
https://doi.org/10.1177/20587384211018389

International Journal of 
Immunopathology and Pharmacology
Volume 35: 1–10
© The Author(s) 2021
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/20587384211018389
journals.sagepub.com/home/iji

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons 
Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, 

reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and 
Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Introduction

Hepatocellular carcino	ma (HCC) is a high mortal-
ity malignancy. It is the fifth most common cancer 
globally and the second leading cause of cancer-
related deaths, with over 500,000 new cases annu-
ally.1 Viral hepatitis and nonalcoholic steatohepatitis 
are the most common causes of cirrhosis and 
approximately 80% of cases develop to HCC.2,3 
Due to the recurrence of HCC, its prognosis 
remains dismal with an overall 5-year survival rate 

of 34% to 50%.4 Despite the rapid development of 
advanced medical technology, there are still no 
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effective treatment strategies for HCC patients.5 
Today, radical treatment can improve the survival 
rate of patients diagnosed with early-stage HCC 
and provide long-term potential treatment options.6 
Although serum biomarkers, such as alpha-feto-
protein (AFP) and alkaline phosphatase (AKP or 
ALP), are frequently used in clinical practice, they 
lack sufficient sensitivity and specificity.7 
Therefore, finding effective biomarkers is neces-
sary for the diagnosis and treatment of HCC.

The tumor microenvironment (TME) contains 
cellular components (such as immune cells, fibro-
blasts, endothelial cells) and extracellular compo-
nents (such as hormones, cytokines, extracellular 
matrix, growth factors) that cover the tumor cells 
with a network provided by the blood vessels.8 
TME plays a critical role in tumorigenesis, pro-
gression and metastasis, and affects the therapeutic 
effect.9 Tumor-infiltrating immune cells (TIIC) are 
considered to be effective targets for drugs; they 
manage cancer progression by building an ecosys-
tem in the TME and linking it with clinical out-
comes and have shown potential prognostic 
value.10 Because the immune system plays a dual 
role by assisting the host barrier and tumor pro-
gression, there are complex interactions with con-
siderable prognostic significance.11 TIIC 
upregulates suppressive immune checkpoints of 
tumor cells to prevent tumor progression in the 
host immune surveillance.12 Previous studies have 
estimated TIIC using flow cytometry and immuno-
histochemistry (IHC),13 which are limited by the 
number of fluorescent channels available, and 
rarely can assess the immune cell types immedi-
ately.14 In addition, previous studies have not 
revealed insights into the prognostic evaluation of 
the TIIC subgroups. CIBERSORT, a metagene 
instrument, uses deconvolution technology, and 
complex algorithms to quantify the cellular com-
ponents and cell types of immune responses in het-
erogeneous samples, thereby greatly expanding the 
capabilities of the genome database.15,16 In this 
study, we performed a single-sample gene set 
enrichment (ssGSEA) to explore TME and quan-
tify the TIIC subgroups of immune responses based 
on the HCC cohort of The Cancer Genome Atlas 
(TCGA) database. We evaluate molecular subpop-
ulations, survival, function, and expression differ-
ential associations, as well as reveal potential 
targets and biomarkers for immunotherapy.

Methods

Data acquisition

A freely accessible dataset with gene expression 
profiles and corresponding visualization data was 
identified and downloaded. Information on gene 
expression and corresponding clinical information 
were identified and downloaded from Level 4 gene 
expression data (standardized FPKM) of the TCGA 
HCC cohort. For the TCGA dataset, the RNA 
sequencing data (FPKM values) were changed to 
transcripts per million (TPM) values, which 
slightly resemble microarrays transcripts, and are 
easier to perform between samples. The clinico-
pathological data collected included gender, age, 
stage, grade, T-phase, M-phase, N-phase, survival 
status, and the number of days of survival. Data 
were analyzed using R (version 3.5.3) and R 
Bioconductor software packages. The Perl lan-
guage was used to filter the immune cell-matrix 
based on a P-value of less than 0.05.

