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Fatty acid infiltration of the myocardium, acquired in metabolic disorders (obesity,
type-2 diabetes, insulin resistance, and hyperglycemia) is critically associated with the
development of lipotoxic cardiomyopathy. According to a recent Presidential Advisory
from the American Heart Association published in 2017, the current average dietary
intake of saturated free-fatty acid (SFFA) in the US is 11–12%, which is significantly
above the recommended <10%. Increased levels of circulating SFFAs (or lipotoxicity)
may represent an unappreciated link that underlies increased vulnerability to cardiac
dysfunction. Thus, an important objective is to identify novel targets that will inform
pharmacological and genetic interventions for cardiomyopathies acquired through
excessive consumption of diets rich in SFFAs. However, the molecular mechanisms
involved are poorly understood. The increasing epidemic of metabolic disorders strongly
implies an undeniable and critical need to further investigate SFFA mechanisms.
A rapidly emerging and promising target for modulation by lipotoxicity is cytokine
secretion and activation of pro-inflammatory signaling pathways. This objective can be
advanced through fundamental mechanisms of cardiac electrical remodeling. In this
review, we discuss cardiac ion channel modulation by SFFAs. We further highlight
the contribution of downstream signaling pathways involving toll-like receptors and
pathological increases in pro-inflammatory cytokines. Our expectation is that if we
understand pathological remodeling of major cardiac ion channels from a perspective
of lipotoxicity and inflammation, we may be able to develop safer and more effective
therapies that will be beneficial to patients.

Keywords: interleukin-6, cytokines, ion channel, arrhythmias, inflammation, saturated free fatty-acids, toll-like
receptors, lipotoxicity

Abbreviations: AF, Atrial fibrillation; LQTS, Long QT syndrome; QTc, QT interval corrected for heart rate; AP, Action
potential; APD, Action potential duration; IKr , Rapidly activating delayed rectifier K current; IKs, Slowly activating delayed
rectifier K current; INa, Voltage-gated Sodium current; ICa,L, Voltage-gated L-type Ca current; Ito, Fast transient outward
K current; hERG, Human ether-á-go-go-related gene; HEK, Human Embryonic Kidney; FFAs, Free-fatty acids; SFFAs,
Saturated Free-fatty acids; RyR, Ryanodine receptors; IP3R, Inositol trisphosphate; SR, Sarcoplasmic reticulum; SERCA,
Sarcoplasmic endoplasmic reticulum Ca-ATPase pump; PA, Palmitic acid; OA, Oleic acid; T2D, Type 2 diabetes; IL-6,
Interleukin-6; TLR, Toll-like receptor; TNF-α, Tumor necrosis factor alpha; NF-κB, Nuclear factor kappa-light-chain-
enhancer of activated B cells; TdP, Torsades de Pointes; TIR, Toll/interleukin-1 receptor; TRIF, TIR-domain-containing
adapter-inducing interferon-β; TRAM, TRIF-related adapter molecule; TRAF, tumor necrosis factor receptor-associated
factor; TAK, transforming growth factor β activated kinase; IRAK, interleukin-1 receptor-associated kinase; IKK, inhibitory
kappa B alpha kinase; MD-2, myeloid differentiation protein-2; Ub, ubiquitin.
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INTRODUCTION

The heart utilizes free fatty acids (FFAs) to generate a significant
proportion of its energy source. Under normal conditions in the
heart, circulating lipid is maintained through a regulated balance
between cardiac lipid uptake and oxidation. During pathological
situations, such as in metabolic disorders, fat levels exceed
the storage capacity of adipocytes. The excessive circulating
FFA levels underlie fatty acid infiltration of cardiomyocytes
(van Herpen and Schrauwen-Hinderling, 2008). Therefore, in
metabolic disorders including obesity, type 2 diabetes (T2D)
and insulin resistance, FFA levels increase to >1 mM from
normal levels (0.2–0.8 mM) (Altarejos et al., 2005). The excess
amounts of FFAs are subsequently converted into triglycerides
and stored as lipid droplets. The chronic accumulation of
lipid droplets and/or lipid metabolic intermediates within the
myocardium may directly disrupt cardiac function associated
with lipotoxic cardiomyopathy (Szczepaniak et al., 2007). The
expectation is that over time the constant and continuous
metabolic stress is likely to lead to heart failure. Thus, metabolic-
related studies that focus on understanding the progressive
deterioration of myocardial structural and electrical integrity are
needed. Investigations of molecular mechanisms that occur in the
initial phase of the disease state are especially important.

In recent years, there have been studies that have supported
this notion. For example, an elegant study conducted by
Taegtmeyer and others (Sharma et al., 2004), used both
failing human hearts from diabetes and obesity patients, and
hearts from ZDF rats with intramyocardial lipid deposition.
It was demonstrated that myocardial lipid accumulation led
to an upregulation of pathological markers of impaired fatty
acid metabolism (peroxisome proliferator-activated receptor
alpha, PPARα), contractility (myosin heavy chain beta, MHC-
β), and inflammatory response (tumor necrosis factor alpha,
TNF-α). Genetically manipulated mice, with altered cardiac-
specific metabolic pathways (lipid transport and storage) display
decreased mitochondrial biogenesis (Glenn et al., 2011) and
impaired diastolic function (Chiu et al., 2005; Flagg et al., 2009).
We have also shown that high-fat diet induced obesity caused
atrial electrical remodeling associated with vulnerability to atrial
fibrillation (AF) (Aromolaran et al., 2016).

Furthermore, fatty acid metabolism has been investigated
as a contributing factor in the pathogenesis of lipotoxic
cardiomyopathy and heart failure (Tsushima et al., 2018). These
studies assessed the impact of altered expression of genes
involved in regulation of FFA uptake and metabolism (acyl-
CoA synthetase), FFA transport (FATP1) (Chiu et al., 2005), and
lipid utilization (adipose triglyceride lipase, ATGL) (Hirano et al.,
2008; Hoy et al., 2011). For example, Goldberg’s group previously
showed that mice fed a normal diet but overexpressing cardiac-
specific lipoprotein lipase (LpL), an enzyme that hydrolyzes
circulating triglycerides and releases FFAs, displayed dilated
hearts with left ventricular systolic dysfunction (Yagyu et al.,
2003). Schaffer and others have also reported that mice
overexpressing cardiac FATP1 developed cardiac phenotypes
like those seen in T2D and obese animals (Chiu et al., 2005).
Collectively, these studies provide convincing evidence that

cardiomyocyte-specific lipid deposition is critically associated
with cardiac abnormalities in metabolic disorders.

