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Abstract

Motivation: Automated screening approaches are able to rapidly identify a set of small molecules

inducing a desired phenotype from large small-molecule libraries. However, the resulting set of

candidate molecules is usually very diverse pharmacologically, thus little insight on the shared

mechanism of action (MoA) underlying their efficacy can be gained.

Results: We introduce a computational method (Drug-Set Enrichment Analysis—DSEA) based on

drug-induced gene expression profiles, which is able to identify the molecular pathways that are

targeted by most of the drugs in the set. By diluting drug-specific effects unrelated to the pheno-

type of interest, DSEA is able to highlight phenotype-specific pathways, thus helping to formulate

hypotheses on the MoA shared by the drugs in the set. We validated the method by analysing five

different drug-sets related to well-known pharmacological classes. We then applied DSEA to iden-

tify the MoA shared by drugs known to be partially effective in rescuing mutant cystic fibrosis

transmembrane conductance regulator (CFTR) gene function in Cystic Fibrosis.

Availability and implementation: The method is implemented as an online web tool publicly avail-

able at http://dsea.tigem.it.

Contact: dibernardo@tigem.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Large collections of small-molecules can be automatically screened

against a desired phenotypic effect. Automated experimental screen-

ing approaches include high-content screening (HCS) (Bickle, 2010)

and high-throughput screening (HTS) (Bajorath, 2002), with differ-

ent advantages and limitations, and a screening capacity that ranges

from thousands to millions of compounds per assay.

Screening assays can be performed either to identify lead com-

pounds binding a specific molecular target, or inducing a specific

phenotype of interest. A common drawback of automated molecular

screening is the opacity of the hit compound selection mechanism.

Indeed, the set of positive hits following an HTS or HCS typically in-

cludes small-molecules with unknown mode-of-action (MoA) or

whose MoA are so different from each other, that no hint on the

shared molecular mechanisms underlying their efficacy can be

gained (Sams-Dodd, 2005).

The difficulty in characterizing a set of screening hits resides in the

complexity of their interactions within the cell. Molecules binding the

same molecular target can induce different phenotypes caused by un-

known off-targets. On the contrary, molecules binding different targets

can induce the same phenotype, when they act in the same pathway

(Sams-Dodd, 2005). Nonetheless, among the heterogeneous effects

induced by the hit compounds in the cell, there could exist a common

mechanism responsible for their efficacy in the screening selection.

Here, we introduce a new method, named drug-set Enrichment

Analysis (DSEA), that aims at identifying the mechanism(s) of action

shared by a set of compounds in terms of the molecular pathways

targeted by all, or most of them.
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We define a pathway as a set of genes. We collected a large data-

base of pathways by merging nine different publicly available collec-

tions, including generic gene sets (co-localized genes, co-regulated

genes, protein complex subunits, etc.) and disease-related gene sets.

DSEA looks for shared pathways in a set of drugs by analysing

transcriptional responses induced by each of the compounds of

interest in one or more cell lines. To this end, we exploited the

Connectivity Map (cMap, Lamb et al., 2006) dataset consisting of

about 7000 microarrays following treatment of four different cell

lines with 1309 drugs.

The main hypothesis underlying DSEA is that if pharmacologic-

ally different drugs induce the same phenotype of interest, then

some of the molecular pathways they target must be shared by most

of them. Although this is not necessarily true in general, it is a rea-

sonable assumption. DSEA is designed to search transcriptional re-

sponses of different, but phenotypically-related, drugs for shared

pathways whose genes are upregulated (or downregulated) by most

of the drugs in the set. In this way, pathways relevant for the pheno-

type of interest should emerge, while drug-specific pathways, which

are unrelated to the phenotype of interest, should cancel out.

To validate the method, we thoroughly tested the ability of

DSEA in identifying the shared pathways for five different drug-sets

whose MoA has already been well characterized: Histone

Deacetylase Inhibitors (HDIs), Cyclin Dependent Kinase Inhibitors

(CDKIs), Heat Shock Protein 90 Inhibitors (HSP90Is),

Topoisomerase Inhibitors (TIs), Cardiac Glycosides (CGs). Finally,

we applied DSEA to a set of eleven drugs, belonging to different

pharmacological classes, that have been shown to act as (weak) cor-

rectors of the mutant CFTR protein defect (DF508) causative of cys-

tic fibrosis.

