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Purpose: To characterize the topological properties of gray matter (GM) and

functional networks in end-stage renal disease (ESRD) patients undergoing

maintenance hemodialysis to provide insights into the underlying mechanisms

of cognitive impairment.

Materials and methods: In total, 45 patients and 37 healthy controls were

prospectively enrolled in this study. All subjects completed resting-state

functional magnetic resonance imaging (rs-fMRI) and diffusion kurtosis

imaging (DKI) examinations and a Montreal cognitive assessment scale (MoCA)

test. Differences in the properties of GM and functional networks were

analyzed, and the relationship between brain properties and MoCA scores was

assessed. Cognitive function was predicted based on functional networks by

applying the least squares support vector regression machine (LSSVRM) and

the whale optimization algorithm (WOA).

Results: We observed disrupted topological organizations of both functional

and GM networks in ESRD patients, as indicated by significantly decreased

global measures. Specifically, ESRD patients had impaired nodal efficiency

and degree centrality, predominantly within the default mode network, limbic

system, frontal lobe, temporal lobe, and occipital lobe. Interestingly, the

involved regions were distributed laterally. Furthermore, the MoCA scores

significantly correlated with decreased standardized clustering coefficient (γ),

standardized characteristic path length (λ), and nodal efficiency of the right

insula and the right superior temporal gyrus. Finally, optimized LSSVRM could

predict the cognitive scores of ESRD patients with great accuracy.
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Conclusion: Disruption of brain networks may account for the progression of

cognitive dysfunction in ESRD patients. Implementation of prediction models

based on neuroimaging metrics may provide more objective information to

promote early diagnosis and intervention.

KEYWORDS

end-stage renal disease, resting-state functional magnetic resonance imaging,
diffusion kurtosis imaging, graph theoretical analysis, predict

Introduction

End-stage renal disease (ESRD) is the final stage of
chronic kidney disease (CKD). Treatment options for ESRD
include continuous hemodialysis, peritoneal dialysis, and kidney
transplantation. ESRD patients are at high risk of developing
cognitive impairment (CI), especially in patients who have
received continuous hemodialysis, with a prevalence of 30–
60% (Bugnicourt et al., 2013; Kalantar-Zadeh et al., 2021).
Impaired domains include overall cognition, executive function,
memory, motor, and attention (van Zwieten et al., 2018).
CI in ESRD patients is associated with negative outcomes,
including non-adherence to drug treatment and increased
rate of suicide (Agganis et al., 2010; Natale et al., 2019).
However, the underlying neuropathology of CI in ESRD
patients remains largely unknown. Therefore, investigating
the neuropathological alterations leading to CI would help
to understand the potential mechanisms contributing to CI,
which would be beneficial in preparing treatment plans
for ESRD patients.

Magnetic resonance imaging (MRI) is a non-invasive
technique that can provide structural and functional
information of the brain. It has been widely used to study
the neurological changes in CI-related diseases, including
Parkinson’s disease (Donzuso et al., 2021), silent cerebral
infarction (Luo et al., 2015), Alzheimer’s disease (AD) (Chandra
et al., 2019), and multiple sclerosis (Zhang J. et al., 2021). Voxel-
based morphometry (VBM) is a valuable tool for assessing brain
volume changes on a voxel-by-voxel basis (Pezzoli et al., 2021).
Recently, Jin et al. (2020) reported that a predominant decrease
in gray matter (GM) volume is associated with CI in ESRD
patients by using VBM based on structural MRI technologies.
Diffusion tensor imaging (DTI) is a valuable MRI technique
that can estimate the microstructure of tissues by probing
the diffusion process of water molecules (Basser et al., 1994).
Through the use of DTI, previous studies found that disruption
of white matter (WM) integrity correlated with impaired kidney
function and CI in ESRD patients (Chou et al., 2019; Park et al.,
2020; Mu et al., 2021). Functional imaging techniques, such as
resting-state functional magnetic resonance imaging (rs-fMRI)
and arterial spin labeling (Zheng et al., 2016), have been utilized

to detect brain functional alterations in ESRD. Recently, Li
et al. (2021) investigated disrupted neurovascular coupling in
ESRD patients undergoing hemodialysis and revealed it to be
a potential neural mechanism for CI. Moreover, rs-fMRI can
detect low-frequency (0.01–0.08 Hz) fluctuations in blood-
oxygen-level-dependent (BOLD) signals and can be used to
investigate spontaneous neural activity at rest (Barkhof et al.,
2014). In hemodialysis patients, impaired functional integrity
of extensive brain regions has been measured by using multiple
analytical methods based on rs-fMRI, including regional
homogeneity (ReHo), amplitude of low frequency fluctuation
(ALFF), and functional connectivity (FC) (Li et al., 2018; Chen
et al., 2020; Hu et al., 2020; Guo et al., 2021). Although the above
results were inconsistent due to the diverse population cohorts
and methodologies used, a correlation between functional
abnormalities and cognitive dysfunction was indicated.