Despite the clinical implications of lipid accumulation in the
heart (Poirier et al., 2006; He et al., 2017; Anstee et al., 2018;
De Coster et al., 2018), the underlying molecular mechanisms
are poorly understood. A major limitation could be due to
the complexity associated with the involvement of multiple
signaling pathways which include: (1) direct modulation of
ion channel function by FFAs, and (2) FFA activation of the
toll-like receptor (TLR) and nuclear factor kappa-light-chain-
enhancer of activated B cells (NFκB) leading to secretion of pro-
inflammatory cytokines (Huh et al., 2016) and subsequent cardiac
electrical remodeling. Previous reports have demonstrated that
FFAs increase inflammation (Lundman et al., 2007), while
genetic knockdown of TLR is protective in mice fed a high-fat
diet rich in palmitate (Davis et al., 2008). Despite the clinical
implications of these findings, there is a paucity of studies that
address modulation of ion channels through activation of the
SFFAs/TLR/NFκB/cytokine pathway in heart.

Here we review the recent developments regarding myocardial
lipid accumulation as a mechanism contributing to cardiac ion
channel dysfunction. We further discuss a role for pro-
inflammatory cytokines, and more importantly interleukin-6
(IL-6), a dynamic and multifunctional cytokine with well-
defined pro-inflammatory and anti-inflammatory functional
characteristics (Szabo-Fresnais et al., 2010; Mihara et al., 2012;
Lazzerini et al., 2017a; Tanaka et al., 2017). The knowledge
that the immune system is an important component of
dysregulated metabolic pathways is a key step to understanding
the pathogenesis of heart failure in patients. We provide
our viewpoint on whether targeting cytokine signaling
pathways in the heart may be a different mechanism to
treat arrhythmias. The possibility of this mechanism-based
approach is strengthened by a recent report by Tyler’s group
(Lewis et al., 2018). The investigators describe the feasibility of
using non-invasive hyperpolarized magnetic resonance imaging
with [1-13C]pyruvate as a marker of cytokine production. This
non-invasive test will make it possible to screen obese and
diabetic patients for early signs of heart failure.

MOLECULAR SIGNALING PATHWAYS OF
CARDIOLIPOTOXICITY THAT PROMOTE
CARDIAC INFLAMMATION

Free-Fatty Acids
There is increasing evidence that dietary FFAs are a critical and
independent predictor of metabolic disorders including insulin
resistance, T2D and obesity (Kien et al., 2005; Park and Goldberg,
2012), and related cardiac dysfunction (Haim et al., 2010; Shao
et al., 2013; O’Connell et al., 2015; Aromolaran et al., 2016;
Anumonwo and Herron, 2018). This association underscores the
importance of studies that provide vigorous and comprehensive
molecular insights into the structural determinants of the
functional properties of FFA as well as FFA-activated signaling
pathways in heart. FFAs are characterized by a straight chain
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of carbon atoms with both a carboxylic (COOH) and a methyl
(CH3 or omega, ω) end (Rennison and Van Wagoner, 2009)
and are generally classified based upon the level of saturation
on the carbon atoms. Accordingly, FFAs are classified into three
main groups: (1) saturated fatty acids (SFAs) that do not contain
double bonds (C16:0 and C18:0), (2) monounsaturated fatty acids
(MUFAs), that contain only one double bond (C18:1), and (3)
polyunsaturated fatty acids (PUFAs), that contain at least two
double bonds (Huang et al., 2018). PUFAs, are divide into two
classes namely: ω-3 and ω-6, based on the position of the first
double bond relative to the ω end.

The anti-arrhythmic or cardioprotective effects of PUFAs,
especially in patients with dyslipidemia, have been studied
extensively (Rimm et al., 2018; Schmocker et al., 2018;
Schunck et al., 2018; Zhang et al., 2018). Billman and others
have shown that the omega-3 PUFA eicosapentaenoic acid
prevented ischemia-induced ventricular fibrillation in a dog
model of sudden cardiac death (Billman et al., 1999), suggesting
modulation by PUFAs of cardiomyocyte electrical activity
(Bogdanov et al., 1998; Xiao et al., 2004; Blondeau et al.,
2007; Leaf, 2007; Moreno et al., 2012). Some of the molecular
mechanisms that may underlie the cardioprotective effects of
PUFAs include effects on channel gating (Elinder and Liin,
2017) and membrane properties (or electrostatics) (Borjesson
et al., 2010; Borjesson and Elinder, 2011; Liin et al., 2015),
and have been comprehensively reviewed elsewhere (Leaf et al.,
2003).

If the relative composition of FFA content in the heart can
influence inflammatory responses, and affect cardiac dysfunction,
then dietary PUFAs may prevent pathological levels of pro-
inflammatory cytokines (Wen et al., 2011; Oikonomou et al.,
2018), and cardiac dysfunction in patients with metabolic
disorders. Moreover, PUFAs have been shown to decrease
secretion of TNF-α, IL-1β, and IL-6 through a pathway
involving M2 anti-inflammatory macrophages (Lyons et al.,
2016). However, the molecular partners involved are unknown,
and therefore the mechanisms are poorly understood. Future
studies are needed to investigate the differences between
inflammatory pathways activated by the cardioprotective PUFAs
and the generally more damaging SFFAs (M1 anti-inflammatory
macrophages) (Lyons et al., 2016), and whether further
differences would be seen with acute versus chronic activation of
these pathways.

Saturated long chain FFAs, particularly palmitic acid (PA,
16:0), which is one of the predominant FFAs in epicardial fat
(Iacobellis and Bianco, 2011), are considered to be a more
prominent contributor to systemic lipotoxicity compared to
long chain monounsaturated FFAs such as oleic acid (OA)
(van der Lee et al., 2000; Listenberger et al., 2003; Kien
et al., 2005). Previously we demonstrated that exogenous
application of PA conjugated with bovine serum albumin
(BSA) shortened atrial action potential (AP) duration (APD),
measured in guinea pig atrial myocytes, while OA prolonged
atrial APD (Aromolaran et al., 2016). Similarly, Anumonwo’s
group found that a short-term exposure to the saturated
stearic acid caused both structural and electrical remodeling of
atrial myocytes isolated from sheep (O’Connell et al., 2015),

consistent with pathological cardiomyocyte remodeling. Notably,
the American Heart Association (AHA) has reported a significant
association between dietary FFA and the pathogenesis of a
variety of cardiovascular diseases (Krauss et al., 2000). The
2013 AHA/American College of Cardiology (ACC) Guideline
on Lifestyle Management to Reduce Cardiovascular Risk
recommends that patients with elevated low-density lipoprotein
(LDL)- cholesterol decrease the intake of dietary saturated
fat to 5–6% of the total daily caloric intake (Eckel et al.,
2014).

Despite these guidelines, diet-related diseases such as obesity,
T2D and insulin resistance and associated cardiac dysfunction
(Kien et al., 2005; Ashrafi et al., 2017; Valli et al., 2017; Sanchez
et al., 2018) are still widespread. This suggests that other
mechanisms or pathways are involved, such as inflammation
and cytokine release, which are activated by SFFAs. Accordingly,
the anti-inflammatory effects of current therapeutic interventions
(statins or APOA1) (Goonasekara et al., 2010; Shapiro and Fazio,
2016) are promising and are likely to inform future studies.

