12.7 2.5 5 1.6
+15 12.3 2.5 2 0.5
+16 13.6 2.8 2 2.2
+18 13.4 2.9 2 2.4
+19 8.4 21.0 2 0.1
+20 11.8 23.6 0 –
+21 12.2 0.7 7 4.8
+22 17.0 0.7 11 1.2
+23 12.3 9.3 2 0.0
+24 12.8 9.6 3 0.8
+25 11.2 8.3 2 1.7
+26 12.3 9.4 1 –
+28 11.2 8.4 5 1.7
+29 12.5 9.5 1 –
+30 13.4 9.8 2 0.4
+31 11.2 8.5 1 –
+32 10.0 0.8 3 3.0
+34 11.8 0.8 6 4.4
+35 12.6 0.9 4 4.2
+36 15.7 −0.2 N/A N/A
+37 12.3 −1.0 N/A N/A
+38 12.1 7.3 2 0.8
+39 13.0 2.2 3 1.0
+40 12.0 2.1 3 1.8
+41 14.2 1.0 5 1.8
+42 11.4 5.9 2 0.6
+43 12.4 5.9 2 1.1
+45 12.6 1.1 3 1.3
+47 13.2 1.1 5 1.0
+48 13.5 1.5 3 1.1
+49 13.8 1.5 4 2.0
+50 14.3 1.5 4 1.9
+51 12.1 4.2 5 1.1
+52 11.4 5.5 5 0.4
+54 13.2 1.8 4 1.1
+56 15.2 0.9 3 4.8
+57 14.2 0.5 4 8.9
+59 13.9 0.6 5 4.4
+62 11.3 4.8 5 5.0
+64 15.3 3.3 4 2.0
+65 13.8 0.5 5 6.0
+67 12.6 5.3 8 0.6
+69 10.8 3.7 3 0.3
+70 11.3 3.7 6 1.8
+71 11.5 3.7 2 1.1
+72 11.9 3.8 5 0.5
+73 12.1 3.8 5 0.9
+75 16.5 0.7 5 1.8

TABLE 2: (Continued )

Identifier
EC50

(particles/L) Fitted nH
Number of data

points % SDEV

Prediction set
#9 14.6 3.1 8 6.1
#17 13.5 2.9 4 1.9
#27 12.6 9.7 3 0.2
#33 11.9 0.8 6 3.8
#44 12.5 6.0 2 1.6
#46 12.9 1.1 4 2.2
#53 10.3 4.2 4 0.6
#55 15.7 0.9 2 3.1
#58 12.7 0.6 5 4.8
#60 15.0 3.2 5 3.8
#61 13.5 0.4 4 10.2
#63 16.8 3.3 5 2.2
#66 11.2 2.1 7 2.1
#68 11.2 3.6 7 0.7
#74 12.3 3.8 6 0.6

EC50, median effective concentration; nH = Hill coefficient; SDEV = percentage
of sample deviation; N/A = not analyzed (nH values were negative).
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included in the test and validation sets adhered to these
boundaries. This implies that the quasi‐QSAR model is appli-
cable within these boundaries. As a matter of course, re-
optimization with input of new metal‐based ENMs is needed
when extending the applicability domain by inclusion of ENMs
hitherto not included in model development. Another limi-
tation is that the effectiveness of the present model is limited to
the EC5 to EC95 range because the experimental noise for
data outside of this range is relatively large. It is to be noted
explicitly that this is not a shortcoming of the model but a
shortcoming of the experimental data commonly reported in
the literature.

Prospects of linking the quasi‐QSAR model
to QSAR models for prediction of effect levels

Various researchers have provided guidance for the proper
derivation of EC50 values (see, e.g., Noel et al., 2018;
Sebaugh, 2011). Puzyn et al. (2011) used data generated ac-
cording to this guidance to develop a model to predict effect
levels for the cytotoxicity of 17 metal oxide nanoparticles to
Escherichia coli cells based on the enthalpy of formation of a
gaseous cation present in the same oxidation state as that in
the metal oxide structure (∆ +HMe ). These authors found that
values of –log(EC50) were equal to 2.59 – 0.50∆ +HMe . Gajewicz
et al. (2015) employed a similar approach for estimating –log

(A)

(B)