2 Methods

2.1 Data preparation
We downloaded raw data files from the cMap (Lamb et al., 2006), a

compendium of 7056 Affymetrix microarrays (.CEL files) obtained

with three different chipsets (HG-U133A, HT_HG-U133A,

HT_HG-U133A_EA). Expression values for all the samples were

computed using the R package affy v.1.40.0 (Gautier et al., 2004)

with MAS5 normalization. The probes of each chipset were re-anno-

tated to 12 012 genes using the Brainarray CDF packages v.16.0.0

(Dai et al., 2005). The combined matrix (12 012�7056), after

removing non-common (control) probes, was quantile-normalized

(see Fig. 1a). Fold change (FC) values were obtained as log-ratios

between the values of the treatment samples and the corresponding

control samples (averaged over replicates) thus reducing the data

matrix to size 12 012�6100. After converting FC values to ranks,

we built Prototype Ranked Lists (PRLs) by merging all the samples

corresponding to the same drug, as described in Iorio et al. (2010),

thus obtaining a 12 012 genes�1309 drugs matrix of PRLs (see

Fig. 1b).

2.2 A Pathway-based connectivity map
We collected set of genes (pathways) from nine publicly available

databases (see Table 1): Biological Processes (GO-BP), Molecular

Function (GO-MF) and Cellular Component (GO-CC) from

BioMart (Durinck et al., 2009), excluding pathways with less than 5

or more than 500 genes, KEGG, Reactome, Biocarta, Canonical

Pathways, Genetic and Chemical Perturbation (as collected in

MSigDB, Subramanian et al., 2005) and MIPS Corum (Ruepp et al.,

2010). For each gene set, we removed the genes not included in the

set of 12012 Affymetrix probe-mapped genes. In addition, we

defined a gene-based collection (Single-Gene Sets, SGS) by building

12 012 fictitious gene sets containing only one gene. We provided

this addition database just as a resource for the user who wishes to

perform DSEA analysis in a gene-wise fashion, although we discour-

age its use being DSEA designed to work with gene-sets rather than

single genes. To convert the 12 012 genes�1309 drugs PRL matrix

to a pathway-oriented matrix, we proceeded as follows: given a

pathway database of interest, for each pathway i in the database,

and each PRL j, we computed a signed Enrichment Score ESij and a

p-value using the Kolmogorov–Smirnov (KS) test (Subramanian et

al., 2005). The two-sample KS statistic is defined as the maximum

distance between two empirical distribution functions. Along the

lines of the Gene Set Enrichment Analysis method (GSEA,

Subramanian et al., 2005), we apply a signed version of the KS stat-

istic to compare gene ranks. The ES associated with the KS statistic

is thus defined as follows:

ES ¼ supjF1 � F2j � sðF1; F2Þ (1)

where F1 and F2 are the two empirical distribution functions corres-

ponding to the ranks of the genes included in a set of interest (F1)

against those that are not included (F2), and s is a function returning –

1 or þ 1 according to the sign of F1 � F2 at the point where their ab-

solute difference is maximal. Note that a P-value for the KS test can

be computed analytically without resorting to random permutations.

In particular, we used our signed variant (available online at https://

github.com/franapoli/signed-ks-test) of the R function ks.test to

Fig. 1. Data preparation pipeline. (a) Raw genome wide expression profiles are collected from the cMap and preprocessed. (b) Control-treatment fold change val-

ues are computed and converted to ranks. Profiles referring to the same small molecule in different experimental conditions are merged together. (c) Gene ex-

pression ranks are converted to pathway Enrichment Scores. (d) The ESs are converted to row-wise ranks
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compute the signed KS statistic (and the corresponding p-values, used

in the next Subsection). We thus obtained, for each database, one

Enrichment Score matrix ES whose rows correspond to pathways and

whose columns correspond to drugs (see Fig. 1c).

