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Infectious disease severely threatens human life. Human mobility and travel patterns influence the spread 

of infection between cities and countries. We find that the infection severity in downstream cities dur- 

ing outbreaks is related to transmission rate, recovery rate, travel rate, travel duration and the average 

number of person-to-person contacts per day. The peak value of the infected population in downstream 

cities is slightly higher than that in source cities. However, as the number of cities increases, the severity 

increase percentage during outbreaks between end and source cities is constant. The surveillance of im- 

portant nodes connecting cities, such as airports and train stations, can help delay the occurrence time of 

infection outbreaks. The city-entry surveillance of hub cities is not only useful to these cities, but also to 

cities that are strongly connected (i.e., have a high travel rate) to them. The city-exit surveillance of hub 

cities contributes to other downstream cities, but only slightly to itself. Surveillance conducted in hub 

cities is highly efficient in controlling infection transmission. Only strengthening the individual immunity 

of frequent travellers is not efficient for infection control. However, reducing the number of person-to- 

person contacts per day effectively limits the spread of infection. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Infectious disease severely threatens human life. In recent years,

deaths caused by infectious diseases have remained at an annual

rate of 13–15 million ( WHO, 2013 ). The epidemic severe acute

respiratory syndrome (SARS) spread to 30 countries, resulting in

over 80 0 0 cases and nearly 80 0 deaths in 20 03 ( WHO, 20 03 ). By

the end of 2009, the pandemic H1N1 virus had spread to more

than 208 countries, resulting in hundreds of thousands of cases

and at least 18,0 0 0 deaths ( WHO, 2009a; Massaro and Bagnoli,

2014 ). By June 2016, more than 28,0 0 0 Ebola cases had been re-

ported in Guinea, Liberia and Sierra Leone, with more than 11,0 0 0

deaths ( WHO, 2015 ). Globally, 2103 laboratory-confirmed cases of

infection with the Middle East respiratory syndrome coronavirus

(MERS-CoV), including at least 733 related deaths, had been re-

ported to the WHO by 1 November 2017 ( WHO, 2017 ). All of these

infectious diseases initially occurred in a few countries and rapidly

spread to others. Knowledge on the association between human

mobility and infectious disease transmission is very important for

infection control ( Barmak et al., 2016 ). 

Many computer simulations have been conducted on in-

fection spread within indoor environments, such as planes
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 Namilae et al., 2017 ) and cruise ships ( Zhang et al., 2016a );

ithin buildings, such as offices ( Zhang et al., 2018b; Zhang and

i, 2018 ), hospitals ( Lau et al., 2004 ) and schools ( Zhang et al.,

011 ); and within cities ( Zhang et al., 2016b, 2018a ). Research

n infection spread across cities and countries has mainly fo-

used on human mobility based on historical data processing

 Opatowski et al., 2011 ) and mathematical models ( Charu et al.,

017 ). Hyman and LaForce (2003) constructed a mathemati-

al SIPR (where P is the stage of partial immunity) infection

pread model across cities and analysed long-term infection spread

rends. Kim et al. (2014) developed a mathematical model of

ulti-city transmission and simulated the outbreaks of pandemic

nfluenza A in Korea across cities considering transportation im-

acts. Gautreau et al. (2008) used the Rvachev–Longini metapop-

lation model to analyse the arrival times of infectious disease

n a global scale. Balcan et al. (2009) used a mobility (GLEaM)

odel to obtain multi-scale mobility networks to simulate infec-

ion spread across countries. Travellers, including business trav-

llers, play an important role in infection spread across cities and

ountries ( Wang et al., 2012 ). In the global network of human mo-

ility ( Du et al., 2016 ), travellers connect all cities and countries.

herefore, knowledge on how travel behaviour affects infectious

isease transmission is useful to the prevention and control of

nfection spread between cities or even between countries. How-

ver, the previous research was insufficient because of a lack of

https://doi.org/10.1016/j.jtbi.2019.03.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2019.03.004&domain=pdf
mailto:zhangnan@hku.hk
mailto:liyg@hku.hk
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m  
he quantitative comparison between the source and downstream

ities, the impacts of travel patterns, and efficiency of different

urveillance strategies in the transportation hubs. 

In order to reveal these important questions, we develop a

ulti-city travel and susceptible, infected and recover (MCT-SIR)

odel to simulate infection spread between cities. The impacts

f travel-related factors are studied. We quantitatively analyse

he infection severity of the source and downstream cities under

ifferent travel patterns. We also assess the different surveillance

trategies on public transportation hubs based on quantitative

imulation. Moreover, some traditional prevention strategies

re compared with various surveillance plans. The results offer

ome suggestions for infectious disease control from the travel

erspective. 

. Methods 

.1. Multi-city travel SIR model 

We study the difference in the severity level (peak value of the

nfected percentage) of source and downstream cities. To quan-

ify the difference, we first define the severity increase percentage

 �P 
c d 
c s ) to describe the difference between the source city c s and

he downstream city c d during outbreaks ( Eq. (1) ). 

P 
c d 
c s = 

( I c d ,max − I c s ,max ) 

I c s ,max 
(1) 

here I c s ,max and I c d ,max are the peak values of the infected popu-

ation during outbreaks in the source city c s and the downstream

ity c d , respectively. A large �P 
c d 
c s suggests that the severity of in-

ectious disease in the downstream city c d is higher than that in

he source city c s . 