FIGURE 4: Comparison of modeled and measured response data for Daphnia magna immobilization, where (A) represents the model simulations
for 10 metal‐based nanomaterials from 20 literature reports (Supporting Information, Table S1) and (B) shows model predictions for seven metal‐
based nanomaterials from 10 literature reports (Supporting Information, Table S2). Inset in (B) represents the best predicted (simplified molecular
input line entry system, percentage sample deviation [SDEV]= 0.2) case of polyethylene glycol–capped nAg in suspensions of Suwannee River
dissolved organic carbon (low concentration) from Newton et al. (2013) and the worst predicted case (% SDEV= 10.2) of nTiO2 (Ø 20 nm) in 10‐fold
diluted International Organization for Standardization media under simulated solar radiation in a 16:8‐h light: dark cycle, as reported by Wyrwoll
et al. (2016).
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(EC50) of 18 nanometal oxides for impacts on a human kera-
tinocyte cell line (HaCaT). In this contribution of Gajewicz et al.
(2015), two QSAR descriptors were employed, that is, the en-
thalpy of formation of a metal oxide nanocluster representing a
fragment of the surface (∆ )Hf

c and Mulliken's electronegativity
of the cluster χ( )c . It was found that –log(EC50) is equal
to 2.47 (±0.05)+ 0.24 (±0.05)∆Hf

c + 0.39 (±0.05) χc . Pan et al.
(2016) used the data set reported by Gajewicz et al. (2015) to
develop two QSAR models in which SMILES‐based optimal
descriptors were integrated:

⎛
⎝

⎞
⎠
= − (± ) + (± )

× ( )

log
1

LC50
0.2909 0.0664 0.1038 0.0027

DCW 1, 3 (5)

with n= 13, R2= 0.961, Q2
LMO= 0.939, s= 0.008, F= 268,

p< 0.0001.

⎛
⎝

⎞
⎠
= (± ) + (± )

× ( )

log
1

LC50
0.0012 0.0048 0.0778 0.0001

DCW 1, 3 (6)

with n= 12, R2= 0.999, Q2
LMO= 0.999, s= 0.007, F= 1273,

p< 0.0001.
In these equations, LC50 is the median lethal concentration, n

is the number of ENMs in the training set, Q2
LMO is the cross‐

validated R2, s is the standard error, F is the Fischer ratio, and p is
the p value. The number 1 in DCW(1,3) is the coefficient for
categorization of features into two groups (noise and active); the
number 3 in DCW(1,3) is the number of epochs of the Monte
Carlo optimization. In addition, Pan et al. (2016) employed the
same approach with the data set reported by Puzyn et al. (2011)
and developed a model that can be expressed as follows:

⎛
⎝

⎞
⎠
= (± ) + (± )

× ( )

log
1

LC50
0.0321 0.1443 0.2658 0.0141

DCW 6, 11 (7)

with n= 10, R2= 0.889, Q2
LMO= 0.838, s= 0.179, F= 164,

p< 0.0001.

⎛
⎝

⎞
⎠
= − (± ) + (± )

× ( )

log
1

LC50
0.0076 0.0306 0.1420 0.0020

DCW 6, 17 (8)

with n= 9, R2= 0.982, Q2
LMO= 0.975, s= 0.007, F= 391,

p< 0.0001.

OUTLOOK FOR ENVIRONMENTAL EFFECT
ASSESSMENT

The quasi‐QSAR model that we developed quantifies the
relationship between the dose of a metallic nanoparticle to
which the daphnid D. magna is exposed and the immobiliza-
tion response with an accuracy (SDEV) of on average 2.1%. If
experimental values of any ECx level under any kind of testing
or exposure conditions are available, the full dose–response

curve of the metallic nanoparticle can be estimated. The quasi‐
QSAR model can also be used as a building block to connect to
QSAR‐like comprehensive models developed recently, al-
lowing one to calculate an ECx of ENMs from a cryptography
based on the Monte Carlo optimization (Cao et al., 2020; Pan
et al., 2016; Toropova et al., 2015, 2017) and regression‐based
QSAR models (Gajewicz et al., 2015; Kar et al., 2014; Mu
et al., 2016; Pathakoti et al., 2014; Puzyn et al., 2011). These
models are instrumental for screening the nano‐safety of metal‐
based nanomaterials that are not intensively tested or are
tested at new exposure conditions. This is needed to perform a
robust environmental effect assessment for nanomaterials.
Prospects of this type of model can also be found in the de-
velopment of these quasi‐QSAR models for other aquatic or-
ganisms that are commonly used in risk assessment.

Supporting Information—The Supporting Information is avail-
able on the Wiley Online Library at https://doi.org/10.1002/
etc.5322.
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