Complex structural and functional brain networks can
provide a physiological basis for information processing
among neural elements and mental representation (McIntosh,
2000; Friston, 2002). Diffusion MRI and fMRI are the
most extensively used non-invasive imaging methods for
reconstructing structural and functional networks, with
network nodes representing brain regions and network edges
representing structural or functional connectivity (Suárez et al.,
2020). Currently, graph theory can be used to evaluate the
architecture, development, and evolution of brain networks
systematically and quantitatively by quantitatively analyzing
topological properties (Reijneveld et al., 2007; Bullmore and
Sporns, 2009). Recent studies have used graph theory to detect
the complexity of brain networks in various neurological
diseases, including schizophrenia, AD, depressive disorder,
acute brainstem ischemic stroke, and epilepsy (Jiang et al.,
2017; Faskhodi et al., 2018; Shi et al., 2021; Zhang L. et al.,
2021; Zhang Y. et al., 2021). In these disorders, the emergence
of clinical symptoms or functional impairment was related to
the disrupted integration of spatially distributed brain regions
in structural and functional networks (Bullmore and Sporns,
2009). Similarly, the use of graph theory with rs-fMRI and DTI
has identified brain aberrations in functional and WM networks
correlating with cognitive function in ESRD patients (Ma C.
et al., 2020; Wu et al., 2020). However, no studies to date have
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investigated the relationship between topological characteristics
of GM networks and cognitive function in ESRD patients.

Diffusion kurtosis imaging (DKI), an extension of the DTI
model, was developed to sensitively quantify non-Gaussian
water diffusions in a voxel (Jensen et al., 2005). Thus,
DKI provided a useful way to investigate abnormalities in
both GM and WM, where DTI was less capable. Currently,
DKI has been used as a practical clinical application in
neuroscience research, including normal brain tissues, brain
trauma, brain tumors, AD, schizophrenia, and Parkinson’s
disease (McKenna et al., 2019; Bingbing et al., 2020; Goghari
et al., 2021; Hempel et al., 2021; Stenberg et al., 2021). These
studies supported the possibility that DKI may be a sensitive
imaging biomarker in many neurological diseases. However,
these studies only investigated kurtosis values in regional
brain areas, ignoring the coordination of heterogeneous DKI
properties between different brain regions. A recent study
focused on changes in both GM and WM networks based
on DKI in AD found that DKI network damage was related
to cognitive performance (Cheng et al., 2018). However, few
studies have applied DKI to investigate CI in ESRD patients.
More specifically, no studies have applied DKI to assess GM
networks in ESRD patients.

In this study, we used DKI and rs-fMRI to construct
GM functional networks to investigate potential aberrant
mechanisms leading to CI in ESRD patients. Further, we
tentatively predicted the cognitive function of ESRD patients
using topological properties as features based on the individual
level. The least squares support vector regression machine
(LSSVRM) was used to build a prediction model, and the
whale optimization algorithm (WOA) was used to optimize
model parameters (Zhang et al., 2022). In conclusion, our
study attempted to improve the possibility of early diagnosis
and neuroprotective treatments for ESRD patients by using
predictive models based on neuroimaging techniques.

Materials and methods

Participants

This study was approved by the Ethics Committee
of The Affiliated Changzhou No. 2 People’s Hospital of
Nanjing Medical University (Number: KY039-01). All
participants provided informed consent to participate in
the study. All subjects were right-handed and fully capable of
completing the Montreal cognitive assessment scale (MoCA)
test independently.

Between February 2020 and December 2021, 45 ESRD
patients (22 male and 23 female, mean age 49.56 ± 8.02 years)
from our hospital were prospectively recruited into our patient
group. Inclusion criteria for the patient group included: (1)
clinically diagnosed ESRD (estimated glomerular filtration

rate less than 15 mL/min/1.73 m2); (2) receiving regular
maintenance hemodialysis lasting longer than 3 months (three
times a week at the hemodialysis center); (3) age between 30
and 65 years; and (4) MoCA score less than 26. Exclusion
criteria included: (1) history of other neuropsychiatric disorders;
(2) history of head trauma, intracranial tumors, or cerebral
infarction; (3) renal transplant history; (4) drug or alcohol abuse
history; (5) contraindications to MRI, such as claustrophobia,
dental fixtures, and other exogenous objects in the head; and (6)
obvious head motion artifact.

In addition, 37 healthy controls (HCs) (19 male and 18
female, mean age 47.30 ± 7.20 years) without renal disease
and other known disorders and with MoCA scores higher than
26 were enrolled at the same time as the control group. Both
groups were matched based on age, gender, and education
years. The exclusion criteria for HCs were the same as that for
the patient group.