The mechanisms of FFA toxicity are complex, involving
multiple combinations of distinct signaling pathways (Rennison
and Van Wagoner, 2009; Park and Goldberg, 2012), suggesting
the need to expand our understanding of how the interplay
of these pathways lead to a diseased state. In this review we
provide insights on the relatively unexplored interplay between
cardiac lipotoxicity (mediated by SFFAs) and inflammatory
pathways (macrophages, toll-like receptors, proinflammatory
cytokines) that impair ion channel function, leading to cardiac
electrical activity and conduction abnormalities. Our expectation
is that understanding the cardiac-specific inflammatory pathways
may facilitate the design and rational development of effective
therapeutic interventions. These mechanisms are discussed
below.

Saturated Free-Fatty Acids and
Inflammation
Over the past 40 years we have been able to establish a role for
SFFAs in inflammation (Ajuwon and Spurlock, 2005; Bradley
et al., 2008; Bunn et al., 2010; Guzzardi and Iozzo, 2011; Huang
et al., 2012; Wang et al., 2013; Schilling et al., 2013; Haffar
et al., 2015). Cardiac or systemic inflammation (or dysregulation
of the innate immune system) is thought to be a function of
the body’s non-specific response to injury (Pohl and Benseler,
2013). In obese and diabetic patients, the increased rates of
infection and poor wound healing have been associated with
immune cell dysfunction (Joshi et al., 1999; Ferrucci and Fabbri,
2018; Frydrych et al., 2018; Jin et al., 2018; van Niekerk and
Engelbrecht, 2018). Importantly, macrophages are associated
with heightened immune responses to infectious pathogens and
tissue damage in diabetes (Mirza et al., 2009; Mirza and Koh,
2011; Das et al., 2018; Liu et al., 2018) and obesity (Lopez-
Pascual et al., 2018; Ramos Muniz et al., 2018; Ding et al.,
2018).

Given that FFAs are important adipocyte-derived mediators
of macrophage related inflammation (Suganami et al., 2005)
and macrophages can infiltrate and/or directly couple with
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FIGURE 1 | Functional crosstalk between macrophages and cardiomyocytes. The schematic shows functional coupling between macrophages and cardiomyocytes
through gap junctional channels. Small molecules including ATP are exchanged between cells with implications for inflammatory response. Macrophages have been
shown to express ion channels that are similar to depolarizing (ICa, INa) and repolarizing mechanisms in heart (IKr , IKs, and IK1). Previously Van Wagoner and others
(Das et al., 2009), reported functional expression of Cav1.2 channels in macrophages, that could be blocked by known Ca channel blockers (amlodipine and
verapamil), but were voltage-independent. Macrophages also express IHERG-like currents, that are unrelated to cardiac IKr (Pennefather et al., 1998; Zhou et al.,
1998), and inwardly rectifying K channels (Moreno et al., 2013; Kan et al., 2016). What role, if any do the expression of these channels play in mediating the effects of
SFFAs on cardiac electrical activity? Despite the lack of clarity, macrophages are likely to influence cardiac electrical function to help maintain homeostatic control.
This influence could be via direct (TL4R-cytokine release) or indirect (ATP-P2X7R) signaling pathways. Distinguishing between multiple pathways is likely to further
illuminate the role of cardiac macrophages in inflammation and the pathogenesis of lipotoxic cardiomyopathy.

cardiomyocytes (Figure 1; Hulsmans et al., 2016; Sager et al.,
2016), then macrophages may be important mediators of
SFFA effects on cardiac electrical remodeling (Wang et al.,
2017, 2018). Distinct voltage-dependent K channels (VGKC)
including ether-á-go-go related gene 1 (ERG1), (Dong et al.,
2013), inward rectifier (Vicente et al., 2003; Moreno et al.,
2013), and shaker-related or Kv1.3 (Vicente et al., 2003;
Park et al., 2006; Villalonga et al., 2010) are found in
macrophages. In addition to their role in controlling cardiac
repolarization and resting membrane potential (Grandi et al.,
2017; Jeevaratnam et al., 2018), VGKC are also involved
in macrophage functions (activation, migration, proliferation)
(Vicente et al., 2003). Because altered functions of macrophages
could have important implications for proinflammatory cytokine
release and arrhythmias, future studies will have to characterize
the biophysical effects of VGKC localized to macrophages more
precisely and determine whether impaired cardiac electrical
activity includes altered macrophage ion channel function. For
example, does the modulatory signaling pathways (including
protein kinases, protein phosphatases, trafficking, anchoring
proteins, and posttranslational modifications) that regulate
cardiac VGKC subunit expression also regulate these channels in
macrophages? These studies are a prerequisite for development
of new therapeutics which target inflammatory pathways in
lipotoxic-related disorders.

SFFAs have been shown to stimulate an inflammatory
response by acting on TLRs present on macrophages (Figure 1).
TLRs are pattern recognition receptors that play an important
role in the body’s innate immune response (Takeda et al., 2003;
Schilling et al., 2013). Thus, if inflammation is a hallmark of
lipotoxicity (Ertunc and Hotamisligil, 2016; Ralston et al., 2017),
then the role of SFFAs as an activator of TLRs must be understood
because they initiate inflammation.

Saturated Free-Fatty Acids and Toll-Like
Receptor Signaling
Structurally, TLRs are characterized by three distinct domains,
namely: (1) an extracellular leucine-rich repeat (LRR) domain,
which is required and necessary for ligand binding and the
recognition of pathogen-associated molecular patterns (PAMPs);
(2) a transmembrane domain important for receptor localization
to the surface (TLR1, TLR2, TLR4, TLR5, TLR6) and intracellular
membranes (TLR3, TLR7, TLR8, TLR9); 3) a cytoplasmic
conserved toll/interleukin-1 receptor (TIR) domain, which plays
a role in the activation of NF-κB, and cytokine secretion
(Figure 2; Fuentes-Antras et al., 2014). TLR2 and TLR4 have been
widely studied and have both been shown to play a role in the
pathogenesis of lipid disorders like atherosclerotic cardiovascular
disease (Curtiss and Tobias, 2009), insulin resistance (Devaraj
et al., 2008; Wong and Wen, 2008; Kim et al., 2010; Dong et al.,
2012), and obesity (Kim et al., 2007; Ghanim et al., 2017).