Assessment of immune infiltration

Infiltrating cells in TME and the proportion and 
cell type of immune cells in HCC heterogeneous 
samples were determined. A metagene tool, 
CIBERSORT, uses the deconvolution of large 
amounts of gene expression data and a complex 
algorithm. The selection was confirmed by fluores-
cence-activated cell sorting (FACS). TIICs 
included macrophages (M0/M1/M2 macrophages), 
resting memory CD4+ T cells of 7 T cell types (T 
follicular helper cells [Tfh], activated memory 
CD4+ T cells, γδ T cells, Tregs, CD8+ T cells and 
naive CD4+ T cells), resting natural killer (NK) 
cells, resting/activated mast cells, activated NK 
cells, resting dendritic cells (DCs), memory B 
cells, activated DCs, monocytes, naive B cells, 
plasma cells, eosinophils, and neutrophils. ssGSEA 
classified gene sets with common biological func-
tions, chromosomal localization, and physiological 
regulation.17 The gene sets included 782 genes 
used to predict the abundance of the 29 TIICs in a 
single tissue sample are shown in Supplemental 
Table 1.

Statistical analysis

Statistical analysis was performed using R version 
3.5.3 and Bioconductor. The unpaired Student’s 



Zhu et al.	 3

t-test and the Wilcoxon test were used to evaluate 
the normal distribution variables and the non-nor-
mal distribution variables, respectively. The differ-
ence in the gene expression of the immune 
checkpoint molecules and the clinical information 
between tumors and normal tissues were analyzed 
by the Wilcoxon test. To identify the differential 
genes in differentially expressed genes (DEG) 
assessments, we applied the Benjamini-Hochberg 
method to convert the P-value to a false discovery 
rate (FDR). Using “maxstat” (R package), TIIC 
penetration was classified as low, medium or high 
abundance. ssGSEA-normalized HCC DEGs data 
were compared with a genome using “GSVA” 
(R-package). For each statistical analysis, a P-value 
of <0.05 was considered statistically significant.

Results

Immunity group and TME analysis

After standardization of the microarray results, we 
first classified immune infiltration into low, 
medium or high abundance clusters using the 
ssGSEA score. The immune score of each sample 
was normalized to between 0 and 1 for later analy-
sis. The cluster map of the 29 immune cell types in 
each cluster enrichment is shown in Figure 1. The 
results showed that the expression of immune cells 
increased with the increase of immune activity. 
Therefore, cluster 1/2/3 was defined as low/
medium/high immunity group, respectively. Next, 
the TME was scored (stromal score, immune score, 
ESTIMATE score, and tumor purity) in each HCC 
sample using “estimate” (R package). The detailed 

information of each sample is shown in 
Supplemental Table 2. Meanwhile, the TME score 
was combined with the 29 immune cell types in the 
low, medium and high immunity groups. The 
results showed that the stromal score, immune 
score and ESTIMATE score were positively cor-
related with immune activity but negatively corre-
lated with tumor purity (Figure 2). In addition, the 
connection between the TME set and the immunity 
group was significantly different (P < 0.01, Figure 
3). At the same time, the heatmap of CIBERSORT, 
ESTIMATE, and ssGSEA algorithms were com-
pared to evaluate cellular components or cellular 
immune responses between normal and tumor tis-
sue samples (Figure 4).

Immunity group and gene expression

Human leukocyte antigen (HLA) is the most com-
plex human genetic system by far and plays a vital 
role in medical research. We explored the relation-
ship between HLA-related gene expression and the 
different immunity groups. The results showed that 
23 HLA-related genes were significantly different. 
However, there was no significant difference in 
KIAA1429 among the different immunity groups 
(Figure 5). HLA-related gene expression increased 
with the increase of immune activity. Thus, we 
hypothesize that HLA expression is related to the 
survival of HCC patients, however, this requires 
further investigation. Meanwhile, we explored the 
differential expression of programmed death-
ligand 1 (PD-L1) and cytotoxic T-lymphocyte anti-
gen 4 (CTLA-4) among the different immunity 

Figure 1.  Heatmap of the 29 immune cell types in each cluster enrichment.
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groups. We found that PD-L1 and CTLA-4 expres-
sion increased with the increase of immune activ-
ity, and this may provide information for HCC 
immunotherapy (Figure 6). Next, Kaplan–Meier 
curve was used to analyze the survival rate of 
patients in each immunity group. The results dem-
onstrated that the immunity group had a significant 
effect on the patients’ overall survival (P = 0.03, 
Figure 7(a)). Next, the association between the 
clinicopathological factor and the immune sub-
groups was explored. The results indicated that the 
immune subgroups were related to the tumor stage 
(P = 0.006, 95% CI: 0.07–0.41, stage I vs stage 
III), suggesting that patients with high immune 
activity are inclined to progress to an advanced 
stage.

Tumor-infiltrating immune cells analysis

Next, we used CIBERSORT to analyze tumor-
infiltrating immune cells in the TME and measured 
the proportion of immune cells and cell types in 
HCC heterogeneous samples. As shown in Figure 
7(b), there was no significant differences in naïve 
B cells, macrophages M1, activated mast cells, 
resting NK cells and T cells gamma delta among 
the different immunity groups.