Neuropsychological assessment

MoCA testing was administered to measure the overall
cognitive status (out of a possible 30 points), with patients
scoring less than 26 diagnosed with CI (Nasreddine et al.,
2005). MoCA testing was administered by a well-trained clinical
neuropsychologist within 2 h prior to MR scanning.

Laboratory tests

Laboratory tests for all ESRD patients were conducted
within 24 h prior to MR scanning and included white and
red cell counts, hemoglobin, hematocrit, fasting glucose, urea
nitrogen, creatinine, uric acid, cholesterol, triglyceride, and
calcium measurements. Laboratory tests were not performed for
patients in the HC group.

Research framework

Research framework is shown in Figure 1.

Magnetic resonance imaging data
acquisition

Magnetic resonance imaging data were acquired using
a 3.0T magnetic resonance scanner (Discovery MR750W,
General Electric Medical Systems, United States, Milwaukee,
WI), equipped with a standard 32-channel head and spine
combined coil. All participants were asked to stay still and
awake and to keep their eyes closed during the entirety of
scanning. Earplugs were used to alleviate the noise from the

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.967760
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-967760 August 4, 2022 Time: 15:9 # 4

Zheng et al. 10.3389/fnins.2022.967760

FIGURE 1

Research framework. GM and functional brain networks were explored using graph theory through the following four steps: (1) define the
network nodes. These were defined as anatomically defined regions of the AAL template; (2) estimate a continuous measure of association
between nodes. These were the interregional correlations in DKI metrics and time series data; (3) generate an association matrix by compiling
all pairwise associations between nodes, and apply a threshold to each element of this matrix to produce a binary adjacency matrix; and (4)
calculate the network parameters of interest in this graphical model of the brain networks and compare them to the equivalent parameters of a
population of random networks. GM, gray matter; AAL template, automated anatomical labeling template; DKI, diffusion kurtosis imaging.

MR scanner. Foam pads were added on both sides of the head
to reduce head motion. High-resolution anatomic T1-weighted
images were acquired with the three-dimensional brain volume
imaging (3D-BRAVO) sequence [parameters: 152 slices; slice
thickness = 1.2 mm (no gap); repetition (TR) = 8.2 ms; echo
time (TE) = 3.2 ms; flip angle (FA) = 12◦; matrix = 256 × 256;
field of view (FOV) = 240 mm × 240 mm; whole scanning
time = 3 min 57 s]. rs-fMRI data were acquired with the
gradient-recalled echo-planar imaging (GRE-EPI) sequence
(parameters: 33 slices; 240 time-points; slice thickness = 4 mm;
TR = 2,000 ms; TE = 40 ms; FA = 90◦; matrix = 64 × 64;
FOV = 240 mm × 240 mm; whole scanning time = 8 min 12 s).
DKI data were acquired using a single-shot echo-planar imaging
(SS-EPI) sequence, with 3b-values (b = 0, 1,000, 2,000 s/mm2)
along 30 diffusion gradient directions (parameters: NEX = 2,
slice thickness = 3.6 mm (no gap); TR = 6,500 ms; TE = 95.8 ms;
matrix = 128 × 128; FOV = 240 mm × 240 mm; whole scanning
time = 14 min 43 s).

Image preprocessing

Diffusion kurtosis imaging data
Diffusion kurtosis imaging data were preprocessed using the

FMRIB Software Library (FSL),1 Diffusion Kurtosis Estimator

1 https://fsl.fmrib.ox.ac.uk/fsl

(DKE),2 and Statistical Parametric Mapping 8 (SPM8)3 software.
First, DKI data in DICOM format were converted into
4DNIFTI format. Data were corrected for head movement,
eddy, and gradient distortion with b = 0 image as a reference
using FSL. Then, DKI parameters including mean kurtosis
(MK), axial kurtosis (AK), radial kurtosis (RK), and kurtosis
anisotropy (KA) were extracted using DKE with the quadratic
programming-based (CLLS-QP) algorithm (Tabesh et al.,
2011). Next, after registering each subject’s 3D-T1w anatomic
images with the standard Montreal Neurologic Institute (MNI)
template, b = 0 images were registered with the standardized
3D-T1w anatomic images using SPM8 with a non-linear co-
registration technique. The resulting transformation matrix
was used for normalizing all DKI parameter maps. Finally,
normalization and smoothing (FWHM = 6 mm) for DKI
parameters were conducted using SPM8.