In the rest of the paper, we will make two other different uses of

the KS test: to compute the DSEA itself in Section 2.3, and to valid-

ate it in Section 3.2.

2.3 Drug-set enrichment analysis
DSEA quantifies the extent at which a set of drugs consistently upre-

gulates (or downregulates) one or more pathways. Starting from the

ES matrix, we first sorted each row i according to the Enrichment

Scores ESij of the pathway i across the j ¼ 1 . . . l drugs (see Fig. 1d),

obtaining a rank-based matrix R. Each element Rij in R represents

the rank of drug j when sorting drugs according to their effect on

pathway i. The significance of a drug-set for each pathway is as-

sessed by applying the same procedure showed previously to com-

pute the ESij scores, but comparing drug ranks (distributed across

the row corresponding to a given pathway) as opposed to gene ranks

(distributed across the column corresponding to a given drug). In

this case, the sign of the ES indicates whether a pathway is activated

or inhibited by the drugs in the set.

DSEA can be thought of as the dual of GSEA: if in GSEA a drug-

induced expression profiles can be represented as a ranked list of dif-

ferentially expressed genes, in DSEA we modeled a pathway as a

ranked list of drugs.

From a methodological point of view, DSEA is able to highlight

pathways that are significantly modulated by most of the drugs in

the input drug-set relative to the other drugs in the database. This

means that if drugs in a drug-set tend to modulate the same pathway

more than the other drugs in the database, this pathway will be

found by DSEA, even if the modulation exerted by the single drugs

on the pathway is weak. This mechanism is key to identify a shared

mode of action, even when it is not apparent when considering the

individual drugs in the set.

3 Results

3.1 Drug-set enrichment analysis (DSEA)
We developed the Drug-Set Enrichment Analysis (DSEA) algorithm

in order to identify the shared molecular pathways modulated by

all, or most of, the compounds in a given set.

DSEA exploits a compendium (the cMap, Lamb et al., 2006) of

Gene Expression Profiles (GEPs) following treatment with 1309 small

molecules (mostly FDA approved drugs). DSEA works by applying

the following steps: (i) Figure 1a,b—GEPs for each small molecule are

merged into ranked lists of differentially expressed genes (following

treatment of multiple cell-lines and at different dosages) into a unique

Prototype Ranked List (PRL, Iorio et al., 2010); (ii) Figure 1c—each

gene-wise PRL is converted to a pathway-wise PRL, by computing the

Enrichment Score (ES) of each pathway through a GSEA approach

(see Section 2), using the list of genes in the pathway as the gene-set,

and the gene-wise PRL as the ranked list of genes. (Subramanian et

al., 2005). Each pathway thus has a specific ES for each small-mol-

ecule; (iii) Figure 1d—the resulting pathway-by-small-molecule ma-

trix is then sorted row-wise, so that each pathway is now associated

to a ranked list of small-molecules: from the one most activating the

pathway to the one most inhibiting it.

Given a query-set of small-molecules, DSEA checks for each path-

way whether small-molecules tend to be significantly ranked at the

top (or the bottom) of the list, by applying a Kolmogorov-Smirnov

(KS) test, as shown in Figure 2. An Enrichment Score for the drug-set

and a p-value can thus be computed for each pathway exactly, with-

out the need of random permutations. The final output of DSEA is a

list of pathways ranked by the KS P-value, which are significantly

modulated by the majority of the small-molecules in the drug-set.

3.2 Validation
To validate the method, we applied DSEA to five drug-sets consist-

ing of compounds belonging to five distinct pharmacological classes,

as summarized in Table 2. Prior knowledge about each drug-set

allowed us to assess whether the shared pathways found by DSEA

within each class were correct.