SFFAs have been shown to promote both TLR4-dependent
and TLR2-dependent signaling in multiple cell models. For
example, Lee et al. (2001, 2004), using RAW 264.7 macrophages,
demonstrated that the saturated lauric acid (C12:0), signaled via:
(1) TLR4-myeloid differentiation primary response 88 (MyD88)
to activate NF-κB; (2) TLR4-Toll-IL-1 receptor (TIR)-domain-
containing adapter-inducing interferon-β (TRIF), leading to
the activation of interferon-stimulated regulatory element.
Furthermore, endogenous SFFAs released from adipocytes have
also been shown to activate co-cultured macrophages via
TLR4 (Suganami et al., 2007), demonstrating an important
crosstalk in adipose tissue, with implications for lipotoxicity
and cardiac electrical remodeling. Similarly, TLR2 has been
shown to mediate palmitate-induced insulin resistance in C2C12
myoblasts (Senn, 2006). Endothelial overexpression of TLR2 led
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FIGURE 2 | Cardiac and macrophage inflammatory pathways. In metabolic disorders, enlargement of adipocytes contributes to the activation of macrophages and
release of SFFAs through lipolysis (Watanabe et al., 2013). The exposure of cells to increased levels of these inflammatory molecules leads to the activation of
inflammatory pathways. The cartoon representation shows the activation of the TLR signaling pathways (MyD88-dependent and -independent), by SFFAs in both
macrophages and cardiomyocytes. Infiltration of cardiomyocytes by M1 pro-inflammatory macrophages may lead to cardiac electrical dysfunction, cause arrythmias
leading to cardiomyopathies of metabolic disorders. The MyD88-dependent pathway involves sequentially, activation of IRAK4, phosphorylation of IRAK1/2, and
TRAF6, followed by activation of IKK and NF-κB, and the subsequent production or secretion of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β). The
MyD88-independent pathway also involves the secretion of pro-inflammatory cytokines through activation of TRAF6 by TRAM/TRIF. SFFA, Saturated free-fatty acid;
TLR, Toll-like receptor; MD-2, myeloid differentiation protein-2; TIR, Toll/interleukin-1 receptor; TRIF, TIR-domain-containing adapter-inducing interferon-β; TRAM,
TRIF-related adapter molecule; TRAF, tumor necrosis factor receptor-associated factor; IRAK, interleukin-1 receptor-associated kinase; TAK, transforming growth
factor β activated kinase; IKK, inhibitory kappa B alpha kinase; NF-κB, nuclear factor-kappa B; Ub, ubiquitin.

to early development of atherosclerotic processes in the aorta of
LDLr−/− mice (Mullick et al., 2008), while the downregulation
of TLR2 protected against atherosclerosis in LDLr−/− mice
(Mullick et al., 2005). Others have also shown similar effects of
TLR2-deficiency in apoE−/− mice (Liu et al., 2008; Madan and
Amar, 2008). Reduced TLR4 expression and function protected
against insulin resistance in a mouse model of systemic lipid
infusion (Shi et al., 2006), demonstrating a role for TLRs in
lipotoxic disorders (Bashir et al., 2016; Shen et al., 2018). Flier
and colleagues also found that female C57BL/6 mice lacking
TLR4 and fed a high fat diet developed increased obesity, but are
partially protected from insulin resistance through a mechanism
involving reduced inflammatory gene expression (including IL-6)
(Shi et al., 2006).

T2 diabetic mice with mutated TLR4 prevented endothelial
cell dysfunction, hyperglycemia and hypertension when
compared with wild-type. These effects were largely due to
suppression of oxidative stress signaling molecules nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase 1 and 4
(Liang et al., 2013). Furthermore, mice lacking either TLR4
or its downstream adapter protein MyD88 are protected
against atherosclerosis (Bjorkbacka et al., 2004; Michelsen
et al., 2004; Ding et al., 2012). In agreement, humans with

TLR4 mutations, which lead to reduced receptor signaling and
depressed inflammatory response, are also less susceptible to
atherosclerosis (Arbour et al., 2000; Kiechl et al., 2002; Lin
et al., 2012). Schwartz’s group (Kim et al., 2007) also found that
thoracic aortic samples from TLR4 knockout mice (TLR4−/−)
fed a high-fat diet did not develop vascular inflammation or
insulin resistance.

TLR4 are also expressed in normal myocardium (Vaez et al.,
2016), suggesting that it may play a role in cardiac function.
Moreover, increased TLR4 expression has been reported in failing
myocardium (Frantz et al., 1999), and isolated cardiomyocytes
from humans and animal models of different cardiomyopathies
(Dange et al., 2014; Avlas et al., 2015; Liu et al., 2015), including
myocarditis (Timmers et al., 2008). These findings provide strong
hints that blocking TLR4 may be a promising cardioprotective
target in patients. Whether and how effective modulation of the
TLR4 pathway is as a therapeutic target is yet to be determined.

NF-κB Activation Signaling Pathways
Activated TLR4 and myeloid differentiation protein-2 (MD-
2) signals through both the MyD88-dependent and MyD88-
independent pathways (Figure 2; Lee et al., 2003; Gao et al.,
2017). The MyD88-dependent pathway is initially triggered by
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the recruitment of the TIR domain containing adaptor protein
(or TIRAP), an adaptor between the TIR domain of TLR4 and
MyD88 (Sakaguchi et al., 2011). This is followed by activation of
the interleukin-1 receptor-associated kinase (IRAK) 4 family of
protein kinases which induces IRAK1/2 phosphorylation and the
subsequent phosphorylation of TNF Receptor Associated Factor
6 (TRAF6) (Vilahur and Badimon, 2014).

However, with the MyD88-independent pathway, the TLR4
pathway is activated through a TIR-containing adapter molecule
1 (TRIF)-related adaptor molecule TRAM. This allows the
recruitment of TRIF and subsequent activation of TRAF6
(Figure 2). TRAF6, either directly, or via thylakoid arabidopsis
kinase (TAK) 1, stimulates the inhibitor of nuclear factor-
κB kinase (IKK) complex, which promotes phosphorylation of
the inhibitor of NF-κB (IkB). In the resting state of a cell,
IkB exists in a complex with NF-κB, which limits its spatial
localization to cytosol. Phosphorylated IkB is ubiquitinated,
dissociates from NF-κB, and is then subjected to proteasomal
degradation. Free NF-κB (p50/p65 heterodimer) translocate to
the nucleus and binds to κB sites in the promoter regions
of genes involved in the secretion of inflammatory cytokines
which includes TNF-α and IL-6 (Youssef-Elabd et al., 2012).
Furthermore, the p50/p65 heterodimer may undergo a series
of cellular protein modifications including phosphorylation,
acetylation, and methylation with implications for a finely-
tuned regulation of transcriptional activity of pro-inflammatory
cytokines. Moreover, NF-κB transcriptional activity may also
be regulated by secreted pro-inflammatory cytokines through a
positive and/or negative feedback mechanism depending on the
pathological state of the cell.

NF-κB-mediated cytokine release and inflammation may
also be augmented through adenosine triphosphate (ATP)
via purinergic signaling (Figure 1; Dosch et al., 2018; Lee
et al., 2018). In pathological conditions, ATP from cells pass
through hemichannels to activate purinergic receptors, leading
to an amplification of inflammation (Mezzaroma et al., 2011).
Moreover inhibition of the ATP receptor P2X7 prevented cardiac
dysfunction in a mouse model of acute myocardial infarction
(Mezzaroma et al., 2011) and LPS-primed naive rats (Yin
et al., 2017). P2X7 deficiency inhibited inflammasome activation
and reduced atherosclerosis in P2X7−/− mice (Stachon et al.,
2017). Therefore, activation of connexins and P2X7 receptors
(P2X7R) signaling pathways represent emerging targets that can
be explored in lipotoxic cardiomyopathies.