We also classify cities into different levels. The source city ( c s )

s the city that discovers the first case. The first downstream city is

he city that has direct population exchange with the source city.

he second downstream city is the city that has direct population

xchange with the first downstream city, but no exchange with the

ource city, and so on. 

In this study, the MCT-SIR model mainly focuses on travel (hu-

an mobility) between cities. Therefore, we assume a fully mixed

ondition in each functional area, such as the offices, accommo-

ations and restaurants in each city. The distribution of different

unctional areas is not considered. We analyse how influencing fac-

ors, such as travel rate ( δ), average travel duration ( t T ), the num-

er of person-to-person contacts per day ( n p ), transmission rate

 β) and recovery rate ( γ ) affect the �P 
c d 
c s and outbreak occurrence

imes of infectious diseases. As shown in Fig. 1 , the model has

wo main parts: infection and mobility. Infection (red dashed frame)

eans that infectious disease is transmitted in a city and mobility

blue dashed frame) means that infection spreads between cities

ue to human mobility. It is shown in Eq. (2) . 
 

 

 

�S c s ( t ) = �S I c s ( t ) + �S M 

c s ( t ) 

�I c s ( t ) = �I I c s ( t ) + �I M 

c s ( t ) 

�R c s ( t ) = �R 

I 
c s ( t ) + �R 

M 

c s ( t ) 

(2) 

here �S c s (t) , �I c s (t) and �R c s (t) are, respectively, the variations

f the total number of susceptible, infected and recovered people

resent in city c s at time t ; �S I c s (t) , �I I c s (t) and �R I c s (t) are, re-

pectively, the variations of S, I and R caused by Infection at time

 ; and �S M 

c s 
(t) , �I M 

c s 
(t) and �R M 

c s 
(t) are, respectively, the variations

f S, I and R caused by mobility at time t . In this model, different

tatus of people caused by Infection ( �S I c s (t) , �I I c s (t) , and �R I c s (t) )

nd mobility ( �S M 

c s 
(t) , �I M 

c s 
(t) , and �R M 

c s 
(t) ) are independent. 

In Fig. 1 , the left black dashed frame shows the number of sus-

eptible, infected and recovered people at time t − 1 . According to
he SIR model ( Kermack and McKendrick, 1927 ), the number of

usceptible, infected and recovered people in city c s can be cal-

ulated using Eq. (3) . A specific calculation involving the different

onfined spaces is introduced in Supporting Information. 
 

 

 

 

 

 

 

 

 

 

 

d S I c s ( t ) 

d t 
= −β · S c s ( t ) · I c s ( t ) 

d I I c s ( t ) 

d t 
= β · S c s ( t ) · I c s ( t ) − γ · I c s ( t ) 

d R 

I 
c s ( t ) 

d t 
= γ · I c s ( t ) 

(3) 

here the unit of β is ‘per person per unit time’ and the unit of γ
s ‘per unit time’. 

The blue dashed frame in Fig. 1 shows the variation in S, I and

 caused by mobilit y. For a city, there are inflow and outflow pop-

lations during each time step ( Eq. (4) ). 
 

 

 

 

 

�S M 

c s ( t ) = S M 

c s ,in 
( t − �t ) − S M 

c s ,out ( t − �t ) 

�I M 

c s ( t ) = I M 

c s ,in 
( t − �t ) − I M 

c s ,out ( t − �t ) 

�R 

M 

c s ( t ) = R 

M 

c s ,in 
( t − �t ) − R 

M 

c s ,out ( t − �t ) 

(4) 

here S M 

c s ,in 
(t) , I M 

c s ,in 
(t) and R M 

c s ,in 
(t) represent, respectively, the S, I

nd R inflows from other cities to city c s at time t ; and S M 

c s ,out (t) ,

 

M 

c s ,out (t) and R M 

c s ,out (t) represent, respectively, the S, I and R out-

ows from city c s to other cities at time t . We assume that all

eople have the same travel rate and equal probability of travel-

ing to each city. Therefore, the inflow and outflow population of

ity c s can be calculated using Eqs. (4.1) and (4.2) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

S M 

c s ,in 
( t ) = P back, �t ·

N C ∑ 

i =1 

S M 

c di ( c s ) 
( t ) + P go, �t · 1 

n c −1 
·

n c ∑ 

i =1 

S M 

c di ( c di ) 
( t ) 

I M 

c s ,in 
( t ) = P back, �t ·

N C ∑ 

i =1 

I M 

c di ( c s ) 
( t ) + P go, �t · 1 

n c −1 
·

n c ∑ 

i =1 

I M 

c di ( c di ) 
( t ) 

R 

M 

c s ,in 
( t ) = P back, �t ·

N C ∑ 

i =1 

R 

M 

c di ( c s ) 
( t ) + P go, �t · 1 

n c −1 
·

n c ∑ 

i =1 

R 

M 

c di ( c di ) 
( t ) 

(4.1) 

 

 

 

 

 

 

 

 

 

 

 

S M 

c s ,out ( t ) = P go, �t · S M 

c s ( c s ) 
( t ) + P back, �t ·

n c ∑ 

i =1 

S M 

c s ( c di ) 
( t ) 

I M 

c s ,out ( t ) = P go, �t · I M 

c s ( c s ) 
( t ) + P back, �t ·

n c ∑ 

i =1 

I M 

c s ( c di ) 
( t ) 