Resting-state functional magnetic resonance
imaging data

Resting-state functional magnetic resonance imaging data
preprocessing was performed with the data processing assistant
for resting-state fMRI (DPARSF-V2.3)4 based on MATLAB
2013. First, after converting data from the DICOM format
to the NIFTI format, the first 10 timepoints were discarded
to allow for steady-state longitudinal magnetization. Slice

2 https://www.nitrc.org/projects/dke/

3 https://www.fil.ion.ucl.ac.uk/spm/

4 http://rfmri.org/dpabi
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timing and head motion correction were conducted for the
remaining 230 timepoints collected (subjects were excluded if
their head movement was more than 3 mm or 3◦). Next, spatial
normalization was performed based on unified segmentation to
the structural T1 image, and the functional image was warped
into the standard space of the (MNI) template (resampling voxel
size = 3 mm × 3 mm × 3 mm). Then, spatial smoothing
in reference to an isotropic Gaussian kernel (full width at
half maximum [FWHW] = 6 mm), detrending, and temporal
filtering (bandpass, 0.01–0.08 Hz) were performed. Finally,
nuisance covariates including cerebrospinal fluid signals, WM
signals, and Friston-24 head motion parameters were regressed
out of the data.

Network construction

Gray matter network construction
Gray matter networks were constructed at the group level

based on each DKI parameter measurement. The structural
connections of the GM network were defined as statistical
correlations between pairs of kurtosis values from brain nodes.
Nodes were defined as the parcellation of a whole-brain
conducted according to the Automated Anatomical Labeling
(AAL) atlas, which divided the brain into 90 regions including
78 cortical regions and 12 subcortical regions. These regions
were regarded as the nodes of the GM network. For edge
definition, regional kurtosis values for every region were
extracted to calculate the Pearson’s correlation coefficients
across individuals for each pair of brain regions to obtain
the correlation matrix (90 × 90) of each group (Cheng
et al., 2018). Then, a parameter matrix for each DKI metric
was assigned to the HC and ESRD patient groups (MK,
AK, RK, and KA).

Functional network construction
Functional networks for each participant were constructed

using the GRETNA toolbox.5 Nodes were defined (similar to
the GM network) according to the AAL atlas (90 regions). Edge
definitions were calculated using the mean time series for every
region to calculate the Pearson’s correlation coefficients for each
pair of regions, which were used to obtain the correlation matrix
(90 × 90). Then, Fisher’s Z transformation was performed to
increase the normality of the matrix.

Network analysis

Network threshold selection
Using the matrix sparsity as the threshold, the matrix was

binarized. The whole range of sparsity thresholds of the GM

5 http://www.nitrc.org/projects/gretna/

network was set to 0.06–0.40 with an interval of 0.01 (the
sparsity threshold was selected to ensure that all resultant
networks have the same number of nodes and edges) (Cheng
et al., 2018). The whole range of sparsity thresholds of the
functional network was set to 0.1–0.4, with an interval of 0.01
(the values of small-worldness of all participants were checked
more than once in order to avoid the selection of a threshold
range too wide to produce connected nodes and networks with
small-worldness features) (Wu et al., 2020).

Network metrics
For each sparsity threshold, global and nodal measures were

calculated. Global measures included global efficiency (Eg), local
efficiency (Eloc), mean clustering coefficient (Cp), characteristic
path length (Lp), standardized clustering coefficient (γ),
standardized characteristic path length (λ), and small-world
properties (σ). Nodal measures included nodal efficiency (Ne)
and degree centrality (Dc). Areas under the curve (AUCs)
of the topological parameters of the functional network were
calculated within the whole sparsity threshold.

Statistical analysis

Group differences between
demographic data, clinical
characteristics, and MoCA scores

Demographics, clinical data, and MoCA scores were
analyzed using specific software (SPSS version 25.0; SPSS,
Chicago, Illinois). Chi-squared test, two-sample independent
Student’s t-test, and Mann-Whitney U test were used to compare
gender-based differences and quantitative data between the
groups. A statistical significance level was set at P < 0.05.

Group differences between all imaging
parameters

A two-sample t-test was performed based on GRETNA to
detect differences in network measures between the two groups
with age, gender, and education years used as covariates. We
set the statistical threshold with false discovery rate criterion
(FDR)- corrected P < 0.05.

Correlation analysis

Pearson’s correlation analysis was performed based on
GRETNA to detect the relationships between significant
topological parameters of the functional network and MoCA
scores in ESRD patients with age, gender, and education years
used as covariates (P < 0.05 and corrected by FDR).
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Prediction model construction

Least squares support vector regression machine is an
improvement of support vector regression machine. To
improve prediction efficiency and accuracy, LSSVRM changed
the inequality constraint and the solution of quadratic
programming problem into equality constraint and the solution
of linear equations, respectively (Liu et al., 2019). Then, to
improve operating efficiency, we optimized selection strategy of
kernel function parameters by introducing WOA into LSSVRM
(Zhang et al., 2018).