NF-κB and Cardiomyocyte Remodeling
The role of NF-κB as a key transcription factor critical for
regulation of cardiac inflammatory signaling pathways strongly
suggests its involvement in cardiac remodeling leading to
pathogenesis of heart failure (Zhou et al., 2009; Santos et al.,
2010; Schreiber et al., 2011). Previous reports have shown that
NF-κB is activated in the failing human heart (Wong et al., 1998;
Gupta and Sen, 2005; Kawamura et al., 2005). Further, in vitro
studies have also demonstrated that activation of NF-κB plays a
role in hypertrophic growth of primary rat neonatal ventricular
cardiomyocytes in response to angiotensin II, phenylephrine,
and endothelin-1 (Purcell et al., 2001). Recent studies have also

demonstrated that NF-κB plays a partial role in the depression
of the fast transient outward K current (Ito,f ) caused by chronic
β-adrenergic receptor stimulation in cultured neonatal rat
ventricular myocytes (Panama et al., 2011, 2016). In these studies
NF-κB effects were attributed to a downregulation of the pore-
forming (Kv4.3) and regulatory/auxiliary (KChIP2) subunits of
Ito,f (Panama et al., 2011). The functional consequence of NF-
κB modulation may be due to transmural changes in Ito,f in the
ventricles and possibly the atria. These effects further highlight an
emerging role for NF-κB as a substrate for cardiac dysfunction in
lipotoxicity.

In a study by Kawamura and others, the blockade of NF-κB
did not ameliorate myocardial inflammation, but significantly
improved cardiac function and survival in a transgenic mice
model with cardiac overexpression of TNF-α (Kawamura et al.,
2005). Recently, a similar mechanism has been proposed for
TRAF1, an inhibitory adapter of TLRs (Anto Michel et al.,
2018). It was found that downregulation of macrophage-resident
TRAF1 induced increased expression of inflammatory genes and
protected against metabolic dysfunction in mice. Therefore, it
is possible that activation of the non-canonical NF-κB /TRAF1
pathway (Choudhary et al., 2013), may at least, in part, explain
the effects of TNF-α described by Sunagawa’ group (Kawamura
et al., 2005).

The studies of Wolf and others also showed a convincing
correlation between higher TRAF1 expression, body mass index,
and fasting plasma lipid in patients with severe metabolic
syndrome (Anto Michel et al., 2018). Albeit interesting, the
implications of these findings on cardiac function were not
investigated. To reconcile existing knowledge of the relationship
between metabolic disorders, inflammation and heart failure, we
will need additional studies related to the spatial and temporal
effects of TRAF1, inflammatory responses and effects on cardiac
remodeling.

Nonetheless, we speculate that NF-κB activation may
contribute to cardiac dysfunction independent of macrophage-
related inflammation. Therefore, blockade of NF-κB leading
to cardiac electrical remodeling may be a novel therapeutic
strategy for cardiac diseases worth investigating. However, little
is known about the effects of NF-κB inhibition in patients with
metabolic disorders or any animal models of cardiac lipotoxicity
and metabolic disorders including T2D, insulin resistance, and
cardiac inflammation.

Saturated Free-Fatty Acid, NF-κB, and
Proinflammatory Cytokines
A major signaling pathway for SFFA-mediated inflammatory
response and cardiac electrical dysfunction may involve
the following steps: (1) infiltration of cardiac macrophages
into cardiomyocytes (2) increased functional expression and
activation of TLR; (3) activation of NF-κB; (4) altered secretion
of pro-inflammatory cytokines; and (4) ion channel remodeling
(Figure 3). Recently the significance of this pathway was
demonstrated in a LIPGENE cohort study (Cruz-Teno et al.,
2012), wherein NF-κB was found to regulate TNF-α release
during postprandial period (Lefebvre and Scheen, 1998). Because
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FIGURE 3 | Cartoon depiction illustrating potential saturated free-fatty acid mechanisms that may underlie arrhythmogenic events. High-fat diet induce elevations of
saturated free-fatty acids (SFFAs) leading to increased expression of proinflammatory cytokines in macrophages. Cardiac macrophages sense high concentrations of
SFFAs through the toll-like receptor 2 (TLR2) and/or toll-like receptor 4 (TLR4) which induces expression of inflammatory target genes including tumor necrosis factor
(TNF)-α and interleukin-6 (IL-6), by regulating the activities of nuclear factor-κB (NF-κB) (Youssef-Elabd et al., 2012). SFFAs also induce interleukin-1β secretion via
the NLRP3 inflammasome in macrophages, which is independent of the TLR4 pathway (Henao-Mejia et al., 2012). Hemichannels control the exchange of small
molecules including ATP (Willebrords et al., 2016). The released ATP binds to the cell-surface purinergic receptors P2X7R, and can control inflammation by
regulating the release of pro-inflammatory cytokines (including IL-1β) (Gicquel et al., 2017). There is a paucity of lipid studies involving the IL-6 signaling pathway, and
therefore the molecular mechanisms of IL-6 modulation of cardiac function is poorly understood. In cardiomyocytes, IL-6 mediates its effect through its classical
pathway. IL-6 binds to the glycoprotein 80 transmembrane IL-6 receptor (IL-6R) (Yamasaki et al., 1988), which leads to dimerization and activation of the signal
transducing protein of glycoprotein 130 (gp130) and its downstream effector signaling molecules Janus kinase (JAK) 2/4 (Ihle, 1995; Heinrich et al., 2003; Drucker
et al., 2010). We hypothesize that SFFA mediated cardiac electrical remodeling that increase vulnerability to arrythmias may occur through SFFAs/TLR/NF-kB-IL-6
mediated altered gene and protein expression of ion channel subunits, trafficking and/or gating defects. Distinguishing among these signaling pathways is likely to
provide mechanistic insights that will influence considerations of anti-cytokine therapy for the management of metabolic disorders and arrythmias. The black ?
indicates that whether or how activation of JAK2/4 leads to remodeling of ion channel molecular partners is poorly understood. The black? (associated with the
purple arrows), represents an unresolved role for IL-6 modulation of major cardiac ion channels (ICa, INa, IKr , and IKs) in lipotoxicity and pathogenesis of arrhythmias
including long QT syndrome (LQTS) and atrial fibrillation (AF).

the activation of this pathway may also depend on the amount
and type of dietary fat, the potential of this pathway as an
intervention strategy in overweight and obese patients with
cardiac dysfunction deserves further investigation.