R 

M 

c s ,out ( t ) = P go, �t · R 

M 

c s ( c s ) 
( t ) + P back, �t ·

n c ∑ 

i =1 

R 

M 

c s ( c di ) 
( t ) 

(4.2) 

here S M 

c d ( c s ) 
(t) , I M 

c d ( c s ) 
(t) and R M 

c d ( c s ) 
(t) are, respectively, the num-

er of S, I and R individuals who are city c s ’s residents travelling in

ity c d ; S 
M 

c s ( c d ) 
(t) , I M 

c s ( c d ) 
(t) and R M 

c s ( c d ) 
(t) are, respectively, the num-

er of S, I and R individuals who are city c d ’s residents travelling in

ity c s ; S 
M 

c d ( c d ) 
(t) , I M 

c d ( c d ) 
(t) and R M 

c d ( c d ) 
(t) are the number of city c d ’s

esidents who are not travelling; P go , �t is the probability of a res-

dent deciding to travel to other cities after time �t ; and P back , �t 

s the probability of a tourist deciding to return to their home city

fter travel time �t . We assume that the per-hour probability of a

esident deciding to travel is P go ( h −1 ) and that the per-hour prob-

bility of a tourist ending travel is P back ( h −1 ). P go , �t and P back , �t 

an be calculated using Eq. (5) . 
 

 

 

 

 

P go, �t = 

�t ∑ 

t=1 

( 1 − P go ) 
t−1 P go 

P back , �t = 

�t ∑ 

t=1 

( 1 − P back ) 
t−1 P back 

(5) 

.2. Parameter settings 

H1N1 is used as an example to analyse infectious disease trans-

ission between cities. According to previous studies on H1N1,
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Fig. 1. Multi-city travel SIR model. 
∗S c i (t) , I c i (t) and R c i (t) represent, respectively, the number of susceptible ( S ), infected ( I ) and recovered ( R ) people in city i at time t; β is the transmission rate; γ is the 

recovery rate; �S I c i (t) , �I I c i (t) and �R I c i (t) represent, respectively, the variations in S, I and R caused by infection in city i at time t ; �S M c i 
(t) , �I M c i 

(t) and �R M c i 
(t) represent, 

respectively, the variations in S, I and R caused by human mobility at time t; n c is the total number of cities; 
∑ n c 

j=1 

j � = i 
S c j → c i (t ) , 

∑ n c 
j=1 

j � = i 
I c j → c i (t ) and 

∑ n c 
j=1 

j � = i 
R c j → c i (t) represent, 

respectively, the S, I and R inflows from other cities to city i at time t ; and 
∑ n c 

j=1 

j � = i 
S c i → c j (t) , 

∑ n c 
j=1 

j � = i 
I c i → c j (t) and 

∑ n c 
j=1 

j � = i 
R c i → c j (t) represent, respectively, the S, I and R outflows from 

city i to other cities at time t . 

Table 1 

Default parameters in the study. 

Symbol Value Definition 

R 0 1.8 ( Balcan et al., 2009; Lessler et al., 2009; 

Merler et al., 2011 ) 

Basic reproductive number: the average new cases (i.e., infections) arise from a 

single primary case ( Fraser et al., 2009 ) 

β 1.56 × 10 −3 person −1 · h −1 Transfer rate: average infection probability of a susceptible individual contact 

with an infected individual 

γ 0.014 h −1 Recovery rate: the transition rate from susceptible to recovered 

δ 2.34% ( CNTA, 2017; NBSC, 2018 ) Travel rate: the ratio of tourists in a city to citizens of the city 

N 400 people/day ( Hyman and LaForce, 2003 ) Interpersonal contact number per day: the number of people that a person 

contacts on average per day 

N r N/50 Number of confined spaces in a city 

P go , �t – The probability of a resident deciding to travel to other cities after time �t 

P back , �t 1.57 × 10 −2 h −1 The probability of a tourist deciding to return to their home city after travel 

time �t 
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default parameters used in our study are listed in Table 1 . Ac-

cording to previous studies on H1N1, the basic reproductive num-

ber ( R 0 ) of H1N1 is approximately 1.8 ( Balcan et al., 2009; Lessler

et al., 2009; Merler et al., 2011 ), which means on average 1.8 new

cases (i.e., infections) arise from a single primary case ( Fraser et al.,

2009 ). In a city, a person on average contacts 400 people per day

( Hyman and LaForce, 2003 ). To keep R 0 = 1 . 8 , the transfer rate

from the susceptible to the infected ( β), is set to 1.56 × 10 −3 . As

the infectious period is from 1.1 to 4.69 days ( Balcan et al., 2009;

Merler et al., 2011 ), we set the mean value of 2.89 days (69 h). The

recovery rate, γ (the transition rate from susceptible to recovered),

is calculated ( γ = 0 . 014 h 

−1 ). 

We set the time step to 3 h. There are eight steps per day. A

person contacts on average 50 people per time step. We assume

that all cities have the same population ( N ) and number of con-

fined spaces ( N r ). People randomly distribute into different rooms

per step. Therefore, a person contacts N / N r people per step. When

N � N r , it is considered that there is no repeated contact between

any pair of people during a day. 
Travel rate ( δ) is the percentage of tourists in a city to citizens

f the city. It is expressed by Eq. (6) . 

c s = 

∑ n c 
i =1 

N c di ( c s ) 

N c s 

= 

∑ n c 
i =1 

N c di ( c s ) 

N c s ( c s ) + 

∑ n c 
i =1 

N c di ( c s ) 

(6)

here N c s is the total number of city c s ’s citizens; n c is the total

umber of cities; N c d ( c s ) 
is the number of city c s ’s tourists in city

 d ; and N c s ( c s ) represents the number of non-travelling residents of

ity c s . 