Table 1. Gene set databases currently supported by DSEA

Source Name Description #

BioMart GO BP Gene Ontology—Biological Processes 3262

BioMart GO MF Gene Ontology—Molecular Function 939

BioMart GO CC Gene Ontology—Cellular Component 556

MSigDB CP Expert-defined Canonical Pathways 243

MSigDB KEGG Kyoto Encyclopedia of Genes and Genomes 186

MSigDB Biocarta Community-fed molecular relationships 217

MSigDB Reactome Open-source, open access, manually curated and peer-reviewed pathway database 674

MSigDB CGP Genetic and Chemical Perturbations 2427

Mips CORUM Comprehensive Resource of Mammalian protein complexes 1343

– SGS Sets containing single genes mapped from Affymetrix chip U133A 12012

We also added a collection of fictitious sets each containing a single gene from the 12012 obtained after probe reannotation of the cMap raw data. We collected

existing gene sets from a number of publicly available databases.

Fig. 2. The DSEA method. Pathways are defined as ranked lists of drugs.

DSEA performs a statistical test to assess whether the drugs in a set are sig-

nificantly ranked at top (or bottom) of the row corresponding to a given path-

way. Each row is ranked according to how much the drug in the column

upregualtes (or downregulates) the genes in the pathway. The toy example

shows how a set of three drugs is found to consistently downregulate one

pathway (top arrow), while upregulating another one (bottom arrow)
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To this end, we defined a golden standard for each drug-set as

follows: we selected the known target gene for each drug-set (see

Table 2). For drugs with more than one known target, we chose the

first member (alphabetical order) of the target protein family. In the

case of Topoisomerase Inhibitor (TI) drug-set, we chose TOP2 be-

cause six out of nine drugs in the set were TOP2 inhibitors. For the

Histone Deacetylase Inhibitor (HDI) drug-set, we chose HAT1 in

addition to HDAC1.

For each drug-set, we then added to the golden-standard all the

Gene Ontology (GO) pathways containing the chosen drug target. A

summary of the golden standard for each drug-set is reported in

Suppl. Table S1.

To evaluate the performance of DSEA, we checked whether the

golden-standard pathways were significantly enriched at the top of

the ranked list of pathways given as output by DSEA by applying

again a KS test.

As shown in Table 3, for each drug-set, DSEA ranked the

golden-standard pathways significantly at least in one GO database.

Suppl. Table S3 shows the same type of validation for each of the 10

pathway databases.

Interestingly for the HDI drug-set, when using HDAC1 as the

target gene for the golden standard pathways, we did not find any

significant enrichment, however when using the dual enzyme,

HAT1, we did find the golden standard pathways to be significantly

shared by the drugs in the drug-set (Table 3). These pathways are

related to the process complementary to deacetylation, that is acetyl-

ation. The acetylation-deacetylation balance is known as acetylation

homeostasis and the existence of a HAT-HDAC coupling through a

common signal has been suggested (Dokmanovic et al., 2007).

In order to exclude that the results obtained in Table 3 were due

to a hidden bias in the golden standard pathways, we generated for

each of the 5 drug-sets, 1000 random drug-sets with the same size as

the corresponding original drug-set. We then ran DSEA on each ran-

dom drug-set and checked whether the golden-standard pathways of

the original drug-set were significantly enriched at the top of the re-

sulting ranked list of pathways. Since these random drug-sets consist

of unrelated drugs, the golden standard pathways should not be sig-

nificantly enriched and the corresponding KS P-values should be un-

informative. The results are summarized in Figure 3. Observe that in

this significance analysis, we treated p-values as random variables,

thus their expected value should be close to 0.5 (Sackrowitz and

Samuel-Cahn, 1999, and Suppl. Fig. S14). It is clear from Figure 3

that using random drug-sets, DSEA ranks the golden-standard path-

ways at random positions.

3.2.1 Robustness and convergence

Hit compounds selected from automated drug screening techniques

may contain false-positive hits, exhibiting a mode of action incon-

sistent with the other compounds in the selected set. For this reason,

we investigated the effects of adding noise to the drug-sets used for

validation before running DSEA.

In order to assess the robustness of the method with respect to

varying degrees of false-positive hits included in the drug-set, we

added 1–10 random drugs to each of the 5 drug-sets and run DSEA

on the resulting augmented drug-sets. More precisely, we repeated

this process 1000 times thus producing a total of 5 x 10 x

1000¼50 000 perturbed drug-sets and ran DSEA on each of them.

As before, we used the golden standard to evaluate the p-values

for the enrichment of golden standard pathways in the ranked list

given as output by DSEA.