GO and KEGG analysis

Finally, we analyzed the function of the differen-
tially expressed genes identified in different immu-
nity groups. Biological analyses were performed 
using gene ontology (GO) enrichment and the 

Figure 3.  Correlation between the TME set and the immunity groups.

Figure 2.  Combination of the TME score and the 29 immune cell types in the low, medium and high immunity groups.
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Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis. The GO analysis results 
showed that differentially expressed genes were 
enriched in complement activation, classical path-
way; immunoglobulin complex, circulating; immu-
noglobulin receptor binding; and major 
histocompatibility complex (MHC) class II protein 
complex. The KEGG pathway analysis revealed 
that the differential proteins were mainly enriched 
in alpha-linolenic (ALA) acid metabolism, 
cytokine-cytokine receptor interaction, glycosami-
noglycan biosynthesis-heparan sulfate/heparin, 
glycosphingolipid biosynthesis-ganglio series and 

proteasome (Figure 8 and Supplemental Tables 3 
and 4).

Discussion

ssGSEA is an implementation method proposed for 
GSEA, which can be performed on a single sample. 
It calculates the rank value of each gene based on 
the expression profile and then performs subse-
quent statistical analysis. In our study, this method 
scored 29 immune-related gene sets in each sample 
(the immune gene set included immune cell types, 
functions, and pathways). Through cluster analysis, 

Figure 4.  The heatmap of CIBERSORT, ESTIMATE, and ssGSEA algorithms were compared to assess cellular components or cell 
immune responses between normal and tumor tissue samples.
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the samples were divided into low/medium/high 
immunity groups. The correlations between the 
immune groups and the TME, gene expression, 
TIIC and biological/pathway analyses were ana-
lyzed to verify the grouping accuracy.

The significance of TME and TIIC for cancer 
prognosis has been demonstrated. Malignant solid 
tumor tissues consist of tumor cells, tumor-associ-
ated normal epithelial, immune, stromal, and vas-
cular cells. TME is of great significance not only 
for understanding the occurrence, development 
and metastasis of tumors but also for the diagnosis, 

prevention and prognosis of tumors. Lipid metabo-
lism disorders and related signaling pathways may 
suggest new strategies for treating HCC by repro-
gramming cellular lipid metabolism or regulating 
TME.18 Currently, cancer-associated fibroblasts 
(CAF) are the main stromal cell type in the HCC 
microenvironment, which have promoted the 
development of HCC and gradually become a hot 
research topic in HCC targeted therapy.19 
Mesenchymal stromal cells (MSCs) may migrate 
to the tumor sites and play a role in HCC through 
paracrine interactions.20 MSC transplantation can 
serve as an effective immunomodulatory strategy 
to induce tolerance to a variety of immune-related 
diseases.21 Yoshihara et  al.22 determined immune 
and stromal scores via gene expression signatures 
and used these scores to infer immune and stromal 
cell fractions in tumor samples. In our study, we 
first classified immune infiltration into low, 
medium or high abundance immunity groups and 
scored the TME in each HCC sample. We found 
that stromal score and immune score were posi-
tively correlated with immune activity, thus pro-
viding strong evidence for TME study using 
ssGSEA. We also analyzed the tumor-infiltrating 
immune cells in the TME and measured the pro-
portion of immune cells and cell types in different 
immunity groups. However, more related explora-
tions should be conducted in future studies.

We also explored the relationship between gene 
expression and the immunity group. Engineered 
T-cell immunotherapy against HLA-A*02:01-
restricted AFP peptide-specific T cell receptor 
(TCR) has shown encouraging results in in vitro 

Figure 5.  Relationship between HLA-related gene expression 
and the immunity groups.

Figure 6.  Differential expression of programmed death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in 
different immunity groups.



