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Background: During late childhood and adolescence, the frontal lobe undergoes critical

developmental changes, affecting a wide range of executive functions significantly.

Conversely, abnormality in the maturation of the frontal lobe during this period may

result in a limited ability to effectively use various executive functions. However, at

present, it is still unclear how the structural development of the frontal lobe is associated

with different aspects of executive functions during this developmental period. To fill

the gap in evidence, we aimed to elucidate gray matter volume (GMV) in the frontal

lobe and its relationship with multiple aspects of executive functions in late childhood

and adolescence.

Methods: We recruited our participants aged between 6 and 17 years to assess

GMV in the frontal lobe and its relationship with different domains of executive functions

in late childhood and adolescence. We used the voxel-based morphometry–DARTEL

procedure to measure GMVs in multiple frontal sub-regions and Stroop test and

Advanced Test of Attention (ATA) to measure executive functions. We then conducted

partial correlation analyses and performed multiple comparisons with different age and

sex groups.

Results: Overall, 123 participants took part in our study. We found that many regional

GMVs in the frontal lobe were negatively correlated with ATA scores in participants in

late childhood and positively correlated with ATA scores in participants in adolescence.

Only a few correlations of the GMVs with Stroop test scores were significant in both

age groups. Although most of our results did not survive false discovery rate (FDR)

correction (i.e., FDR < 0.2), considering their novelty, we discussed our results based on

uncorrected p-values. Our findings indicate that the frontal sub-regions that were involved

in attentional networks may significantly improve during late childhood and become

stabilized later in adolescence. Moreover, our findings with the Stroop test may also

present the possibility of the later maturation of higher-order executive functioning skills.
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Conclusion: Although our findings were based on uncorrected p-values, the novelty

of our findings may provide better insights into elucidating the maturation of the frontal

lobe and its relationship with the development of attention networks in late childhood

and adolescence.

Keywords: frontal lobe, executive functions, late childhood, adolescence, attentional networks

INTRODUCTION

The development of the frontal lobe has drawn much attention
to neuroimaging and developmental studies because of its strong
association with a wide range of executive functions (EFs),
from basic motor movements to complex decision making (1).
The frontal lobe is known to manage various EFs that are
essential for performing complex tasks including the selection
and perception of information, inhibitory control, maintenance,
working memory, and self-directed behavior (2). A large body of
longitudinal neuroimaging studies have exhibited that the frontal
lobe is among the last regions of the brain to mature, and that
it may not fully maturate until halfway through the third decade
of life (3, 4). Especially during childhood and adolescence, the
frontal lobe undergoes profound neurodevelopmental changes
due to the pruning of excess synapses (5). According to a well-
established body of magnetic resonance imaging (MRI) studies
(4, 6–9), there is a decrease in gray matter density with a non-
linear pattern in the frontal cortices throughout adolescence (9).
A longitudinal study with a wide age range (between 4 and 22
years of age) has demonstrated that gray matter volume (GMV)
in the frontal lobe increases during preadolescence, especially in
the pre-frontal cortex (8, 10). Within the anatomical structure
of the frontal lobe, GMV in the precentral gyrus develops
earlier than other frontal sub-regions, whereas the superior and
inferior frontal gyri maturate later (9). Furthermore, there has
been robust evidence on sex differences in total intracranial
volume (TIV) across different ages (11, 12). For example, in the
developing brain, GMVs inmany regions in the frontal lobe reach
maximum volume at around 12 years for males and 11 years
for females (10, 13). Following late childhood, the GMV in the
frontal lobe gradually decreases in both males, and females (13).

Such structural maturation of the frontal lobe also leads
to significant development of EFs throughout childhood and
adolescence (14, 15). An extensive body of neuroimaging studies
have demonstrated that the main domains (i.e., shifting, working
memory, inhibition) of EFs emerge during the first few years of
life, and their refinement and stabilization continue throughout
adolescence (15, 16). That is, some cognitive abilities may
develop early, but a range of higher-order executive functioning
skills does not reach their peak until post-adolescence (17–
19). Higher-order executive functioning skills are defined as
multidimensional executive and control processes such as
reasoning, planning, organizing, problem-solving, sustained
attention, response inhibition, and cognitive flexibility (20–22).
Anderson et al. (23) examined how children and adolescents aged
between 11 and 17 years performed differently on a variety of
EF tasks. They observed that there was an improvement in some

EF task performances that required selective attention, working
memory, and problem-solving in the group of adolescents. They
also found that attentional control-processing speed had themost
significant development in this age group (23). They speculated
that their findings might be linked to the neurobiological
processes of pruning and myelination in the frontal lobe,
particularly during this developmental period. Moreover, this
might reflect that the main domains of EFs have their own
developmental trajectories. Similarly, an earlier cognitive study
examined EF skills including working memory and inhibition in
three age groups (i.e., 6–7, 8–10, and 11–12 years) and found
significant differences in the performances of the age groups in
EF tasks (24). Explicitly, there was a remarkable peak in the tasks
that assessed planning and processing speed in the group of 11 to
12-year-old children (24).