Optimized LSSVRM was applied to predict cognitive
function based on functional networks. Functional network
measures (global and nodal) significantly correlated (P < 0.05
and corrected by FDR) with MoCA scores were selected as
features. The selected features were fused to build LSSVRM,
using two methods: [a] only global measures were fused; [b]
both global and nodal measures were fused. Then, selected
measures with corresponding MoCA scores of 45 ESRD patients
were used as a data set by the leave-one-out method. For our
data, leave-one-out method was optimized empirically. The
mean square error (MSE), root mean square error (RMSE),
mean absolute error (MAE), and mean absolute percentage
error (MAPE) were chosen as testing standards to assess the
accuracy of models. The lower the MSE, RMSE, MAE, or MAPE,
the better the model’s prediction accuracy.

Results

Demographic, clinical, and
neuropsychological results

No significant differences were observed in the age, gender,
and education years between the participants in the two
groups (P > 0.05). When compared to the HC group, patients
in the ESRD group had significantly lower MoCA scores
(P < 0.001) (Table 1).

Group differences of network
measures

Gray matter network
The images of the group-level interregional correlation

matrices using DKI metrics of AK, MK, RK, and KA are
shown in Figure 2, and the between-group differences of global
topological properties are presented in Table 2 and shown
in Figure 2. The small-world organization of GM networks
with AK, MK, RK, and KA metrics in the ESRD and HC
groups was identified over a wide range of sparsity (0.06–
0.4). The small-worldness values (σ = γ/λ) were larger than

1. However, when compared with the HC group, decreased
topological properties of the GM network were found in ESRD
patients. Decreased Cp was found in the GM network with
the AK metric; decreased γ and σ were found in the GM
network with the MK metric; decreased γ was found in the
GM network with the RK metric; and decreased γ, σ, and Eloc
were found in the GM network with the KA metric (P < 0.05;
corrected by FDR).

Functional network
The between-group differences of topological properties are

shown in Table 3 and Figure 3. Global measures: both the
ESRD and HC groups demonstrated economical small-world
properties (γ greater than 1, λ approximately 1, and σ greater
than 1). However, in ESRD patients, significantly decreased γ

and σ were observed in the functional network (P < 0.05;
corrected by FDR). There were no significant differences in Eg,
Eloc, Cp, and Lp between the two groups (P > 0.05; corrected
by FDR). Nodal measures: regions with significantly changed
Ne and Dc (9 and 15 regions, respectively) were identified in
the ESRD group and distributed laterally (P < 0.05; corrected by
FDR), which were mainly involved in the default mode network,
limbic system, frontal lobe, temporal lobe, and occipital lobe.
Specifically, all right regions showed significantly decreased
Ne and Dc (right-lateralized), and most left regions showed
increased Ne and Dc (left-lateralized), with the left superior
temporal gyrus having decreased Ne and Dc.

Correlation analysis

In the ESRD group, decreased γ and σ of the functional
network positively correlated with MoCA scores (r = 0.42,
r = 0.44, respectively; P < 0.05, corrected by FDR). Further, a
decreased Ne of the functional network in the right insula and
the right superior temporal gyrus was positively correlated with
MoCA scores (r = 0.34, r = 0.33, respectively; P < 0.05, corrected
by FDR) (Figure 4).

Prediction results

Optimized LSSVRM based on functional networks
predicted the cognitive function of ESRD patients with great
accuracy. When using selected global measures as features,
MSE, RMSE, MAE, and MAPE between the actual scores and
predicted scores were 0.85, 0.92, 0.84, and 4.05%, respectively,
with an R-squared (R2) of 0.69. When both selected global and
nodal measures were used as features, the MSE, RMSE, MAE,
and MAPE between the actual scores and predicted scores were
0.77, 0.88, 0.78, and 3.80%, respectively, with an R2 value of
0.65 (Figure 4).
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TABLE 1 Demographic and clinical characteristics and neuropsychological test scores.

Variable ESRD (n = 45) HC (n = 37) Statistic value P-value

Demographic

Age, years 49.56 ± 8.02 47.84 ± 6.71 T = 1.038 P = 0.303

Gender, male (%) 22 (49) 19 (51) x2 0.032 P = 0.858

Education, years (25%, 75%) 12 (9, 15) 12 (8, 15) Z = -0.932 P = 0.351

Neuropsychological scores

MoCA scores (25%, 75%) 21 (20, 23) 27 (26, 28) Z = -7.807 P < 0.001*

Laboratory data

Systolic pressure, mmHg 150.38 ± 27.00 - - -

Diastolic pressure, mmHg 91.44 ± 16.17 - - -

White cell count, 10ˆ9/L 5.90 ± 2.17 - - -

Red cell count, 10ˆ12/L 4.37 ± 4.21 - - -

Hemoglobin, g/L 107.60 ± 18.20 - - -

Hematocrit, % 37.17 ± 26.60 - - -

Fasting glucose, mmol/L 5.42 ± 1.89 - - -

Urea nitrogen, mmol/L 19.83 ± 8.39 - - -

Creatinine, µmol/L 867.49 ± 411.83 - - -

Uric acid, µmol/L 343.73 ± 134.11 - - -

Cholesterol, mmol/L 4.17 ± 1.57 - - -

Triglyceride, mmol/L 1.66 ± 0.89 - - -

Calcium, mmol/L 2.25 ± 0.21 - - -

*Significantly difference.
x2 , Chi-square test; T, two-sample t-test; Z, Mann-Whitney U test;MoCA, Montreal cognitive assessment scale.