As shown in Figure 4 adding up to 3 random drugs to the HSP90I

drug-set, i.e. 75% of the initial set size, the golden standard pathways

are still significant showing the robustness of DSEA to false positives.

Table 2. Drug-sets chosen to validate the DSEA method

Drug-set Affected activity Phrmacological class Validation target

Histone deacetylase inhibitors (HDI) Transcription Scriptaid, trichostatin A, valproic acid, vorinostat, HC toxin,

bufexamac

HAT1

Cyclin dependant kKinase inhibitors (CDKI) Cell cycle Alsterpaullone, GW-8510, H-7, staurosporine CDK1

Heat shock protein 90 inhibitors (HSP90I) Protein folding Geldanamycin, monorden, tanespimycin, alvespimycin HSP90AA1

Topoisomerase inhibitors (TI) Cell cycle Doxorubicin, etoposide, camptothecin, irinotecan, genistein,

ofloxacin, Mitoxantrone, flumequine, luteolin

TOP2A/B

Cardiac glycosides (CG) Naþ-Kþ pump Digitoxigenin, digoxigenin, digoxin, ouabain ATP1A1

Column 1: Pharmacological class; column 2: molecular processes known to be targeted by the drugs; column 3: Drugs in the set; column 4: targets chosen for

the validation process (see main text). A golden-standard was designed for each pharmacological class by collecting all the pathways containing the corresponding

gene shown in the last column.

Table 3. Validation results

GO-BP GO-MF GO-CC

CDKI 1:34E�6 0.2834 0.1407

HDI 0.3483 0:0007 0.5182

HSP90I 0:0065 0.64 0.1582

TI 0:03868 0.1556 0.6597

CG 0:002 0.3764 0.2673

The P-values assess if the golden-standard pathways within the GO-BP,

GO-MF and GO-CC databases are ranked significantly at the top by DSEA.

P-values < 0.005 are highlighted in bold.
Fig. 3. Golden-standard pathways significance for random drug-sets. The

box-plots show DSEA validation against the golden-standard when using

1000 random drug-sets containing the same number of drugs as in the ori-

ginal drug-sets. The horizontal line indicates the 0.05 significance threshold.

The P-value obtained by chance is close to 0.5, as expected (black segment in

each box shows the median P-value)
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Similar results were obtained for the other drug-sets: HSP90I and CG

show robustness up to 75% false positives, CDKI and HDI, up to

250% and 167%, respectively. Only in the case of TIs adding a single

false positive will cause the result to become not significant (refer

Supplementary Figs S4–S8). We hypothesize that the sub-set of drugs

in the TI drug-set not targeting TOP2 (3 out of 9 in the set) may partly

contribute to decrease the robustness of DSEA in this case.

To test the convergence properties of DSEA, we ran the analysis

by varying the number of drugs in the drug-sets, in order to under-

stand how many drugs were needed in order for the golden standard

pathways to become significant. Specifically, for each of the five

drug-sets, we generated all the possible combinations of subsets of

one drug, two drugs and so on, up the total number of drugs in the

drug-set, and then ran DSEA on each subset. Figure 5 shows the re-

sults for the HDI drug-set. It can be observed how the P-value of the

golden-standard pathways exponentially decreases when more drugs

are included in the drug-set, thus demonstrating the power of DSEA

in finding pathways shared in common by multiple drugs. We also

demonstrated that the same convergence property holds across the

other four drug-sets (Supplementary Figs S9–S13).

3.3 Example of application to antineoplastic agents
The cMap data were generated from experiments on cancer cell

lines. The multi-factorial nature of cancer is reflected by the hetero-

geneity of the pharmacological approaches to its treatment. The

World Health Organization (WHO) defined 5 main categories of

antineoplastic agents: Alkylating agents, damaging DNA to impair

replication; Antimetabolites, interfering with cancer cell metabol-

ism; Alkaloids, causing metaphase arrest; Cytotoxic antibiotics and

related substances, mainly affecting the function or synthesis of nu-

cleic acids; other, with different known or unknown mode of action.