Each city has a population of N . The tourist population in

ach city is δ · N . To balance the population in a city (e.g., c s ),

q. (7) should be satisfied. 

n c 
 

i =1 

N c s ( c s ) → c di 
= ( 1 − δc s ) N · P go, �t = 

n c ∑ 

i =1 

N c di ( c s ) → c s = δc s N · P back, �t 

(7)
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C  

o  

h  

f  
here N c s ( c s ) → c d 
is the total number of new tourists from city c s to

ity c d during each step; N c d ( c s ) → c s is the total number of tourists

ravelling in city c d who are returning to city c s ; and δc s is the

ravel rate of city c s . P go , �t is expressed by Eq. (8) . 

 go,�t = 

δc s 

1 − δc s 

P back, �t (8) 

Using China as an example, the Chinese Tourism Statistics Bul-

etin showed that there were 4.44 billion trips taken in 2016

ith an average travel duration of 2.66 days ( CNTA, 2016 ).

onsidering that the population at the time was 1.38 billion

 NBSC, 2018 ), the average travel rate of China can be calculated as

= 

4 . 44 ( billion people / year ) × 2 . 66 ( day ) 
365 ( day / year ) × 1 . 38 ( billion people ) 

= 2 . 34% . 

When the average travel duration is 2.66 days (64.84 h), P back =
 . 57 × 10 −2 h 

−1 is obtained by Eq. (9) . 

∞ 

 

t=1 

t × P back × ( 1 − P back ) 
t−1 = 64 . 84 (9)

here t is the travel duration for a tourist. 

The per-hour probability of a resident deciding to travel ( P go )

an be calculated when travel rate ( δ) is known. 

. Results 

.1. Factor analysis of the severity increase percentage between the 

ource and downstream cities 

Influencing factors, such as travel rate ( δ), average travel dura-

ion ( t T ), basic reproductive number ( R 0 ); transfer rate ( β), recov-

ry rate ( γ ) and the average number of person-to-person contacts

er day ( n p ) and total population per city ( N ), affect the severity

ncrease percentage ( �P ) between a source city ( c s ) and its down-

tream cities ( c d ), which is expressed by �P 
c d 
c s . Using H1N1 as an

xample, infectious disease transmission between only two cities

i.e., N c = 2 ) is simulated based on the MCT-SIR model ( Fig. 2 ). 

Generally, the shape of the infection spread curves in the source

ity and the downstream city are almost the same when δ → 0

nd δ = 50% . As shown in Fig. 2 (a), when δ = 4% , �P 
c d 
c s reaches

he largest value of 4.40%. As δ increases, the �P between the

ource city and the downstream city first increases and then de-

reases after the peak. Furthermore, the peak arrives earlier when

 0 is small. When R 0 = 1 . 5 , �P 
c d 
c s reaches the largest value of 5.63%

hen δ = 4% . However, when R 0 = 2 . 5 , �P 
c d 
c s reaches the largest

alue of 2.70% when δ = 3% . Therefore, the lower R 0 is, the higher

he peak value of the �P between the source city and the down-

tream city is ( Fig. 2 (b)). 

Fig. 3 shows how transfer rate ( β), recovery rate ( γ ) and the av-

rage number of person-to-person contacts per day ( n p ) influence

he �P between the source city and the downstream city. Fig. 3 (a)

hows infectious disease transmission between two cities accord-

ng to basic settings. Comparing Fig. 3 (b) and (c) to (a), �P 
c d 
c s in-

reases when β and γ decrease. Comparing Fig. 3 (b) and (d), when

he population of a city is large enough, �P 
c d 
c s remains almost un-

hanged if the product of β and n p is a constant. We also find that

P 
c d 
c s is not influenced by the total population of the city. 

The �P between the source and the downstream city changes

ith travel duration ( Fig. 4 (a)). Under a constant travel rate ( δ =
% ) and R 0 (1.8), when the average travel duration changes from

 to 7 days, the time delay for outbreak between the downstream

ity and the source city increases from 5.3 to 15.3 days. In addition,

P 
c d 
c s decreases from 3.86% to < 0.01% with travel duration expan-

ion. When travel duration increases, the population exchange rate

etween two cities decreases because the travel rate is constant.

he impact of the source city on the downstream city is weakened.
Fig. 4 (a) shows that �P 
c d 
c s monotonically decreases as travel

uration increases (1–7 days) when δ = 1% . A negative correla-

ion between �P 
c d 
c s and travel duration (1 to 7 days) still exists

hen δ = 2% ( Fig. 4 (b)). In reality, δ ≥ 4% is possible when cer-

ain festivals arrive. As shown by the red and green dashed lines

n Fig. 4 (b), �P 
c d 
c s does not monotonically decrease as travel dura-

ion increases. The peak value occurs at t T = 2 when δ = 4% and at

 T = 3 when δ = 6% , respectively. A too high or too low population

xchange rate between two cities leads to a low �P 
c d 
c s . Therefore,

 high travel rate with a low travel duration or a low travel rate

ith a high travel duration decreases �P 
c d 
c s . Based on our default

ettings ( R 0 = 1 . 8 , β = 1 . 56 × 10 −3 , γ = 0 . 014 h 

−1 and n p = 400 ),

P 
c d 
c s peaks when t T /δ = 50 . 