Although there has been a substantial increase in
understanding of this area across different ages over the past
two decades, yet little is known is about how the neurocognitive
development of the frontal lobe is related to the different
domains of EFs in children, and adolescents in the general
population. Abnormality in the maturation of the frontal lobe
in late childhood and adolescence may result in a limited
ability to effectively use the domains of EFs (23). This is
of particular importance because the transition from late
childhood to adolescence is regarded as a time where some
externalizing problems [e.g., attention-deficit/hyperactivity
disorder (ADHD)] can possibly transform into more severe
behavioral forms including oppositional defiant disorder,
vandalism, theft, physical aggression, delinquency, and bullying
(25–27). Furthermore, this developmental period is associated
with increased risk-taking behaviors (e.g., substance use) and
various mental health problems (e.g., depression, schizophrenia,
bipolar disorders) (15, 28). Recently, Straub et al. (29) examined
GMVs in a relatively large sample of depressed and healthy youth
and found greater GMVs in the dorsolateral pre-frontal cortex in
the group of depressed youth. Replicating findings from previous
studies (30–32), they suggested that depressed youth may be
more vulnerable to delayed brain maturation.

Although abnormality in the neurocognitive development
of the frontal lobe adversely influences the everyday activities
of children and adolescents, most of the previous research
was conducted in clinical populations (e.g., ADHD children,
schizophrenia patients) or focused on certain age ranges (e.g., 2–5
years of age) or developmental periods (e.g., early childhood) (16,
33, 34). Additionally, there is not enough converging evidence on
the relationship between the structural maturation of the frontal
lobe and the different domains of EFs during the transition
between late childhood and adolescence. This may be mainly
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due to inconsistency in using neuroimaging techniques (e.g.,
electroencephalogram) and EF measures. For instance, a wide
variety of intelligence quotient (IQ) tests in use today measure
inconsistent domains of EFs (35, 36). That said, the Wechsler
Adult Intelligence Scale III (WAIS-III), one of the most widely
used IQ tests, measures a certain set of four mental abilities
such as verbal comprehension, processing speed, perceptual
organization, and working memory (35, 37). Considering this,
an investigation of EFs by using multiple measures may be more
beneficial to elucidate the relationship between the structural
maturation of the frontal lobe and the development of the main
domains of EFs in this population.

Considering the above concerns, we assessed regional GMVs
(rGMVs) in the frontal lobe and its relationship with the
main domains of EFs in a community sample of children and
adolescents aged between 6 and 17 years. We used the voxel-
based morphometry (VBM)–DARTEL procedure to measure
GMVs in the frontal sub-regions and several EF tests to measure
the different domains of EF. To assess the relationship, we
conducted partial correlation analyses with four different age and
sex groups (i.e., age ≤13 years, male; age ≤13 years, female; age
≥14 years, male; age ≥14 years, female) and performed multiple
comparisons with these groups.

MATERIALS AND METHODS

Participants
For participant recruitment, we used flyers that had brief
information about the current study in schools and libraries
in Seoul and Gyeonggi-do Province. We also recruited our
participants from one elementary school and one high school
in Seoul, South Korea. For the current study, we excluded
participants if they had unstable physical condition or a history
of an acquired brain injury, neurological disorders, psychiatric
disorders (e.g., schizophrenia), developmental disorders
(e.g., autism, intellectual disabilities), learning disabilities,
language impairments, or uncorrected sensory impairment.
All participants and their legal guardians gave their informed
consent before taking part in the present study. Our study was
approved by the Institutional Review Board for Human Subjects
at Seoul National University Hospital and conducted according
to the Declaration of Helsinki.

Materials
Korean Educational Developmental

Institute–Wechsler Intelligence Scale for Children
The Korean Educational Developmental Institute–Wechsler
Intelligence Scale for Children (WISC) was a modified and
standardized version of the original WISC for Korean children
between 5 and 15 years of age (38–40). This test includes
Full-Scale Intelligence Quotient (FSIQ) (i.e., a total score
of the sub-tests), verbal IQ, and performance IQ, with
12 sub-tests: information, similarities, arithmetic, vocabulary,
comprehension, picture completion, picture arrangement, block
design, object assembly, and digital span and mazes (39). For
our study, we used FSIQ to measure mental abilities of our
participants who were 13 years or younger.

Korean-Wechsler Adult Intelligence Scale
We used the Korean version of the Wechsler Adult Intelligence
Scale (K-WAIS), which is the most widely used IQ test with
strong validity and reliability (41, 42). The K-WAIS has been
widely used for Korean adolescents and adults whose ages are
between 16 and 64 years. This test has two categories of 11 sub-
tests with a verbal scale and a performance scale. The verbal
scale includes information, digit span, vocabulary, arithmetic,
comprehension, and similarity (42). The performance scale
includes picture completion, picture arrangement, block design,
object assembly, and digit symbol (42). For the current study, we
used FSIQ tomeasure the mental abilities of our participants who
were 14 years or older.