FIGURE 2

Gray matter networks. Topological measures of gray matter networks with significant between-group differences were showed. Healthy
controls are shown in red, and ESRD patients are shown in blue. AK, axial kurtosis; MK, mean kurtosis; RK, radial kurtosis; KA, kurtosis anisotropy;
Cp, mean clustering coefficient; γ, standardized clustering coefficient; λ, standardized characteristic path length; σ, small-world properties;
Eloc, local efficiency.

Discussion

The current study investigated the changes of GM and
functional network topology in ESRD patients based on DKI
and rs-fMRI technologies. The changed network topology
was further used to predict ESRD patient cognitive function.

Our results showed the following: (1) both the GM and
functional networks presented small-world characteristics in
ESRD patients and HC controls; (2) both the GM and functional
networks tended to be less optimized in ESRD patients,
indicated by significantly decreased global properties and
aberrant nodal properties; (3) functional network construction
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TABLE 2 Significant between-group differences of topological parameters of gray matter (GM) network.

Structural network Parameters ESRD HC t value P-value

AK Cp 0.687 ± 0.081 0.722 ± 0.046 -2.194 0.028

MK γ 1.960 ± 0.418 2.866 ± 0.945 -5.190 <0.001

σ 1.596 ± 0.131 2.240 ± 0.310 -6.311 <0.001

RK γ 2.183 ± 0.884 2.624 ± 1.046 -3.749 <0.001

KA γ 2.519 ± 0.963 3.423 ± 1.788 -2.632 0.010

σ 1.790 ± 0.277 2.459 ± 0.660 -5.532 <0.001

Eloc 0.811 ± 0.078 0.848 ± 0.039 -2.569 0.011

Data are expressed as mean ± SD. Corrected by false discovery rate criterion (FDR) and set at p < 0.05.
AK, axial kurtosis; MK, mean kurtosis; RK, radial kurtosis; KA, kurtosis anisotropy; Cp, mean clustering coefficient; γ, standardized clustering coefficient; λ, standardized characteristic
path length; σ, small-world properties; Eloc, local efficiency.

TABLE 3 Significant between-group differences of topological parameters of functional networks.