.2. Infectious disease transmission in five cities 

Fig. 5 shows how the travel patterns between five cities influ-

nce infectious disease transmission (the �P between five cities,

he severity of infection outbreak and the outbreak occurrence

ime). In Fig. 5 (a), infectious disease transmits from source city A

o end city E city by city (i.e., A → B → C → D → E ). To maintain a con-

tant population in each city at all times, δ = 1% is set in cities A

nd E and δ = 2% is set in cities B, C and D . The peak value of in-

ected individuals during outbreaks is the same in cities B, C and

 , with an average �P BCD 
A 

= 0 . 50% ( Fig. 5 (a)). The �P between the

iddle cities is close to 0. City E is the end city and �P E 
A 

= 2 . 33% .

omparing �P E 
A 

to the �P 
c d 
c s with only two cities ( Fig. 2 (a)), the

P between the source city and the end city is almost the same

 �P E 
A 

≈ �P 
c d 
c s ). In Fig. 5 (a), city B receives infected tourists from

ource city A during the infection rising period and delivers in-

ected people to city C at the same time. City A, B , and C like three

ottles of solution. City B receives a highly concentrated solution

rom city A , but is also diluted by city C . However, �P E 
D 

is high

ecause the end city ( E ) only absorbs the highly concentrated so-

ution from city D without any dilution caused by the other cities.

herefore, �P E 
D 

and �P B 
A 

are big, whereas �P C 
B 

and �P D 
C 

are very

mall. 

In Fig. 5 (b), the travel pattern from city A to E is circular

 A → B → C → D → E → A ) and the tourist flow in each city is unidirec-

ional with δ = 1% . The peak value of the infected population dur-

ng the outbreaks in the second downstream cities ( C and D ) is

igher than the first downstream cities ( B and E ) and the source

ity, A ( �P BE 
A 

= 1 . 36% , �P CD 
A 

= 2 . 41% ). This is consistent with the

aw that the �P between the source city ( C s ) and the end city ( C e )

s constant ( �P c e c s ≈ 2 . 4% ). In the circular travel pattern, both cities

 and E are the first downstream cities. The only difference be-

ween city B and city E is the direction of travel ( A → B vs. E → A ).

he infected tourists from city A can spread infection to city B .

ourists from city E are probably infected when they travel to city

 and then take the virus back to city E , thereby spreading infec-

ion. The infection spread curves under both conditions are almost

he same. When the time step is small, we can consider the per-

entage of the infected individuals in city A ’s tourist population

ho travel to city B and in city E ’s tourist population who return

o their home cities from city A to be the same. The population

xchange rate between cities A and B during each time step equals

hat between cities E and A ( δAB = δEA ). Therefore, the infectious

isease transmission curves of cities B and E are similar. This pat-

ern can also be seen by comparing the results of cities C and D . 

In Fig. 5 (c), the residents of cities A and B can travel to city

 . In city C , they can travel to cities D and E ( A/B → C → D/E ). City

 is the first downstream city and cities B, D and E are the sec-

nd downstream cities. As the travel rate from city B to city C is

igher than that from city C to city D/E ( δBC = 2 δCD = 2 δCE ), the in-

ectious disease outbreak occurs earlier in city B . Fig. 5 (d) shows
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Fig. 2. Infectious disease transmission at different travel rates. (a) R 0 = 1 . 8 . The red line depicts the source city and the black line depicts the downstream city; the x -axis 

shows the time (day); the y -axis shows the percentage of infected people; and the number on the right side of the figure is the value of �P 
c d 
c s . (b) Different values of R 0 (1.5, 

1.8 and 2.5) ∗ . 
∗ With different values of R 0 , n p and γ remain constant and only β changes. 
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the reversed travel pattern of Fig. 5 (c) ( D/E → C → A/B ). The severity

of infection outbreak in city C is slightly lower than that in other

cities. The travel rate from city A to C is low, but cities B, D and E

have strong dilution impacts during the rising period of infection

of city C . Comparing city B to cities D and E , the peak value of the

infected population is the same. However, the outbreak occurrence

time (when the infected population reaches the peak) in city B oc-

curs later than that in cities D and E . 

3.3. Efficiency analysis of travel-related intervention strategies 

3.3.1. Human mobility surveillance between cities 

Human mobility surveillance between cities influences infec-

tious disease transmission ( Fig. 6 ). We assume that surveillance

strategies can help monitor infected tourists with an efficiency of

90%. Therefore, 90% of infected tourists would be monitored when

moving from one city to another and sent to hospital for isolation.

Comparing Fig. 6 (a) and (f), when people who leave city A are
onitored, the outbreak occurrence time in the first downstream

ity, C , is delayed from day 42.5 to 52 and the peak value of the

nfected population increases by 2.56%. The outbreak occurrence

ime in cities B, D and E is also delayed. Monitoring tourists who

eave city A does not influence the relative relationship between

ities B, D and E . Comparing Fig. 6 (c) and (a), the relative positions

f the curves of cities B, D and E remain almost constant. 