Stroop Color and Word Test
The Stroop test is one of the most widely used neurological
tests to measure selective attention capacity and skills, cognitive
flexibility, processing speed, and working memory (43–45).
Moreover, it has been used to assess dysfunctions of the frontal
lobe, as it has good validity and reliability in the pediatric
and adolescent populations (44, 46). This test consists of three
components such as word task, color task, and color–word
task (46). The word task measures basic reading rate and
assesses speechmotor problems or learning disabilities. The color
task assesses speech motor function and colorblindness. The
color–word task measures both mental flexibility and inhibitory
control. For the word task, participants were asked to name a
series of color words (46). For the color task, participants were
asked to name the color of cards (e.g., XXX in red or blue ink).
For the color–word task, participants were asked to name the
color of the ink instead of the word when the names of colors
in different ink colors (e.g., the word “red” in blue ink) were
shown. Three scores (i.e., word score, color score, color–word
score) were calculated based on the number of completed items
on each card. Higher scores indicate better performance and less
interference. Interference score was also obtained by subtracting
the obtained word score from the obtained color–word score
(47). This score measures inhibitory control, with smaller scores
indicating better control (47).

Advanced Test of Attention
Continuous performance test measures auditory attention, visual
processing speed, visual-motor competence, and phonological
awareness (48). It has good validity and reliability, with a
Cronbach α coefficient of 0.82 (48–50). Among different versions
of this test, we used the Advanced Test of Attention (ATA)
that integrates both visual and auditory sensorial modalities,
measuring attention, and response inhibition in Korean children
older than 5 years (51). The target rate of stimulus presentation
is 22% for the first section, 50% for the middle section, and 78%
for the last section, with the stimulus presentation time of 0.1 s
and an interval of 2 s between the presentations (39, 52). This
test includes both auditory and visual scores of omission errors
(i.e., missed targets), commission errors (i.e., incorrect responses
to non-targets), the mean of response time (i.e., response speed),
response time variability, response criterion, and detectability
(i.e., ability to distinguish targets from non-targets) (39). It also
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provides both auditory and visual scores of ADHD. An omission
error reflects sustained attention. A commission error reflects
impulsivity, self-regulation, and inhibitory control. The mean
of response time reflects the response preparation components
of EF. Response time variability reflects the inconsistency in
responses. Based on the ATA guidelines, higher scores on both
the visual and auditory variables indicate higher probability of
ADHD including poor EFs.

The Children’s Depression Inventory
The Children’s Depression Inventory (CDI), a modified version
of Beck’s Depression Inventory, measures child and adolescent
depression (53–55). For our study, we used the Korean version
(56) of the CDI, a self-report questionnaire with 27 items that
reflect depressive symptoms, with numerical values from 0 to 2.
Participants were asked to mark the statement that best described
their feelings during the past 2 weeks (57). Higher scores reflect a
higher severity of depression.

Methods
MRI Data Acquisition
We used a 3.0-T MRI scanner (Siemens, Magnetom Tim-Trio)
to obtain MRI scans. We obtained high-resolution T1-weighted
images from each participant with a magnetization-prepared
rapid acquisition gradient echo pulse sequence [repetition time
= 1,900ms, echo time = 3.13ms, flip angle = 9◦, matrix size =
256× 256, field of view= 230× 230 mm2, thickness= 0.9mm].
We used foam pads to minimize head motion-related artifacts
during scanning.

Regional VBM Analysis
To estimate rGMV, we conducted a VBM analysis through
the SPM12 VBM-DARTEL procedure (SPM12, http://www.fil.
ion.ucl.ac.uk/spm/, Wellcome Trust Center for Neuroimaging,
London, UK) (58). Comparing with earlier optimized VBM, this
procedure serves clearer segmentation and better registration for
estimating boundaries between different tissues (58, 59).

Our well-trained physician did not find any abnormalities
from motion and/or other artifacts on T1-weighted images.
The procedure for preprocessing T1-weighted images included
manual reorientation to the anterior commissure, gray matter
segmentation based on a standard tissue probability map
provided from SPM, creation of the study-specific template,
spatial normalization with DARTEL to normalize individual
images to the DARTEL template (34, 60, 61), modulation to
adjust for volume signal changes during spatial normalization,
and spatial smoothing of the gray matter partitions with a
Gaussian kernel of 8-mm full width at half maximum. After
preprocessing, values of rGMVs were extracted by averaging
the values at each frontal region, according to the automated
anatomical labeling atlas (62). The frontal sub-regions that
we observed were the medial/inferior/superior parts of the
orbitofrontal gyrus, the medial/middle/dorsal/superior parts of
the frontal gyrus, opercular and triangular parts of the inferior
frontal gyrus, and precentral gyrus in each hemisphere.

To conduct our study, we adapted a standard adult SPM
template (62). Many neuroimaging studies on the developing

brain have used the adult template and demonstrated that using
the adult template did not affect the results of their analyses (63–
67). Moreover, the standard adult SPM template is regarded as
a good tool to compare or combine the results from previous
studies across different age groups (68–70).

Statistical Analysis
Prior to analysis, we divided our sample into four age and sex
groups (i.e., age ≤13 years, male; age ≤13 years, female; age ≥14
years, male; age ≥14 years, female), according to the guidelines
of American Academy Pediatrics (71). We then proceeded to
conduct partial correlation analyses between rGMVs in the
frontal lobe and EF test scores (i.e., Stroop test, visual and
auditory ATA) for each group. For the analyses, we controlled for
age, sex, FSIQ, and TIV as covariates. We also adjusted for CDI
in our final analyses.