We tested the ability of the DSEA in finding a common effect across

all the drugs in the cMap that have been annotated as antineoplastic

agents (code L01) by the WHO. The drug-set includes 23 drugs

unevenly distributed across the five different subclasses. DSEA

ranked in the GO-BP database as the most significant pathway (out

of 3262): DNA damage response, signal transduction by p53 class

mediator resulting in cell cycle arrest. This result is in line with the

common mode of action of antineoplastic drugs, particularly alky-

lating agents, which are the most enriched class of drugs in this

drug-set. The result of the analysis for all of the pathways is avail-

able as Supplementary Data.

3.4 Application to cystic fibrosis: correctors of

DF508-CFTR trafficking defects
CF is one of the most common genetic diseases among people of

Caucasian origin (O’Sullivan and Freedman, 2009). It mostly affects

lungs causing inflammation, tissue scarring and severe breathing dif-

ficulties, thus substantially impacting the patient life-span and qual-

ity of life. CF is caused by mutations in the gene coding for the

CFTR (CF transmembrane conductance regulator) protein. The

most frequent mutation is the deletion of phenylalanine 508

(DF508). Wild-type CFTR translocates to the plasma membrane

where it acts as a chloride channel. Mutant DF508CFTR is unable

to fold correctly and, although partially functional, it is tagged for

degradation (O’Sullivan and Freedman, 2009). No therapeutic treat-

ment is currently available for this disorder. Nevertheless, thanks to

world-wide efforts of the academic and industrial research commu-

nity, some drugs with a mild ‘corrector’ activity for DF508CFTR

have been found, largely by HTS studies (Hanrahan et al., 2013).

However, each of these compounds has a different known MoA,

completely unrelated to CFTR function. Hence, the mechanism by

which these drugs are able to correct DF508CFTR function are

unknown.

To test the usefulness of DSEA in a ‘real-life’ scenario, we

applied DSEA to a drug-set consisting of drugs reported to act as

DF508-CFTR correctors in Cystic Fibrosis (CF).

We included 11 drugs in the drug-set (Table 4) according to the

following criteria: (i) a DF508CFTR corrector activity is reported in
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Fig. 4. DSEA Robustness. Golden-standard pathways’ significance (P-values

on the y-axis) for the HSP90I drug-set with an increasing number of random

drugs (reported on the x axis) added to the drug-set. The horizontal line indi-

cates the 0.05 significance threshold. DSEA correctly identifies the golden-

standard pathways even when up to three random drugs are added to the

drug-set (75% of the drug-set)

Fig. 5. DSEA Convergence. Golden-standard pathways’ significance (P-values

on the y axis) for subsets of the HDI drug-set (subset size on the x axis). The

horizontal line indicates the 0.05 significance threshold. For HDI subsets

greater than 3, DSEA ranks the golden-standard pathways significantly

(P<0.05)
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literature, and (ii) GEPs were available in the cMap dataset. As ex-

pected these drugs are very heterogenous and no obvious relation to

the correction of the DF508CFTR trafficking defects exists.

DSEA results for the GO-BP, GO-MF, GO-CC databases are re-

ported in Table 5 and for all the other pathway databases in online

Supplementary Data.

Strikingly the most significant pathway ranked in the GO-CC

database according to DSEA is the chloride channel complex. This

gene-set comprises 38 genes, including CFTR itself. Hence, DSEA

predicts that one mode of action shared in common by the 11 drugs

is the upregulation of chloride channel genes’ expression (since the

ES score associated to chloride channel complex for the drug-set is

positive as reported in Table 5). Note that this effect would have

never been detected by analysing GEPs of each individual drug sepa-

rately, as the median rank of the chloride channel complex across

the 11 drugs is 196. The 11 drugs belong to very different pharma-

cological classes, therefore the effect on the chloride channel gene

expression is detected by DSEA only because it is a common ‘side-ef-

fect’ shared by most of them.