When people who enter city D are monitored ( Fig. 6 (b)), com-

aring it with city A-exit surveillance ( Fig. 6 (a)), occurrence time

or outbreaks of cities B to E is advanced. Cities A, B, C and E

re not strongly influenced by this strategy, and infectious disease

ransmission curves are similar with them under no-control condi-

ion ( Fig. 6 (f)). However, the occurrence time for outbreaks of city

 is delayed about 9.5 days compared with city E , and the peak

alue of the infected during outbreaks is decreased by 1.50%. 

City C is the only first downstream city in this travel pattern,

nd it directly links with the source city A and the second down-

tream cities B, D , and E . City C can be seen as a hub, and every
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Fig. 3. Infectious disease transmission at different transmission rate ( β), recovery rates ( γ ) and average number of person-to-person contacts per day ( n p ) under R 0 = 1 . 8 . 

(a) β = β0 , γ = γ0 and n p = n p0 . (b) β = 0 . 5 β0 , γ = 0 . 5 γ0 and n p = n p0 . (c) β = 2 β0 , γ = 2 γ0 and n p = n p0 . (d) β = β0 , γ = 0 . 5 γ0 and n p = 0 . 5 n p0 . The red line depicts the 

source city and the black line depicts the downstream city; the x-axis shows the time (day); the y-axis shows the percentage of infected people; and the number on the 

right side of the figure is the value of �P 
c d 
c s . 

∗β0 , γ 0 and n p 0 are the defaults ( β0 = 1 . 56 × 10 −3 , γ0 = 4 . 17 × 10 −2 and n p0 = 400 , respectively). Detailed information is provided in Section 2.2 . 

Fig. 4. Infectious disease transmission with different travel durations ( t T ) under (a) δ = 1% and (b) δ = 1 − 6% . 
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ourist has correlation with city C . Hub usually plays an important

ole in a network. As shown in Fig. 6 (c), when tourists who enter

ity C are monitored, the outbreak occurrence time in city C is

he same as that under the condition of city A exit surveillance.

owever, the second downstream cities, B, D and E , are strongly

nfluenced. If there is no surveillance, the outbreak in city B occurs
arlier than in cities D and E . After monitoring tourists who enter

ity C , the outbreak occurrence time of city B is delayed and

he outbreak severity decreases by 4.72%. When infected tourists

eturn from city C to city B , 90% of them are sent to hospital for

solation. Only 10% of infected tourists can take the virus back,

trongly weakening the efficiency of infection spread. City C acts
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Fig. 5. Impacts of the travel patterns between five cities on infectious disease transmission. The red round border represents source city A . The green, blue, brown and black 

round borders represent cities B, C, D and E , respectively. The black solid lines represent the flow of tourists from their home cities to other cities and the black dashed 

lines represent the flow of tourists returning from other cities to their home cities. The red solid circles represent the source city, the sky blue solid circles represent the 

first downstream cities that are directly linked to the source city and the grey circles represent the second or higher-level downstream cities that are indirectly linked to the 

source city. (a) Unidirectional travel ( A → B → C → D → E ). (b) Circular travel ( A → B → C → D → E → A ). (c) A / B → C → D / E ∗ . (d) D/E → C → A/B . 
∗ When cities D and E have the same infectious disease transmission characteristics, the black curves are used to show the average value of infected people in cities D 

and E . 
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as a filter and reduces the impacts caused by infected city B ’s

tourists who return from city C . Infected residents in city D are

never monitored because none of city D ’s tourists go to city C, but

a few infected tourists do go to city D from city C . In general, as

a hub city, city-entry surveillance is not only useful to city C , but

also to cities with a high rate of population exchange with city C . 

Fig. 6 (d) shows the infection spread under hub city C exit

surveillance. Infected tourists leaving source city A cannot be mon-

itored. Compared to city C entry surveillance, the outbreak occur-

rence time in cities B, C, D and E is advanced in city C exit surveil-

lance. For city B , city C acts as a filter regardless of which of the

two strategies is chosen. Therefore, the impact on city B is the

same. Focusing on cities D and E , city C exit surveillance helps

reduce negative effects and delays outbreak occurrence time. In

general, city C exit surveillance contributes to three second down-

stream cities ( B, D and E ), but only slightly to its own city. 

When both city C entry and exit surveillance are conducted, all

eight routes between cities A, B, D and E and city C are moni-

tored ( Fig. 6 (e)). However, it takes more manpower and material

resources. In this situation, the outbreak occurrence time is de-

layed in all cities. Compared to no strategy ( Fig. 6 (f)), the outbreak

occurrence time in city C is delayed by 10.4 days, in city B by 18.3

days and in cities D and E by 19.4 days. 

3.3.2. Restriction on travel and person-to-person contact 

During infectious disease epidemics, the local government usu-

ally requests residents to reduce travel to prevent cross infection
ith people from other cities. In reality, when the severity of infec-

ious disease increases, travel rate is likely to decrease. Comparing

igs. 7 (a) and 6 (f), when travel rate decreases as infection sever-

ty increases, the efficiency of infectious disease control is lim-

ted because human mobility in cities is not controlled. However,

he outbreak occurrence time is delayed in downstream cities. For

xample, the outbreak occurrence time in city C is delayed by 5

ays, in city B by 12 days and in cities D and E by 15.4 days. This

trategy cannot reduce the severity of outbreaks, but it can de-

ay the outbreak occurrence time. This gives the government more

ime to make emergency plans. The local government usually re-

uests individuals to avoid densely populated areas, such as shop-

ing malls, to reduce the number of person-to-person contacts per

ay during infection outbreaks ( Fig. 7 (b)). When infectious disease

s very serious, some strategies, such as work stoppage, school clo-

ure and shopping mall closure, are implemented. In this situation,

he probability of person-to-person contact is decreased. Even the

robability of tourists spreading infection or becoming infected de-

reases. The severity of infectious disease outbreak is strongly re-

uced and the peak value of the infected population in all cities is

ontrolled below 7.7%. 