Correlation values for each group were transformed into
normal distributed values (i.e., Z group 1 = 0.5 × [log (1 + R
group 1) – log (1 – R group 1)] and Z group 2= 0.5× [log (1+ R
group 2) – log (1 – R group 2)] as Fisher r-to-z transformation).
After z transformation, we compared them with Z = (Z group
1 – Z group 2) /

√
[1/(N group 1 – 3-M) + 1/(N group 2 – 3-

M)], where N group 1, N group 2, and M each represent the
sample size for each group and the number of covariates used
in partial correlation analyses. A threshold of false discovery
rate (FDR) = 0.2 was used to determine significant correlations
and address multiple comparison issues (i.e., FDR = 0.2 or less)
(72). FDR thresholding controls the expected proportion of false
positives among brain areas exhibiting significance (72). FDR
control levels in the range 0.1–0.2 are originally and practically
known to be acceptable, as multiple neuroimaging studies have
applied (72–76). We conducted all statistical analyses using the
MATLAB-based custom software (MathWorks, Sherborn, MA,
USA) and SPSS 20.0 for Windows (SPSS Inc., Chicago, IL, USA).

RESULTS

Demographic and Clinical Characteristics
of Participants
Overall, 123 participants aged between 6 and 17 years took part
in our study. In our sample, the proportion of males (54.5%)
was slightly larger than that of females (45.5%). The proportion
of participants (56.9%) whose age was 13 years or younger was
slightly larger than that of participants (43.1%) whose age was 14
years or older. The proportions of male and female participants
in each year of age were also presented in Table 1. There were no
sex differences on IQ and CDI in both age groups. However, sex
differences on TIV were observed, as males had relatively larger
TIV than females (Table 1). Table 2 shows executive functioning
test performances in the four age and sex groups.

Correlation Analysis
As shown in Figure 1, in the age group ≤13 years, we found
numerous negative correlations and a few positive correlations
between the GMVs in the frontal sub-regions and Stroop test and
ATA scores (controlled for sex, FSIQ, and TIV). Contrastingly, in
the age group ≥14 years, we found many positive correlations
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TABLE 1 | Demographic and clinical characteristics of the participants.

Characteristics Total (n = 123) Age ≤13 years pb Age ≥14 years pb

Totala (n = 70) Male (n = 35) Female (n = 35) Totalc (n = 53) Male (n = 32) Female (n = 21)

FSIQd 102.23 (16.36) 104.03 (17.40) 100.57 (16.90) 107.49 (17.44) 0.097 99.65 (14.54) 97.13 (15.22) 104.00 (12.49) 0.095

TIV 1.42 (0.12) 1.43 (0.12) 1.47 (0.12) 1.40 (0.11) 0.007 1.41 (0.13) 1.45 (0.13) 1.36 (0.10) 0.006

CDI 14.81 (8.06) 10.72 (6.10) 11.53 (6.55) 9.97 (5.64) 0.302 20.08 (7.20) 19.19 (7.97) 21.50 (5.67) 0.228

Values are means ± SD. Total n = 123; male n = 67 (54.5%); female n = 56 (45.5%); age ≤13 years, n = 7 0 (56.9%); age ≥14 years, n = 53 (43.1%). a Age ≤13 years group includes
6 years [n = 2; 2 males (100.0%), 0 females (0.0%)], 7 years [n = 6; 4 males (66.7%), 2 females (33.3%)], 8 years [n = 8; 2 males (25.0%), 6 females (75.0%)], 9 years [n = 10; 6 males

(60.0%), 4 females (40.0%)], 10 years [n = 11; 7 males (63.6%), 4 females (36.4%)], 11 years [n = 11; 4 males (36.4%), 7 females (63.6%)], 12 years [n = 4; 1 male (25%), 3 females

(75.0%)], and 13 years [n = 18; 9 males (50.0%), 9 females (50.0%)]. b Two-tailed. c Age ≥14 years group includes 14 years [n = 17; 9 males (52.9%), 8 females (47.1%)], 15 years [n

= 14; 4 males (28.6%), 10 females (71.4%)], 16 years [n = 17; 14 males (82.4%), 3 females (17.6%)], and 17 years [n = 5; 5 males (100.0%), 0 females (0.0%)]. d Korean Educational

Developmental Institute–Wechsler Intelligence Scale for Children was used in age ≤13 years group and Korean-Wechsler Adult Intelligence Scale was used in age ≥14 years group.

CDI, Children’s Depression Inventory; FSIQ, Full-Scale Intelligence Quotient; TIV, total intracranial volume.

TABLE 2 | Executive functioning test performances across age and sex groups.