Functional network Parameters AAL ESRD HC t value P-value

Global measures γ 0.633 ± 0.064 0.676 ± 0.048 -3.205 0.002

σ 0.579 ± 0.062 0.617 ± 0.048 -3.015 0.003

Nodal measures Nodal efficiency

Frontal_Mid_L 7 0.180 ± 0.013 0.173 ± 0.012 2.272 0.009

Calcarine_L 43 0.168 ± 0.015 0.162 ± 0.010 2.155 0.012

Lingual_L 47 0.169 ± 0.014 0.161 ± 0.016 2.322 0.018

Temporal_Sup_L 81 0.175 ± 0.016 0.182 ± 0.015 -2.145 0.012

Rolandic_Oper_R 18 0.172 ± 0.015 0.179 ± 0.012 -2.392 0.006

Insula_R 30 0.175 ± 0.016 0.182 ± 0.013 -2.449 0.004

Fusiform_R 56 0.158 ± 0.014 0.168 ± 0.013 -3.283 <0.001

Parietal_Sup_R 60 0.163 ± 0.017 0.171 ± 0.013 -2.332 0.004

Temporal_Sup_R 82 0.171 ± 0.016 0.179 ± 0.013 -2.490 0.004

Degree centrality

Frontal_Mid_L 7 7.886 ± 2.143 6.936 ± 1.929 2.069 0.014

Frontal_Mid_Orb_L 9 7.483 ± 1.841 6.169 ± 1.690 3.036 <0.001

Frontal_Sup_Medial_L 23 7.113 ± 1.924 6.243 ± 1.231 2.220 0.003

Calcarine_L 43 6.579 ± 1.920 5.767 ± 1.670 2.065 0.019

Lingual_L 47 6.627 ± 1.901 5.794 ± 1.884 1.997 0.022

Temporal_Sup_L 81 7.127 ± 1.907 7.917 ± 1.781 -2.179 0.020

Frontal_Inf_Tri_R 14 5.991 ± 1.752 6.737 ± 1.830 -2.037 0.021

Rolandic_Oper_R 18 6.705 ± 1.616 7.607 ± 1.516 -2.601 0.003

Insula_R 30 7.110 ± 1.778 8.031 ± 1.535 -2.518 0.004

Amygdala_R 42 6.427 ± 1.551 7.266 ± 1.894 -2.237 0.011

Fusiform_R 56 5.100 ± 1.480 6.239 ± 1.570 -3.254 <0.001

Parietal_Sup_R 60 5.659 ± 1.941 6.572 ± 1.476 -2.246 0.005

Putamen_R 74 6.755 ± 1.765 7.589 ± 1.425 -2.361 0.004

Heschl_R 80 5.811 ± 1.562 6.745 ± 1.719 -2.396 0.003

Temporal_Sup_R 82 6.728 ± 1.734 7.787 ± 1.373 -2.849 0.001

Data are expressed as mean ± SD. Corrected by false discovery rate criterion (FDR) and set at p < 0.05.
γ, standardized clustering coefficient; σ, small-world properties; AAL, automated anatomical labeling.

demonstrated a lateralized distribution of changed Ne and Dc
in ESRD patients compared to HCs; and (4) in the functional
network, decreased γ, σ, and Ne in the right insula and superior
temporal gyrus were significantly correlated with cognitive
dysfunction in ESRD patients. Interestingly, related topological

parameters could be selected as features to predict cognitive
function in ESRD patients in our study.

Graph theory analysis can quantitatively analyze the
segregation and integration of brain networks (Rubinov
and Sporns, 2010). Functional segregation represents the
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FIGURE 3

Functional networks. (A) Global topological measures of the whole-brain functional network were demonstrated within a whole range of
sparsity values (0.1–0.4). Both groups exhibited small-world properties, with γ > 1, λ ≈ 1, and σ > 1; (B) Between-group differences of global
topological measures of the functional network. The bottom dot-plots represent individual data points, averages (transverse line), and standard
deviation (vertical lines). Healthy controls are shown in red, and ESRD patients are shown in blue; (C) Three-dimensional cerebral maps of nodal
efficiency and nodal degree centrality. Red dots indicate brain regions with increased nodal parameters, and blue dots indicate brain regions
with decreased nodal parameters.

ability of functional specialization within interconnected
brain areas and is measured by Cp, γ, and Eloc. Functional
integration represents the ability of global communication
within distributed brain regions and is measured by Lp, λ,

and Eg. Consistent with previous work, we demonstrated the
common small-world organization of both GM and functional
networks in ESRD patients and HCs (Yue et al., 2021). However,
in our study, changed topological parameters of both GM and
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FIGURE 4

Prediction results. (A) Selected features including only global measures. (B) Selected features including both global and nodal measures. (C)
Prediction results for panel (A). (D) Prediction results for panel (B). LSSVRM, least squares support vector regression machine; WOA, whale
optimization algorithm.

functional networks were found in ESRD patients compared
with HCs. The data revealed a downward trend of the highly
optimized balance of small-world network organization.
Specifically, our results indicate that this organization may
have shifted toward a hemodialysis-associated network
randomization, to some extent (Bullmore and Sporns, 2012).

Based on the group level, disruption of GM networks
within four DKI metrics was found in the ESRD group,
as indicated by decreased global measures. In a previous
study, similar disruption of the GM network had been
observed in AD (Cheng et al., 2018). In addition, the changed
topological properties were thought to be caused by the
pathology of AD, including astrogliosis, microglial activation,
vascular hyalinization, and axonal loss (Cheng et al., 2018).
Thus, we assumed that alterations of GM networks in ESRD
patients could be linked to changes in brain microstructure.
Decreased γ and σ were found in the GM network with
MK, which may reflect reduced complexity of the brain
microstructure (Steven et al., 2014). Decreased Cp and γ were
also found in the GM network with AK and RK, which
may indicate the loss of nerve axons and a breakdown of
myelin membranes (Hui et al., 2008). Furthermore, the GM
network with KA involved more topological parameters in
our study, which may suggest that changes in fiber bundle
crossover regions were more severe. To some extent, this
result was consistent with a previous study focused on the

WM network demonstrating the disrupted fiber integrity (Mu
et al., 2021). Interestingly, GM networks with four DKI
metrics showed various aspects of disrupted microstructure,
indicating significantly impaired functional segregation and
relatively preserved functional integration of GM networks
in ESRD patients. These results suggest that DKI may be
sensitive enough to detect microstructural differences from the
perspective of the GM network.