To assess whether the DSEA-predicted shared MoA, i.e. up regula-

tion of chloride channel genes is reasonable, we searched the literature

of each of these drugs for evidence of chloride channel gene upregula-

tion. Known effects on CFTR expression have been reported for cardiac

glycosides (Srivastava et al., 2004, Strophanthidin in Table 5), HDAC

inhibitors (Hutt et al., 2010, Entinostat, Scriptaid, Tricostatin-A) and

Doxorubicin, a topoisomerase inhibitor (Maitra et al., 2001). These ob-

servations support the results of the DSEA analysis.

Additional signalling pathways, which are known regulators of

ion channels activity, are also notable in the DSEA results, such as

hormone activity, insulin receptor substrate binding, cytokine activ-

ity, which are ranked 2, 5, 9, in GO-CC; and signal recognition par-

ticle, ranked 4 in GO-CC.

We also investigated expected pathways which were not found

by DSEA. Of interest is the absence of references to protein folding

Table 4. Drugs with a DF508CFTR corrector activity according to the literature

Drug Class Use / MoA

Chloramphenicol (Carlile et al., 2007) Antibiotics Inhibits bacterial protein synthesis by preventing peptidyl transferase activity.

Chlorzoxazone (Carlile et al., 2007) Muscle Relaxants Inhibits degranulation of mast cells and prevents the release of histamine and

slow-reacting substance of anaphylaxis.

Dexamethasone (Caohuy et al., 2009) Glucocorticoid Agonists Its anti-inflammatory properties are thought to involve phospholipase A2

inhibitory proteins, lipocortins.

Doxorubicin (Maitra et al., 2001) Topoisomerase Inhibitors DNA intercalator stabilizing the DNA-topoisomerase II complex.

Glafenine (Robert et al., 2010) NSAID Non-Steroidal Anti-Inflammatory. An anthranilic acid derivative with

analgesic properties.

Liothyronine (Carlile et al., 2007) Synthetic hormones Increases the basal metabolic rate, affect protein synthesis and increase the

body’s sensitivity to catecholamines.

Entinostat (Hutt et al., 2010) HDAC Inhibitors Inhibits preferentially HDAC 1, also HDAC 3.

Scriptaid (Hutt et al., 2010) HDAC Inhibitors Inhibits HDAC1, HDAC3 and HDAC8.

Strophanthidin (Carlile et al., 2007) Cardiac Glycosides Inhibits Naþ/Kþ ATPase. Also known to inhibit the interaction of MDM2 and

MDMX.

Thapsigargin (Egan et al., 2002) Calcium Channel Blockers Inhibits non-competitively the sarco/endoplasmic Ca2þ ATPase.

Trichostatin-A (Hutt et al., 2010) HDAC Inhibitors Inhibits HDAC1, HDAC3, HDAC8 and HDAC7.

Table 5. Top 10 enriched pathways for DF508CFTR-correctors

GO-BP GO-MF GO-CC

# Term ES P Term ES P Term ES P

1 Natural killer cell activation 0.68 7 � 10�5 Metallocarboxypepti-

dase activity

0.62 5 � 10�4 Chloride channel complex 0.62 4 � 10�4

2 Potassium ion export 0.68 8 � 10�5 Hormone activity 0.60 8 � 10�4 Dendrite membrane 0.59 8 � 10�4

3 Smooth muscle contraction 0.67 1 � 10�4 4 Iron, 4 sulfur cluster

binding

�0.59 1 � 10�3 mRNA cleavage factor

complex

�0.58 1 � 10�3

4 Positive regulation of IL-8

biosynthetic process

0.65 2 � 10�4 Heparin binding 0.57 1 � 10�3 Signal recognition particle 0.57 2 � 10�3