Measures of executive function Total (n = 123) Age ≤13 years Age ≥14 years

Total (n = 70) Male (n = 35) Female (n = 35) Total (n = 53) Male (n = 32) Female (n = 21)

ST word task 51.67 ± 20.14 50.09 ± 21.68 49.20 ± 21.49 50.97 ± 22.15 53.75 ± 17.90 54.53 ± 19.32 52.57 ± 15.87

ST color task 51.97 ± 16.46 54.19 ± 18.02 52.03 ± 15.62 56.34 ± 20.13 48.80 ± 13.50 48.68 ± 14.31 49.00 ± 12.39

ST color and word task 51.89 ± 17.78 55.79 ± 20.79 52.83 ± 21.85 58.74 ± 19.54 46.33 ± 10.10 47.00 ± 8.94 45.17 ± 12.03

ST interference 58.15 ± 15.57 58.73 ± 16.11 55.69 ± 17.50 61.77 ± 14.20 57.33 ± 14.89 59.23 ± 15.82 54.06 ± 12.89

aATA

Omission errors 58.83 ± 19.38 66.34 ± 20.96 73.03 ± 21.48 59.65 ± 18.40 49.21 ± 11.49 49.94 ± 13.97 48.10 ± 6.21

Commission errors 64.60 ± 19.14 68.94 ± 21.09 74.12 ± 21.95 63.76 ± 19.12 59.02 ± 14.69 55.94 ± 12.01 63.71 ± 17.29

Mean of response time 60.24 ± 14.19 57.71 ± 14.04 60.15 ± 11.86 55.26 ± 15.73 63.49 ± 13.84 63.41 ± 15.76 63.62 ± 10.63

Response time variability 56.04 ± 19.84 61.16 ± 20.00 68.53 ± 21.86 53.79 ± 14.92 49.47 ± 17.73 46.78 ± 14.51 53.57 ± 21.49

ADHD score 120.39 ± 22.46 126.57 ± 24.40 134.85 ± 26.42 118.29 ± 19.21 112.45 ± 16.84 110.88 ± 14.07 114.86 ± 20.50

Detectability 3.26 ± 1.16 2.91 ± 1.15 2.64 ± 1.13 3.17 ± 1.12 3.70 ± 1.01 3.71 ± 1.10 3.68 ± 0.87

Response criterion 0.78 ± 0.85 0.83 ± 0.70 0.93 ± 0.71 0.73 ± 0.69 0.72 ± 1.01 0.81 ± 1.22 0.58 ± 0.56

vATA

Omission errors 71.17 ± 22.13 72.91 ± 20.59 75.44 ± 19.12 70.38 ± 21.96 68.94 ± 23.97 66.25 ± 24.92 73.05 ± 22.40

Commission errors 71.71 ± 21.02 75.60 ± 19.88 78.32 ± 18.82 72.88 ± 20.81 66.72 ± 21.58 63.38 ± 21.05 71.81 ± 21.88

Mean of response time 50.07 ± 15.37 44.07 ± 15.11 42.71 ± 16.40 45.44 ± 13.82 57.77 ± 11.98 56.41 ± 14.29 59.86 ± 7.01

Response time variability 49.56 ± 10.06 50.04 ± 10.38 51.12 ± 9.79 48.97 ± 10.97 48.94 ± 9.69 46.44 ± 9.82 52.76 ± 8.31

ADHD score 126.34 ± 23.35 128.31 ± 21.66 131.09 ± 20.43 125.53 ± 22.80 123.81 ± 25.35 120.56 ± 25.66 128.76 ± 24.64

Detectability 2.23 ± 1.33 1.69 ± 1.22 1.45 ± 1.12 1.93 ± 1.28 2.92 ± 1.13 3.13 ± 1.22 2.61 ± 0.92

Response criterion 0.91 ± 0.55 0.87 ± 0.38 0.87 ± 0.33 0.86 ± 0.42 0.96 ± 0.71 1.08 ± 0.83 0.78 ± 0.42

Values are means ± SD. aATA, auditory ATA; ST, Stroop test; vATA, visual ATA.

between the GMVs and ATA scores, with a few negative
correlations of the GMVs with Stroop test scores (Figure 1).
Even after FDR correction (i.e., FDR < 0.2), we found multiple
significant correlations in each age group. However, the FDR-
corrected correlations did not withstand adjustment for CDI.

As displayed in Figure 3C, we found significant differences
between the results age ≤13 group and those of age ≥14
male groups (controlled for sex, FSIQ, TIV). Specifically, the
GMVs in many frontal sub-regions were negatively correlated
with ATA scores in the age group ≤13 years (Figure 2A) but
were positively correlated with ATA scores, mainly with visual
scores, in the age group ≥14 years (Figure 2B). Among these
significant correlations, the correlations that survived for FDR

correction were the left precentral gyrus and auditory ATA
response criterion, the right middle frontal gyrus and visual
ATA response criterion, and the left inferior orbitofrontal gyrus
and visual ATA response criterion (FDR = 0.1535, 0.0867, and
0.1351, respectively). However, after adjustment for CDI, only
the correlation between the right middle frontal gyrus and
visual ATA response criterion survived FDR correction (FDR =
0.1857), as shown in Figure 5C. Similarly, we found significant
differences between the age ≤13 female group and age ≥14
female group (Figure 3D). Even after controlling for CDI, we
found multiple significant correlations of the rGMVs with ATA
scores, although the magnitude of these correlations did not
withstand FDR correction (Figure 5D).
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FIGURE 1 | Partial correlations between the GMVs in the frontal lobe and Stroop and ATA test scores in the age groups (age ≤13 years, n = 70; age ≥14 years, n =
53). Comparisons of the partial correlations of the age groups. Controlled for sex, FSIQ, and TIV. GMVs, gray matter volumes; FSIQ, Full-Scale Intelligence Quotient;

TIV, total intracranial volume; Stroop WT, Stroop Word Test; Stroop CT, Stroop Color Test; Stroop CWT, Stroop Color and Word Test; Stroop I, Stroop inference score;

aATA, auditory ATA; vATA, visual ATA.