Based on the individual level, disruption of functional
networks was found in ESRD patients, indicated by decreased
global measures and abnormal nodal measures. Consistent
with previous studies, we observed decreased γ and σ

of the functional network in ESRD patients (Mu et al.,
2018; Jin et al., 2021). A similar decline in separation
capabilities in both GM and functional networks was found
in our study. This finding may suggest a link between
microstructural connectivity and functional connectivity
in the brain of ESRD patients (Suárez et al., 2020).
Moreover, decreased γ and σ of functional networks were
positively correlated to MoCA scores in ESRD patients,
which indicates that these parameters and potential imaging
markers may reflect CI.

In contrast to our global measure findings, ESRD patients
had more subtle changes in nodal measures of the functional
network. Altered Ne and Dc were mainly observed in the
default mode network, limbic system, frontal lobe, temporal
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lobe, and occipital lobe. This result was in accordance with
previous studies and expanded our understanding of network
organization degradation in ESRD patients (Ma S. et al.,
2020; Wu et al., 2020; Yue et al., 2021). First, we observed
a lateralized distribution of these brain regions. All brain
regions with increased nodal parameters were included in
the left cerebral hemisphere, and most brain regions with
decreased nodal parameters were included in the right cerebral
hemisphere. This may be related to the left-lateralization
in righted-handed people (Morita et al., 2020). Our data
strongly indicate that left regions of the brain may show
more strong associations with brain compensatory mechanisms,
and the right regions may be more susceptible to brain
network impairment in right-handed ESRD patients. While
our analyses could not directly address the relationship
between alterations of nodal measures and pathophysiological
changes, our results may be partly attributed to the ESRD-
related compensatory mechanism. Second, decreased Ne of the
functional network in the right insula and the right superior
temporal gyrus showed a significantly positive correlation
with MoCA scores. The insula is a part of the highly
interconnected cognitive control network involved in various
functional tasks, including auditory and vestibular functions,
motor plasticity, cognitive control, and individual and social
emotions (Nieuwenhuys, 2012). The superior temporal sulcus
is a crucial hub for speech perception and emotional and
memorial information processing (Nourski et al., 2021).
Taken together, these data suggest that nodal properties of
brain regions may be used as sensitive imaging markers
to detect CI, and non-invasive neural intervention may be
feasible in the clinic.

Although we observed significant correlations between
network measures and MoCA scores in ESRD patients, there
were limitations that limited the ability of these results to
guide early clinical diagnoses based only on correlation analyses.
Thus, we further applied optimized LSSVRM to tentatively
predict cognitive function in ESRD patients. LSSVRM is an
extension of the support vector regression machine (SVRM)
that improves prediction efficiency by altering the inequality
constraint and quadratic programming problems in the SVRM
model into the equality constraint and solution of linear
equations. Furthermore, the LSSVRM improves prediction
accuracy by taking the error square and loss function to
effectively fit the cognitive scores with non-linear characteristics
(Liu et al., 2019). WOA can optimize the selection strategy of
kernel function parameters and further improve the operating
efficiency of the model (Zhang et al., 2018). The combination
of LSSVRM and WOA takes work efficiency and prediction
accuracy into account (Zhang et al., 2022). In our study,
the prediction models based on functional networks showed
a relatively great prediction accuracy, with the prediction
accuracy based on combined global and nodal measures being
slightly higher than that based only on a single type of

measures. This may suggest that critical nodal changes have
a certain influence on the overall CI observed in ESRD
patients. Given that brain network changes were associated
with cognitive performance and may be able to be selected as
features to construct prediction models, it would be of further
interest to investigate the feasibility of clinical application
in future studies.

Despite the novelty of our study findings, we acknowledge
some limitations of our study. First, due to the cross-
sectional design and relatively small sample size, the power
of the statistical analysis and prediction results may be
affected. And the parameters of prediction models should be
used with caution. Longitudinal studies with larger sample
sizes are needed to provide dynamic perspectives in the
future. Second, further neuropsychological tests are essential
to provide more information. Third, exploring the occurrence
and progression of CI will further contribute to the efficient
development of clinical intervention. Thus, in our future
researches, we will include ESRD patients with varying
degrees of CI, including normal cognitive function, subjective
cognitive function, mild CI, and moderate CI. Finally, the
feature extraction, selection, and fusion methods utilized can
be improved to better mine the information of structural
and functional brain networks and enhance the prediction
accuracy achieved.

Conclusion

In summary, our study demonstrated that disrupted GM
and functional networks in ESRD patients on maintenance
hemodialysis contribute to and can be used to predict CI. In
contrast to most diffusion MRI studies that focus merely on WM
networks, our study paid attention to GM networks. Moreover,
related functional network metrics were found to be significant
imaging markers capable of predicting cognitive function in
ESRD patients. Ultimately, this study highlighted the feasibility
and necessity of early diagnosis of CI in ESRD patients from the
perspective of quantitative imaging parameters.
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