The TNF-α signaling pathway and its role in cardiac ion
channel remodeling leading to cardiac dysfunction in animal
models has been extensively studied (London et al., 2003; Wang
et al., 2004; Hatada et al., 2006; Kawada et al., 2006; Petkova-
Kirova et al., 2006; Fernandez-Velasco et al., 2007; Grandy and
Fiset, 2009). However, the functional consequence of the relative
contribution of each one of the steps (SFFAs/TLR4/NF-κB)
involved in TNF-α production and its subsequent regulation of
cardiac function in relevant animal models of cardiac lipotoxicity
is poorly understood. In contrast, it is known that the stimulatory
effects of distinct SFFAs (lauric, palmitic and stearic acids)
cause increased IL-6 functional expression in macrophages via
TLR4 activation (Shi et al., 2006). Despite the role of IL-6 as a
cardiovascular risk indicator (Lazzerini et al., 2017a), its function

as modulator of cardiac electrical remodeling with implications
for the pathogenesis of arrythmias is only beginning to be
understood. In this review, we focus on the pathophysiology
of the IL-6 signaling pathway and how its modulation may
reveal crucial insights that will inform future lipid studies
(Table 1).

Molecular Mechanisms of Interleukin-6
Signaling
IL-6 is a pleiotropic cytokine that is involved in a variety of
biological effects that occur in cells of the immune system and
also cardiomyocytes in response to injury (Ancey et al., 2002;
Yang et al., 2004). IL-6 mediates its effects either through its
membrane-bound receptor, IL-6R alpha (α) subunit (classical
signaling) or the soluble receptor (sIL-6R) (Taga and Kishimoto,
1997; Fontes et al., 2015), in complex with the signal transduction
protein glycoprotein 130 (gp130) leading to the activation of the
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TABLE 1 | Correlation between IL-6, cardiac ion channel expression, and contractile function in arrhythmias.

IL-6 Cardiomyopathy Model Ion channel and cardiomyocyte
contractile function

Reference

↑ 1. LQTS,
2. Ventricular
arrythmias

Human NR Streitner et al., 2007; Lazzerini et al.,
2016, 2017b

1000 U/ml (5 min) NR Adult female guinea pig
ventricular myocytes

↓ICa, ?INa, ?IKr , ?IKs

↓contractility
↓ [Ca2+]i transient

Sugishita et al., 1999

400 pg/ml (1–3 h) NR Adult Rat (SD), ventricular
myocytes.

↔ Cardiac contraction Maass et al., 2002

10 ng/ml
(2–24 h)

NR Adult Rat (SD), ventricular
myocytes

Negative inotropy
↓ Cell shortening
↔ ICa, ?INa, ?IKr , ?IKs

↓SR Ca content
↓Phosphorylation of
Phospholamban
↓SR Ca uptake
↓ Postrest potentiation and caffeine
response

Yu et al., 2005

50 Units/ml
(6 h)

NR Rat neonatal (1–2 day old;
Wistar), cultured ventricular
myocytes

↓ SERCA mRNA Tanaka et al., 2004

10 ng/ml
(48 h)

NR Rat neonatal (1–2 day old),
cultured ventricular
myocytes

↓ SERCA2 mRNA
↓ SERCA2 protein

Villegas et al., 2000

20 ng/ml
(20–40 min)

NR Mice ventricular myocytes ↑ ICa,L, ?INa, ?IKr , ?IKs

↑ [Ca2+]i transient
↑ APD

Hagiwara et al., 2007

1000 U/ml
(30 min)

NR Chick embryo cultured
ventricular myocytes

Negative inotropy
↓Peak systolic [Ca2+]i
↓Cell contraction

Kinugawa et al., 1994

0.5–3000 ng/ml
(10–30 min)

NR Rat neonatal (2 day-old,
Lewis) cultured ventricular
myocytes

↔ Cell shortening Kumar et al., 1996

0.1–3 ng/ml (2–5 min) NR Hamster papillary muscle Negative inotropy Finkel et al., 1992, 1993

↑ 1. AF
2. Atrial flutter
3. Atrioventricular
nodal reentry
tachycardia

Human NR Conway et al., 2004; Marin et al., 2004;
Psychari et al., 2005; Boos et al., 2007;
Fujiki et al., 2007; Gedikli et al., 2007;
Ucar et al., 2007; Marcus et al., 2008,
2010; Chen et al., 2009; Henningsen
et al., 2009; Leftheriotis et al., 2009; Qu
et al., 2009; Cheng et al., 2012; Wu
et al., 2013; Aulin et al., 2015; Pudil
et al., 2016

0.1–3 ng/ml
(2–5 min)

NR Human pectinate muscle
(Atria)

NR Finkel et al., 1993

↑ AF Mice NR Ozcan et al., 2015

↑, increased; ↓, decreased;↔, no change; NR, not reported; SD, Sprague Dawley; WR, Wistar Rats.

janus kinase (JAK)-related signaling pathways (Akira et al., 1990,
1994; Naka et al., 1997; Taga and Kishimoto, 1997; Figure 3).

Interleukin-6 Signaling and Propensity
for Cardiac Arrhythmias
Cardiac arrhythmias are irregular variations from the normal
cardiac sinus rhythm due to conduction abnormalities, or

electrical impulses in the heart. It is well established that the
abnormal electrical activity that predispose to arrhythmias is
commonly due to dysfunction and/or structural disruption of the
electrical conduction system of the heart and can be classified
based on their pathogenesis. In particular, the underlying
molecular mechanisms of IL-6 in the pathogenesis of ventricular
and supraventricular arrhythmias are poorly understood. In
this review we highlight current reports of IL-6 involvement
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in the pathogenesis of cardiac dysfunctions associated with
increased vulnerability to fatal ventricular arrhythmias (long
QT syndrome or LQTS) (Schwartz et al., 2009; Beitland et al.,
2014) or increased morbidity (atrial fibrillation or AF) and
mortality (Table 1). Our hope is that studies that distinguish
between the molecular mechanisms of IL-6 contribution to
LQTS and AF may reveal important mechanistic insights
that will inform targeted therapeutic interventions that will
be beneficial to all patients and help improve quality of
life.

Interleukin-6 and Long QT Syndrome
Previous studies have shown that circulating IL-6 levels are
elevated in patients with autoimmune diseases (Adlan et al.,
2015; Lazzerini et al., 2015a,c, 2017a) and are associated
with the prolongation of corrected QT (QTc) or LQTS,
a serious condition which increases vulnerability to fatal
arrhythmias including Torsades de Pointes (TdP). These results
were obtained by accumulating data from patients with
myo/endocarditis (Ukena et al., 2011; Lazzerini et al., 2015b)
and systemic autoimmune diseases, particularly rheumatoid
arthritis (Lazzerini et al., 2014, 2017a; Adlan et al., 2015) and
connective tissue disease (Lazzerini et al., 2015c). There have
also been reports of an association between elevated serum IL-
6 concentrations and increased susceptibility to spontaneous
ventricular tachyarrhythmia in patients with coronary artery
disease (Streitner et al., 2007). IL-6R expression is also
upregulated in heart failure and therefore underscores an
additional therapeutic role of IL-6R blockers in lipotoxic
cardiomyopathies.