Age Group ≤13 Years
In male participants, we found that rGMVs in many frontal sub-
regions were negatively associated with Stroop test and ATA
scores (controlled for age, FSIQ, and TIV) (Figure 2A). The
negative correlations that had significant evidence (i.e., p < 0.01
or p < 0.005 or p < 0.001) were observed in the following: the
right middle frontal gyrus and visual ATA response criterion
(p < 0.001), the left opercular inferior frontal gyrus and visual
ATA response criterion (p < 0.001), the left inferior orbitofrontal
gyrus and visual ATA response criterion (p < 0.01), the left
medial orbitofrontal gyrus and visual ATA response criterion (p
< 0.01), and the right medial orbitofrontal gyrus and Stroop
Word Test score (p < 0.01). However, as displayed in Figure 4A,
adjustment for CDI decreased the magnitude of the following
negative correlations: the right middle frontal gyrus and visual
ATA response criterion (p < 0.005), the left inferior orbitofrontal
gyrus and visual ATA response criterion (p < 0.05), and the
right medial orbitofrontal gyrus and Stroop Word Test score (p
< 0.05). Adjustment for CDI increased the magnitude of the
correlation between the left medial superior frontal gyrus (left)
and visual ATA response criterion (p < 0.01). The strength of the
correlations between the left opercular inferior frontal gyrus and
visual ATA response criterion and the left medial orbitofrontal
gyrus and visual ATA response criterion remained the same (p <

0.01). However, such results did not withstand FDR correction.

In female participants, there were several significant
correlations (adjusted for age, FSIQ, and TIV), as shown in
Figure 2C. Among the correlations that had strong evidence,
visual ATA mean of response time was strongly correlated with
the right precentral gyrus and the right opercular inferior frontal
gyrus (p< 0.01 and p< 0.005, respectively). After adjustment for
CDI, the strength of the correlation between the right precentral
gyrus and visual ATA mean of response time remained the
same, whereas the strength of the correlation between the right
opercular inferior frontal gyrus and visual ATAmean of response
time was decreased slightly (p < 0.01) (Figure 4C). However,
such results did not survive FDR correction.

Additionally, we found sex differences on multiple
correlations in this age group (Figure 3A). Most of these
correlations were strongly associated with both visual and
auditory ATA scores, although the adjustment for CDI slightly
reduced the magnitude of the sex differences (Figure 5A).
Both the results with CDI and without CDI did not withstand
FDR correction.

Age Group ≥14 Years
After adjustment for age, FSIQ, and TIV, we found strong
evidence on many positive correlations between the GMVs
and ATA scores, mainly with auditory ATA scores, in
male participants (Figure 2B). Among the correlations, the
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FIGURE 2 | Partial correlations between the GMVs in the frontal lobe and Stroop and ATA test scores in the age and sex groups. Controlled for age, FSIQ, and TIV. (A)

Male group (age ≤13 years, n = 34). (B) Male group (age ≥14 years, n = 31). (C) Female group (age ≤13 years, n = 34). (D) Female group (age ≥14 years, n = 18).

GMVs, gray matter volumes; FSIQ, Full-Scale Intelligence Quotient; TIV, total intracranial volume; Stroop WT, Stroop Word Test; Stroop CT, Stroop Color Test; Stroop

CWT, Stroop Color and Word Test; Stroop I, Stroop inference score; aATA, auditory ATA; vATA, visual ATA.

correlations that had significant evidence (i.e., p < 0.01, p <

0.005, or p < 0.001) were identified in the following: the left
precentral gyrus and visual ATA detectability (p < 0.01), the
left precentral gyrus and auditory ATA mean of response time

(p < 0.01), the left precentral gyrus and auditory ATA response
criterion (p > 0.005), the right precentral gyrus and auditory
ATA mean of response time (p < 0.01), the right precentral
gyrus and auditory ATA response criterion (p < 0.001), and
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FIGURE 3 | Comparisons of partial correlations between the GMVs in the frontal lobe and Stroop and ATA test scores in the age and sex groups. Controlled for age,

FSIQ, and TIV. (A) Male group vs. female group (age ≤13 years). (B) Male group vs. female group (age ≥14 years). (C) Male group (age ≤13 years) vs. male group