. Discussion 

We define the �P between downstream and source cities

 �P 
c d 
c s ) as the ratio of the peak value of infected populations. We

ainly study how travel-related factors and intervention strategies
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Fig. 6. Infectious disease transmission between five cities under a specific travel pattern ( A/B → C → D/E ) ∗1 with different surveillance strategies (surveillance rate ∗2 = 90%). The 

black solid lines represent the flow of tourists from their home cities to other cities and the black dashed lines represent the flow of tourists returning from other cities to 

their home cities. The red solid/dashed lines show the monitored route. (a) Source city A exit surveillance. (b) Second downstream city D entry surveillance. (c) Hub city C 

entry surveillance. (d) Hub city C exit surveillance. (e) Both hub city C entry and exit surveillance. (f) No surveillance. 
∗1 δAC = δBC = 1% ; δCD = δCE = 0 . 5% . 
∗2 A 90% surveillance rate means that 90% of infected tourists are monitored when they move between cities. These people are isolated in hospitals and then leave from the 

hospital upon recovery. 
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ffect infection spread ( �P , outbreak severity and outbreak occur-

ence time) between cities. 

Infection spreads quickly between cities. The phase 5 pandemic

1N1 virus ( WHO, 2009b ) spread to more than 208 countries,

esulting in hundreds of thousands of cases and at least 18,0 0 0

eaths ( WHO, 2009a; CDC, 2009 ). On 21 April 2009, the CDC re-

orted that the first two cases of illness in Southern California had

een caused by infection with genetically similar H1N1 viruses;

exas also reported two cases then ( CDC, 2009 ). By the end of July

009, Wisconsin, Hawaii and Connecticut had the highest percent-

ges of H1N1 patients ( CDC, 2010 ). This conforms to our results
hat some downstream cities are more serious than the source city

n an infection outbreak. In addition to inter-city travel, population

ensity, environment, human behaviour and other factors also in-

uence infection spread. 

Infectious diseases have different basic reproductive ratios ( R 0 ).

or example, that for H1N1 is approximately 1.8 ( De Silva et al.,

009 ), that for H7N9 is between 0.6 and 2.5 ( Yang et al., 2015 )

nd that for norovirus is between 5.3 and 9.3 ( Lee et al., 2011 ).

 0 influences not only infection spread in a city, but also the in-

ection severity between the downstream city and the source city.

he lower R 0 is, the higher the peak value of the �P between the
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Fig. 7. Dynamic intervention strategies under the travel pattern A/B → C → D/E . (a) 

Travel rate control ∗1 . (b) Person-to-person contact control ∗2 . 
∗1 The travel rate changes with the severity of infectious disease and agrees with 

δ(t) = 0 . 01 − 0 . 1 × I c,max (t) 
N c (t) 

, where I c, max is the maximum number of infected people 

in one city out of all cities at time t, N c is the current population in the city that 

has the maximum number of infected people at time t and δ( t ) is the travel rate 

at time t . The travel rate monotonically linearly decreases from 1% to 0% when the 

percentage of the infected population in the most severely affected city increases 

from 0% to 10%. When I c,max (t) 
N c (t) 

> 0 . 1 , no people travel ( δ(t) = 0 ). 
∗2 The average number of person-to-person contacts per day ( n p ) changes with 

the severity of infectious disease and agrees with n p (t) = n ′ p ×
[ 0 . 29 − I c,max (t) 

N c (t) 
] 

0 . 28 
, 0 . 01 ≤

I c,max (t) 
N c (t) 

≤ 0 . 15 , where n ′ p is the default number of person-to-person contacts per day 

(400 in this study). When more than 1% of people are infected in a city, the contact 

behaviour between people is limited. n P is halved when more than 15% of people 

are infected in the most severely affected city. n P monotonically linearly decreases 

from n ′ p to n ′ p / 2 when I c,max (t) 
N c (t) 

increases from 0.01 to 0.15. 
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source city and the downstream city becomes. �P 
c d 
c s was mainly

caused by mobility other than infection ( Fig. 1 ). And increasing R 0 
leads to enhancement of the impact brought by infection , there-

fore, the �P 
c d 
c s will decrease because of weaker impact by mobil-

ity . Moreover, the higher R 0 is, the higher the travel rate must

be to reach the highest �P 
c d 
c s . With an increasing travel rate, the

�P 
c d 
c s increases first then goes down. For example, if there is only

one infected traveller going to the downstream city and only one

resident in the downstream city is infected (travel rate → 0), the

trend of the number of the infected would be the same for both

the source and the downstream cities (all of them are caused by

only one infected person), and there is no difference between the

peak value of the infected ( �P 
c d 
c s == 0). When the travel rate is

0.5, which means residents in the source and downstream cities

are sufficiently mixed, two cities would have the same curves

of number of infected people (( �P 
c d 
c == 0). Therefore, there is a
s 
pecific value of travel rate can lead to the highest �P 
c d 
c s . The aver-

ge travel rate in China is 2.34% ( CNTA, 2016 ). When H1N1 spreads

 R 0 = 1 . 8 ), �P 
c d 
c s reaches a maximum when the travel rate is 4%.

uring normal periods, the travel rate is generally lower than 4%.

owever, the travel rate rapidly increases when certain festivals,

uch as the Spring Festival (the most important festival in China),

rrive. At such times, governments should also focus on infectious

isease prevention and control in downstream cities rather than

nly in source cities. 