Zhu et al.	 7

experiment to induce anti-HCC response.23 
Previous study has also found that HLA class I 
highly expressed in cancer cells compared with the 
surrounding normal tissue cells in early-stage solid 
cancers (including HCC), which may lead to a 
more sensitive anti-tumor effect of cytotoxic T 
lymphocyte (CTL)-based cancer immunotherapy.24 
HCC cells strongly upregulated HLA class I but 
remained negative for HLA class II and PD-L1 was 
expressed in cells with monocyte-macrophage 
morphology that primarily located at the tumor 
margins, but not in the tumor cells.25 Similarly, 
studies have also reported that CD8+ CTL signifi-
cantly upregulated PD-L1 expression in tumor cell 
lines through HLA class I specificity.26 The higher 
the population mutation frequency in TCGA tumor 
patients, the weaker the ability of HLA antigens to 
present the mutant peptides, thereby enhancing 

immune escape of tumor clones carrying muta-
tions.27 In view of aforementioned studies, we can 
infer that HLA is a potential biomarker in tumor 
immunotherapy in addition to tumor mutational 
burden (TMB). Therefore, we explored the rela-
tionship between HLA-related gene expression 
and the different immunity groups. We found that 
23 HLA-related genes were significantly different 
in different immunity groups. This may provide 
crucial information for further in-depth 
investigations.

The programmed cell death protein 1 (PD-1) 
pathway has received huge attention due to its role 
in eliciting the immune checkpoint response of the 
T cells. HCC-specific Tfh failure may be caused by 
elevated PD-1 and PD-L1 signals.28 In addition, in 
HCC patients with hepatitis B virus (HBV) infec-
tion, the upregulation of circulating PD-L1/PD-1 

Figure 7.  CIBERSORT analysis of tumor-infiltrating immune cells in TME and the proportion of immune cells and cell types in 
HCC heterogeneous samples. (a) Survival analysis in immunity group. (b) Tumor-infiltrating immune cells analysis.

Figure 8.  GO enrichment and KEGG pathway analyses of differentially expressed genes in different immunity groups.
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was associated with poor prognosis after cryoabla-
tion.29 CTLA-4 has important therapeutic effects 
on transplant rejection and various autoimmune 
diseases. Studies have found that blocking CTLA-4 
can reveal tumor-associated antigen-specific 
immune responses by altering cytokines.30 Previous 
studies have also provided evidence of the associa-
tion of enhanced regulatory T cells (Tregs) activity 
with poor immune responses to tumor antigens.31 
Moreover, the elevated levels of DcR3, Foxp3 and 
CTLA-4 in tissue were positively correlated with 
tumor growth.32 Anti-CTLA-4 mAb can improve 
anti-tumor immunity by abrogating tumor-infiltrat-
ing Treg-mediated suppression in HCC.33 
Meanwhile, we explored the differential expres-
sion of PD-L1 and CTLA-4 in different immunity 
groups and found that PD-L1 and CTLA-4 expres-
sion increased with the increase of immune 
activity.

We finally analyze the function of the identified 
differential proteins among different immunity 
groups. KEGG pathway analysis revealed that dif-
ferential proteins were mainly enriched in ALA 
acid metabolism, cytokine-cytokine receptor 
interaction, glycosaminoglycan biosynthesis-hep-
aran sulfate/heparin, glycosphingolipid biosynthe-
sis-ganglio series and proteasome. ALA is an 
essential polyunsaturated fatty acid that can medi-
ate mitochondrial apoptosis, reduce the microen-
vironment of hypoxia and inhibit the de novo 
synthesis of fatty acids, thereby conferring anti-
cancer effects.34 Moreover, ALA can reduce the 
growth of prostate tumors, reduce histopathologi-
cal processes and increase survival rates.35 A pre-
vious study also showed that ALA can effectively 
inhibit HER2+ overexpression in breast cancer.36 
Cytokines can interact with each other by regulat-
ing the expression of the cell surface receptors. 
Studies have found that the interaction of cytokines 
with cytokines is involved in the assembly of the 
dodecyl complex, thereby linking cytokine bind-
ing to receptor activation.37 Glycosaminoglycans 
are part of a dynamic extracellular matrix (ECM) 
network that control important biochemical and 
biomechanical signals required for tissue morpho-
genesis, differentiation, homeostasis, and cancer 
development.38 Therefore, we suppose that the dif-
ferentially expressed genes identified in our study 
may play a critical role in the metabolism signal-
ing pathway. However, more researches should be 
conducted to ratify this proposition. Nonetheless, 

this study has some limitations. Firstly, our results 
have not been validated in clinical samples. 
Secondly, our results do not provide accurate clin-
ical data due to the relatively small number of 
patients. Hence, more comprehensive studies with 
large sample sizes should be conducted to validate 
these results and promote the development of 
novel strategies for precision cancer medicine.

Conclusion

Our findings provide a deeper understanding of the 
immune scene, uncovering remarkable immune 
infiltration patterns of various subtypes of HCC 
using ssGSEA. This study advances the under-
standing of immune response and provides a basis 
for research to enhance immunotherapy.
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