(age ≥14 years). (D) Female group (age ≤13 years) vs. female group (age ≥14 years). GMVs, gray matter volumes; FSIQ, Full-Scale Intelligence Quotient; TIV, total

intracranial volume. Stroop WT, Stroop Word Test; Stroop CT, Stroop Color Test; Stroop CWT, Stroop Color and Word Test; Stroop I, Stroop inference score; aATA,

auditory ATA; vATA, visual ATA.

the left middle orbitofrontal gyrus and auditory ATA score (p
< 0.01). After adjusting for CDI, all the correlations remained
significant, and the positive correlation between the right medial

orbitofrontal gyrus and visual ATA response criterion became
significant (Figure 4B). There were no significant correlations of
the rGMVs with Stroop test scores.
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FIGURE 4 | Partial correlations between the GMVs in the frontal lobe and Stroop and ATA test scores in the age and sex groups. Controlled for age, FSIQ, TIV, and

CDI. (A) Male group (age ≤13 years, n = 34). (B) Male group (age ≥14 years, n = 31). (C) Female group (age ≤13 years, n = 34). (D) Female group (age ≥14 years, n

= 18). GMVs, gray matter volumes; FSIQ, Full-Scale Intelligence Quotient; TIV, total intracranial volume; Stroop WT, Stroop Word Test; Stroop CT, Stroop Color Test;

Stroop CWT, Stroop Color and Word Test; Stroop I, Stroop inference score; aATA, auditory ATA; vATA, visual ATA.

Similarly, we found that the rGMVs in some frontal sub-
regions were positively associated with visual ATA scores;
Stroop test and auditory ATA variables were not strongly
correlated with the rGMVs (Figure 2D). The correlations that

had significant evidence include the left dorsolateral superior
frontal gyrus and ATA omission errors (p < 0.01), the
left middle frontal gyrus and ATA omission errors (p <

0.01), the right opercular inferior frontal gyrus and ATA
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FIGURE 5 | Comparisons of partial correlations between the GMVs in the frontal lobe and Stroop and ATA test scores in the age and sex groups. Controlled for age,

FSIQ, TIV, and CDI. (A) Male group vs. female group (age ≤13 years). (B) Male group vs. female group (age ≥14 years). (C) Male group (age ≤13 years) vs. male

group (age ≥14 years). (D) Female group (age ≤13 years) vs. female group (age ≥14 years). GMVs, gray matter volumes; FSIQ, Full-Scale Intelligence Quotient; TIV,

total intracranial volume; Stroop WT, Stroop Word Test; Stroop CT, Stroop Color Test; Stroop CWT, Stroop Color and Word Test; Stroop I, Stroop inference score;

aATA, auditory ATA; vATA, visual ATA.

mean of response time (p < 0.005), the right opercular
inferior frontal gyrus and ATA response time variability (p
< 0.005), and the left medial superior frontal gyrus and

ATA omission errors (p < 0.005). Even after adjusting
for CDI, most of the correlations remained strong and
significant (Figure 4D).
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The correlations that showed sex differences in this age
group are shown in Figure 3B. Specifically, among those, the
correlation between the right opercular inferior frontal gyrus and
auditory ATAmean of response time and the correlation between
right opercular inferior frontal gyrus and auditory ATA response
time variability had significant evidence (p < 0.01 and p < 0.001,
respectively). Only the correlation between the right opercular
inferior frontal gyrus and auditory ATA response time variability
survived FDR correction (FDR = 0.0992). The sex difference on
this correlation remained strong even after we controlled for CDI
and performed FDR correction (FDR = 0.0912) (Figure 5B).
After adjusting for CDI, the magnitude of sex differences was
increased in the correlation between the left medial superior
frontal gyrus and visual ATA commission errors (p < 0.005) and
the correlation between the right medial superior frontal gyrus
and visual ATA commission errors (p < 0.01) (Figure 5B).

DISCUSSION

At present, although the development of the frontal lobe has been
extensively investigated, it is still unclear about how the structural
development of the frontal lobe is associated with different
executive functioning skills in late childhood and adolescence.
To fill the gap in evidence in this specific area, we examined
the relationship between GMVs in the frontal sub-regions and
the main domains of EFs in late childhood and adolescence.
Interestingly, we found that most of the visual and auditory ATA
scores that mainly measured attentional control were negatively
correlated with the rGMVs in participants in late childhood
and positively correlated with the rGMVs in participants in
adolescence. Only a few correlations of the GMVs with Stroop
test scores that assessed various higher-order EFs were strong and
significant in both age groups (i.e., age≤13 years, age≥14 years).
Even after adjusting for CDI, we observed the similar results.

Moreover, in both age groups, sex differences were shown in
the majority of the correlations with ATA scores, whereas only a
few correlations with Stroop test scores showed sex differences.
The only correlation that survived FDR correction even after
controlling for CDI was the right opercular inferior frontal gyrus
and auditory ATA response time variability [FDR = 0.0992
(without CDI), FDR = 0.0912 (with CDI)] in participants in
adolescence. Based on such findings, we suggest that the sex
differences might reflect the earlier structural maturation of the
frontal lobe in females, and specifically, attentional control, which
is one of the main forms of EFs, might develop earlier in females.
Strictly, although most of our findings were no longer significant
after FDR correction (i.e., FDR< 0.2), considering the potentially
significant novelty of our study, here we present and discuss our
findings based on uncorrected p-values (i.e., p ≤ 0.05).