Interleukin-6 and Atrial Fibrillation
Altered IL-6 functional expression is also a common feature
of supraventricular arrythmias including AF (Marcus et al.,
2008; Pan et al., 2018), leading to higher risks of death
and cardiovascular events in AF patients (Aulin et al., 2015).
Moreover, increased IL-6 levels have been attributed to persistent
inflammation in atrial myocardium (Stein et al., 2008; Amdur
et al., 2016; Pan et al., 2018) and further supports the idea of
an important functional link to supraventricular arrhythmias.
Short-term (2 weeks) administration of the TLR4 agonist, LPS,
induced NF-κB activation, increased IL-6 concentration (in
plasma and right atrium), and increased vulnerability to AF
in a canine model of systemic inflammation. The intimate
structural relationship between SFFAs and LPS (Hwang et al.,
2016) would imply that similar mechanisms may underlie
vulnerability to arrhythmogenic events mediated by SFFAs. These
mechanisms warrant further analysis in cardiomyocytes and
animal models.

Similar to LPS, SFFA activation of TLR4 increases circulating
IL-6 levels in macrophages (Bosisio et al., 2002; Castelli et al.,
2015). Therefore, considering the idea of reported functional
expression of TLR4 in cardiomyocytes (Frantz et al., 1999;
Avlas et al., 2011; Zhao et al., 2016a; Chimenti et al., 2017;
Jiang and Qu, 2017; Jiang et al., 2018) and the notion that
cardiomyocytes secrete IL-6 (Ancey et al., 2002; Maass et al.,
2002), it will also be important to determine the temporal and

relative contribution of these distinct pathways to impaired
cardiac dysfunction mediated by the direct effects of SFFAs
on cardiac function (Haim et al., 2010; O’Connell et al., 2015;
Aromolaran et al., 2016). The data is likely to reveal new
targets that may be relevant to therapeutic responses in patients
with metabolic disorders. This can be easily advanced by lipid
studies in relevant animal and translational models of AF
progression.

The growing evidence of a critical link between inflammation
and arrhythmias provide strong initial clues as to the potential
effects of SFFAs on ion channels through inflammatory cytokine
signaling pathways leading to altered APD and QTc interval.
Therefore, it would be interesting to delineate the functional
interplay among individual steps in the SFFAs/TLR4/NF-
κB/cytokine pathway leading to ion channel remodeling.

Ion Channels and Cardiomyocyte
Electrical Activity
The electrical activity of the human heart is controlled
by the coordinated action of ion channels localized to
distinct compartments (surface sarcolemma, t-tubular system,
intercalated disk), within the myocardium. The temporal and
biophysical properties of individual ionic channels allow the
exchange of ions between distinct compartments and are
responsible for generation of an AP in individual cardiomyocytes.
The normal cardiac AP is defined by 5 distinct phases, namely:
phase 0 or phase of rapid depolarization, due to a large inward
Na current, INa followed by currents due to voltage-gated
L-type Ca (ICa,L) and the sodium-calcium exchanger (INCX)
channels (Bers and Despa, 2009); phase 1 or phase of early
repolarization controlled by the transient outward K current, Ito;
phase 2 or plateau phase accomplished by a balance between the
depolarizing Ca current (ICa,L) and the repolarizing rapidly (IKr)
and slowly (IKs) activating component of the delayed rectifier K
currents. The atria specific ultra-rapidly (IKur) activating delayed
rectifier K current controls repolarization (Tian et al., 2006) and
underlies the triangular signature of the atrial AP (Ford et al.,
2013); phase 3 (or phase of final repolarization) represents the
inactivation of ICa,L and is therefore predominantly regulated
by the delayed rectifier K currents and the inwardly rectifying
K current (IK1) (Varro et al., 1993). While extensive reviews
about the pathophysiology of major cardiac ionic channels have
recently been published (Aromolaran and Boutjdir, 2017; Dan
and Dobrev, 2018; Heijman et al., 2018; Rahm et al., 2018),
the importance of ion channel function to normal cardiac
rhythm is exemplified in a variety of inherited and acquired
pathological conditions. For example, in LQTS decreases in
outward currents (Aromolaran et al., 2014; Puckerin et al.,
2016) or increases in depolarizing mechanisms (Wehrens et al.,
2003; Fredj et al., 2006; Cheng et al., 2011; Hsiao et al.,
2013), predispose to fatal ventricular arrhythmias (such as
TdP) (El-Sherif et al., 2017; Muser et al., 2018; Wit, 2018)
and sudden cardiac death (Anderson et al., 2019; Liu et al.,
2018).

In the atria, remodeled biophysical properties of ionic
channels (Aromolaran et al., 2016) serve as substrates
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for AF, including accelerated repolarization, spatial and
temporal AP instabilities, atrial refractoriness, early and
delayed afterdepolarizations, ectopic firing, and single/multiple
wave re-entrant mechanisms (Nattel and Dobrev, 2017; Dan
and Dobrev, 2018; Heijman et al., 2018). Collectively these
observations reveal potential targets for modulation by SFFA
pathways.

Our recently published data suggest that IL-6 may be a
critical inflammatory signaling molecule contributing to TdP
in patients with rheumatoid arthritis (Lazzerini et al., 2017b).
This finding identifies IL-6 as a potential therapeutic target
in arrhythmias. In the following sections we highlight the
modulation by IL-6 of INa, ICa,L, and IK currents critically
involved in cardiac instabilities, that ultimately predisposes to
lipotoxic cardiomyopathies.

MOLECULAR REMODELING OF
CARDIAC ION CHANNELS BY
INTERLEUKIN-6

Depolarizing Na Current (INa)
The modulation of INa by IL-6 in cardiomyocytes is poorly
understood; however, there is evidence for modulation of INa
by other pro-inflammatory cytokines in other cell systems. The
pro-inflammatory cytokine IL-2, which is also associated with
arrhythmias, (Rizos et al., 2007) has been shown to increase the
transcriptional levels of SCN3B leading to increased peak INa
density in Hela and HL-1 cells (Zhao et al., 2016b) and suggests
a role for cytokine modulation of INa functional expression
in lipotoxicity. From the perspective of cardiac electrical
remodeling, cytokine-mediated increases in INa density will be
expected to delay cardiac repolarization leading to prolongation
of the QT interval. Future IL-6 studies in native atrial and
ventricular cardiomyocytes and animal models of lipotoxicity are
critical for fundamental insights into the functional consequence
of IL-6 modulation of Na current in metabolic disease-related
arrhythmias.

L-Type Ca Channels (ICa,L)
Unlike INa, IL-6 has been shown to regulate ICa,L, density.
Hagiwara and others (Hagiwara et al., 2007) demonstrated
that acute (30 min) exposure to IL-6 and sIL-6R significantly
increased ICa,L density in mouse ventricular myocytes in line with
a role for IL-6 in LQTS. In guinea pig ventricular myocytes acute
(5 min) exposure to IL-6 had no effect on ICa,L, but reversed the
increased ICa,L due to sympathetic stimulation with isoproterenol
(Sugishita et al., 1999). By contrast, chronic (2 h) exposure to IL-6
alone had no effect on ICa,L in adult rat ventricular myocytes (Yu
et al., 2005) and therefore suggests temporal differences in IL-6
effects on channel function.