5 Positive regulation of cAMP-

mediated signaling

0.62 4 � 10�4 Insulin receptor

substrate binding

�0.57 2 � 10�3 Axonemal dynein complex 0.56 2 � 10�3

6 Keratinocyte differentiation 0.62 5 � 10�4 Exonuclease activity �0.57 2 � 10�3 Nuclear membrane �0.56 2 � 10�3

7 Potassium ion transport 0.61 5 � 10�4 DNA N-glycosylase

activity

�0.55 2 � 10�3 Transcription factor TFIIIC

complex

�0.56 2 � 10�3

8 Regulation of pH 0.61 5 � 10�4 Mitogen-activated

protein kinase

kinase binding

�0.55 3 � 10�3 Cell surface 0.55 3 � 10�3

9 Interferon-gamma

production

0.61 6 � 10�4 Cytokine activity 0.55 3 � 10�3 Voltage-gated potassium

channel complex

0.54 3 � 10�3

10 GABA signaling pathway 0.60 7 � 10�4 Spindle �0.55 3 � 10�3 Integrin complex 0.54 4 � 10�3

The top-ranking GO-CC gene set, chloride channel complex, clearly identifies the main common feature of the chosen drug-set. The top 10 enriched pathways

according to DSEA for each GO category resulting from the analysis of the 11 small molecules reported as DF508CFTR-correctors.
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and ER quality control pathways, which seems to exclude a direct

role of these 11 drugs as chemical chaperons.

Experimental validations would certainly help in confirming the

validity of our hypothesis. However, a more in-depth experimental

analysis of these drugs falls out of the scope of our work.

Overall these results confirm the usefulness of this new approach

when investigating the shared MoA among a set of unrelated drugs

resulting from automated screening efforts.

4 Conclusions

We introduced DSEA, a computational approach to help elucidating

the mechanism of action of a set of drugs resulting from automated

screening techniques, also available online at http://dsea.tigem.it.

Hit compounds are selected from automated screening if they

are able to induce a phenotype of interest. Usually, these selected

drugs belong to different pharmacological classes, therefore the mo-

lecular mechanisms mediating their effectiveness on the screened

phenotype is not immediately obvious. DSEA aims at identifying

these mechanisms by looking for recurrent pathways modulated by

most of drugs in the set. This is achieved by analysing the transcrip-

tional response elicited by drugs, as available in the cMap database.

With DSEA, we present a new perspective in which drugs repre-

sent features of pathways (or genes). The most relevant pathway is

thus the one that is most dysregulated by the drugs in the set, as

compared with the other drugs in the database. The DSEA analysis

is thus able to highlight pathways that are targeted by most of the

drugs in the set. Applying DSEA after an automated screening study

can thus support the formulation of hypotheses explaining the effi-

cacy of the positive hits.

Beyond High Content Screening, a broad range of drug set gener-

ating applications that could take advantage of the DSEA can be

imagined. Similarity based methods, like Transcriptional Drug

Networks (Carrella et al., 2014) or Virtual Screening (Bajorath,

2002) could exploit DSEA to provide additional biological insights

about a drug neighbourhood. Prior knowledge about drugs can be

another method to define drug sets. In fact, it is the method we used

to define the drug sets for the cancer and cystic fibrosis examples.

In particular, for the cancer application, we defined a set by sim-

ply using ATC codes. Although a very heterogeneous class of drugs

was analyzed, the DSEA highlighted, as top in GO-BP, a pathway

that is very related to mechanisms of action commonly used by anti-

neoplastic agents. In the case of the cystic fibrosis application, in-

stead, we derived the set of DF508CFTR correctors by searching

relevant literature. DSEA provided a possible explanation of their

corrective effect as mediated by overexpression of CFTR and other

chloride channel genes. It is worth observing that expression profiles

in cMap were mostly obtained in MCF7 cells, which are very differ-

ent from bronchial epithelial cells where CFTR is active.

Nevertheless, also in this case DSEA was able to detect a strong sig-

nal related to the chloride channel complex, which was ranked as

the first most significant pathway in the GO-CC category.

The DSEA method was developed and has been validated in a

pharmacological context. However, it can be used to analyse any

biological condition inducing a measurable transcriptional pheno-

type, including different cell types, diseases and genetic perturb-

ations. Moreover, the method can be easily applied to other

experimental techniques, such as RNA-seq. The DSEA web site pro-

vides all the raw and processed data used by the tool, together with

pointers to external gene set databases. Moreover, relevant code is

maintained on GitHub (https://github.com/franapoli/signed-ks-test).

These resources are meant to facilitate the expansion of the DSEA

database of pathways and profiles, to encourage further develop-

ment of the methods and to ensure replicability of our results.
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