The results of our correlation analyses showed a statistically
significant developmental trend in several domains of attention
(i.e., selective attention, sustained attention), as there were
numerous negative correlations of the rGMVs in the frontal
sub-regions with ATA test performances in participants in late
childhood in the current study. We speculate that this might
possibly reflect ongoing significant maturation of the frontal

sub-regions involved in attention, as GMV reduction is one of
the major characteristics of adolescent brain maturation (77).
On the other hand, a few Stroop test scores that assessed
the domains of higher-order EFs (e.g., working memory) were
strongly correlated with the GMVs in the frontal sub-regions,
which may possibly present the possibility of the later maturation
of higher-order executive functioning skills.

The important roles of attention include alertness, set, spatial
attention, sustained attention, and interference control (9). These
roles seem to develop gradually toward full maturity at 12 years
of age (9, 78). In line with this, our results revealed the peak
of the development of these domains in late childhood, and
presented the possibility that the development of attention might
already have passed the peak and become stable during this
developmental period. Furthermore, attention is known to have
distinctive functions (78). Posner and Rothbart (79) proposed
a model of attentional networks. In this model, there are three
distinctive networks such as the alerting network, the orienting
network, and the executive attention network (79–81). In line
with this model, all frontal sub-regions had strong evidence
with the executive skills of visual and auditory attention in our
participants. Considering this, we suggest that the GMVs in
the frontal sub-regions that are implicated with the attentional
networks may dramatically develop during late childhood.

Among the frontal sub-regions we assessed, the superior
frontal gyrus, the orbitofrontal gyrus, the middle frontal gyrus,
and the inferior frontal gyrus are involved in the executive
attention network. The executive attention network is primarily
responsible for error detection and the goal-directed control of
attention and behavior associated with novelty and interference
(81, 82). This network is active when a conflict is present
and inhibitory attentional processes are necessary (81, 83). It
is known that while the development of executive attention
(e.g., alertness from external cues) occurs since early infancy,
the development of orienting, and maintaining the level of
alertness seems to develop through late childhood (78). This
was well-demonstrated in our study, as our findings revealed
the structurally developmental changes in the frontal sub-regions
and the growth spurt in the domains of attentional control in
participants in late childhood.

We also observed the structurally significant development of
the alerting network in the GMV in the precentral gyrus, which
has a main role in executing voluntary movements (78). The
alerting network is mainly involved in achieving andmaintaining
a state of high sensitivity to external stimuli (78). This network
is considered as one of the prerequisites of conscious perception
and other attentional operations (78, 83). The development of
this network continues beyond 14 years of age (83). Our findings
are consistent with this notion, as there was a large number of
positive correlations between the GMV in the precentral gyrus
and both visual and auditory attentional task performances in
our participants who were 14 years or older. More importantly,
there was also statistically strong evidence (FDR = 0.01535;
controlled for sex, TIV, and FSIQ) on the correlation between the
left precentral gyrus and auditory attentional response criterion
when we compared the result of male participants in late
childhood with that of male participants in adolescence. That
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is, male participants in the age group ≥14 years whose GMV
in the precentral gyrus was more developed responded less
impulsively than male participants in age ≤13 male group while
they performed the auditory attentional tasks.

Combined with previous neuroimaging evidence and the
model of attentional networks, we suggest that GMVs in most of
the frontal sub-regions that are associated with the attentional
networks might significantly develop in late childhood and
become stabilized in early adolescence. Furthermore, it
is possible that the maturation of higher-order executive
functioning skills might occur later in adolescence, as we did
not find any strong evidence on the relationship between
structural maturation of the frontal sub-regions and Stroop test
task performances.

Despite the novelty of our findings, our study has several
limitations that merit attention. First, our study was exploratory,
and our findings were based on uncorrected p-values, as most
of our findings did not survive FDR correction. However,
this may possibly be due to the limitation of the relatively
low sample size, which is one of the common limitations of
neuroimaging studies. We therefore recommend future studies
to obtain larger sample sizes with more balanced proportions of
male and female participants to better understand how rGMVs
in the frontal lobe contributes to a wide range of EFs in
late childhood and adolescence. Moreover, measuring a single
executive skill is difficult, as all aspects of EFs are inter-twined
(84). It is also possible that other potential covariates (e.g.,
stress) might have contributed to the strength of the statistically
significant correlations we found, although we controlled for
the well-known covariates in our analyses (85, 86). Lastly,
the nature of our study (i.e., the cross-sectional design) does
not provide any further evidence on the causal relationship
between the associations found. All cross-sectional studies may
be subject to the bias of the selection of people of various ages.
Considering this, it may be beneficial to longitudinally investigate
how the structural maturation of the frontal lobe is linked to
the different domains of executive functioning skills in late
childhood and adolescence. Although our findings were based
on uncorrected p-values, our findings may provide better insights
into elucidating the structural maturation of the frontal lobe and

its relationship with the development of attention networks in
late childhood and adolescence.
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