Transmission rate ( β), recovery rate ( γ ) and the average num-

er of person-to-person contacts per day ( n p ) influence �P 
c d 
c s . For

nfectious diseases with low transfer rate ( β↓ ) but a high infec-

ious period ( γ↓ ), downstream cities are strongly influenced by

he associated source city ( �P 
c d 
c s ↑ ). When the infectious period

ncreases, there is a longer time to spread disease when tourists

rom the source city travel to downstream cities. The severity of

nfection in downstream cities is strengthened. In addition, un-

er a travel rate of 1%, with increasing travel duration (from 1

o 7 days), the population exchange rate between two cities re-

uces and the impacts of the source city on downstream cities

eaken. In reality, the average travel duration is decided by vaca-

ion arrangements. For example, only 1–2 days of travel can occur

n weekends, but the average travel duration can be between 5

nd 7 days when the Spring Festival or National Day arrives. We

nd that when the quotient of travel duration ( t T ) and travel rate

 δ) is a constant ( t T /δ = 50 in this study), �P 
c d 
c s reaches a maxi-

um. Governments may consider different emergency plans based

n the characteristics of travel patterns. �P 
c d 
c s reaches a maximum

f 4.40% when the travel rate is 4.0% and the travel duration is

.66 days. The increased severity of the downstream city is slight.

n reality, this influence is ignored because it is easily covered by

ther impacts caused by environmental differences (e.g., tempera-

ure and humidity), cultural differences and individual characteris-

ics between cities. Our results are obtained for the same settings

n all cities. 

By simulating infection spread in five cities with different travel

atterns, we can conclude that when there are many cities, the �P

etween the source city and the end city ( �P c e c s ) is almost the same

s between just two cities ( �P c e c s = �P 
c d 
c s ). �P c e c s is not strongly re-

ated to the total number of cities. In general, travel-related fac-

ors influence infection spread between cities, but the impacts are

imited. In the study, we found that the infection enhancement in

ownstream cities brought by travel is much weaker than those

y some environmental factors such as temperature and humid-

ty. Normally, travel can only bring no more than 4% infection en-

ancement in downstream cities and the impact is relatively low

ompared with environment factors. However, downstream cities

hould be paid more attention because infection intensity in down-

tream cities is no weaker than the source city. 

Tourist surveillance is used to control infection spread in many

ituations ( Memish et al., 2014; Petersen et al., 2015 ). Our simu-

ation shows that the severity of infectious disease transmission

s difficult to control if only tourist surveillance between cities is

sed. This strategy can help delay the outbreak occurrence time

nd provide governments more time to prepare efficient emer-

ency plans. City-entry surveillance of non-hub cities is only useful

o the target city that measures tourist surveillance. The positive

mpacts on other cities can be ignored. City-entry surveillance of

ub cities is not only useful to the hub cities, but also to cities

ith strong connections (i.e., a high travel rate) to them. However,

or cities with little or no tourist exchange with hub cities, the

ositive impacts of hub city entry surveillance are weak. The city-

xit surveillance of hub cities contributes to downstream cities, but

nly slightly to above said hub cities. Both the city-entry and -

xit surveillance of hub cities are the most effective for infection

ontrol, although requiring more manpower and consuming more
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esources. Tourist surveillance of hub cities is much more effi-

ient than of other cities and can provide local governments more

ime to prepare emergency plans to reduce the threat of infectious

isease. 

Infection risk can also be reduced by some other strategies,

uch as wearing a mask and getting vaccinated ( Sobolev et al.,

016 ). Strengthening the individual immunity of either frequent

ravellers or randomly selected individuals yields little difference.

he efficiency of strategies that only improve the individual im-

unity of frequent travellers is limited. However, the outbreak

ccurrence time can be slightly delayed in downstream cities.

ndividuals can either wear a mask or get vaccinated to reduce

nfection risk. Governments can limit the travel rate between cities

nd the probability of person-to-person contact via work stoppage

 Zhang et al., 2018a ) and school closure ( Gemmetto et al., 2014 ) to

educe infection risk. Comparing the two government strategies,

ontrolling the amount of person-to-person contact per day is

bviously effective in infectious disease control. 

Our study on infection spread between cities provides some

uggestions for governments to control infectious disease trans-

ission based on travel-related factors and strategies. Various lim-

tations exist. We mainly consider the travel patterns between

ities and hypothesise the random movement of residents in a

ity. This may affect the precision of the results. In addition, all

ities in this study have the same settings in terms of popula-

ion scale and the average number of person-to-person contacts

er day. Moreover, the MCT-SIR model is established based on the

IR model. Lastly, the increased severity phenomenon may require

bservation using more sophisticated models, such as multi-agent

odels. 
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