The Cav1.2 channel subunit mediates ICa,L current in
both the atria and ventricles (Mancarella et al., 2008).
Targeted deletion in mice has also demonstrated a functional
role of the Cav1.3 isoform in the pathogenesis of AF
(Zhang et al., 2005; Mancarella et al., 2008; Lu et al., 2015;

Sun et al., 2017). Therefore, it will be interesting to investigate
the differential regulation of Cav1.2/Cav1.3 by IL-6. With
expression of Cav1.3 only in the atria we may be able to
identify new pathways that could be targeted for arrhythmias in
patients with metabolic disorders, without off-target ventricular
effects.

In agreement with this notion, we have recently found that
Cav1.3 expression is significantly downregulated in the atria of
high-fat diet induced obese guinea pigs, while Cav1.2 expression
remained essentially unchanged (Ademuyiwa S Aromolaran,
personal communication, Biophysical meeting 2018, San Diego,
CA, United States). Although the role of Cav1.3 in inflammation
remains to be defined, the data suggests that Cav1.3 expression
and regulation could be participating in arrhythmogenic
responses to lipotoxicity.

IL-6 studies in mice ventricular myocytes showed that acute
exposure (10 min) to IL-6 and sIL-6R significantly increased
intracellular Ca transients (Hagiwara et al., 2007). This suggests
a role for IL-6 in mediating arrhythmias through modulation of
Ca-handling proteins. Yu et al. (2005) showed that IL-6 induced
negative inotropy, decreased postrest potentiation, as well as
responsiveness to the ryanodine receptor (RyR) agonist caffeine
in adult rat ventricular myocytes. Similarly, acute exposure to IL-
6 produced decreased peak systolic intracellular Ca concentration
([Ca2+]i) and cell shortening leading to a negative ionotropic
effect in guinea pig ventricular myocytes despite a lack of
effect on ICa,L (Sugishita et al., 1999). Human recombinant IL-
6 significantly decreased peak systolic [Ca2+]i and the amplitude
of cell contraction in cultured chick embryo ventricular myocytes
(Kinugawa et al., 1994).

IL-6 may also directly regulate the activity of the sarcoplasmic
reticulum Ca-ATPase (SERCA2). Previous reports showed
that chronic (48 h) exposure of IL-6 caused a significant
downregulation of SERCA2 gene and protein expression levels
in cultured neonatal rat ventricular myocytes (Villegas et al.,
2000), while a 6 h exposure to IL-6 significantly decreased
SERCA2 expression in cultured rat ventricular myocytes (Tanaka
et al., 2004), consistent with impaired sarcoplasmic reticular (SR)
function and propensity for arrhythmias.

The regulation by IL-6 of intracellular Ca dynamics through
modulation of RyRs or the inositol triphosphate receptor (IP3R)
is currently unknown. In the context of metabolic diseases,
altered IL-6 mechanisms that decrease ICa,L density, reduce
intracellular Ca transients and impair cardiac contractility are
also likely to promote supraventricular arrhythmias (Mancarella
et al., 2008). To our knowledge, the underlying molecular
mechanisms of IL-6 modulation of Cav1.3 and Ca handling
proteins in atrial myocytes are poorly understood and therefore
warrants future studies. Nevertheless, the outcome of IL-6 studies
in ventricular myocytes demonstrate that IL-6-mediated altered
Ca handling proteins and subsequent inhibition of the SR
function may contribute to impaired cardiac electrical activities
in lipotoxicity.

The Delayed Rectifier K Current (IK)
Cardiac delayed rectifier K current, (or IK)
contributes prominently to normal repolarization
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(Sanguinetti and Jurkiewicz, 1990). The molecular partners
of IK , namely: IKr and IKs determine spatial and temporal
activation and modulation of repolarization by IK (Sanguinetti
and Jurkiewicz, 1991; Aromolaran et al., 2014). Thus, inactivation
and/or downregulation of IK , either due to congenital mutations
(Aromolaran et al., 2014; Puckerin et al., 2016), or secondary
to pathological disease states including diabetes (Eranti et al.,
2016), obesity (Papaioannou et al., 2003), or drugs (Shenthar
et al., 2017; Grouthier et al., 2018), will delay repolarization
leading to LQTS. Recently, we demonstrated that both gating
and trafficking defects underlie pathological decreases in IKr
and IKs in heart (Aromolaran et al., 2014; Puckerin et al.,
2016).

A previous report by Wang et al. (2004), showed TNF-
α mediated depression of the human ether-à-go-go-related
gene (or hERG) current density in human embryonic kidney
(HEK293) cells. Further, TNF-α significantly reduced IKr
density and prolonged APD in canine ventricular myocytes,
primarily though changes in reactive oxygen species (Wang
et al., 2004). The effects of IL-6 on IKr and IKs currents
as targets in its reported link to LQTS (Lazzerini et al.,
2017a) is currently unknown. This is further complicated
by a lack of clarity about the role of IK in AF. We
have previously reported that the SFFA PA increased the
densities of IKr and IKs currents in HEK293 cells and
shortened atrial APD measured in adult guinea pig myocytes,
in line with a role for IK in AF associated with metabolic
disorders (Aromolaran et al., 2016). Therefore, considering
the idea that SFFAs activate macrophages and promote
increased expression of IL-6 (Shi et al., 2006; Figure), our
expectation is that IK may also be an important target for IL-
6 modulation in AF pathogenesis in patients with metabolic
disorders.

FUTURE DIRECTIONS

Metabolic disorders and cardiac arrhythmias are interlinked
epidemics with significant implications for public health.
One explanation for the lack of progress may be due to
incomplete understanding of cardiac electrical remodeling
initiated through systemic and/or localized effects of SFFAs.
Delineating unappreciated SFFA pathways could represent the
basis for gaining new molecular mechanistic insights with
implications for prevention of arrhythmias. This notion could
be highlighted by the paucity of lipid studies that incorporate
modulation by cytokines of cardiac ion channels, notably
IK (IKr and IKs) a prominent repolarizing mechanism in
heart.

We have focused on the pro/anti-inflammatory cytokine IL-
6 as an important target for future investigation. This premise
is based on our recent finding that pathological alterations in
IL-6 may underlie arrhythmic risk in TdP patients (Lazzerini
et al., 2017a). This study suggests the potential of anti-cytokine
therapy as a novel treatment option. If proven, this may
represent the missing link that we need to develop safer
and more effective interventions, especially in TdP patients

unresponsive to conventional treatment. The implication of
altered IL-6/IL-6R signaling for arrhythmias in patients with
metabolic disorders is currently not clear. In this context it will
be interesting to: (1) know the differential expression of IL-6R
in cardiomyocytes and in different subtypes of macrophages (2)
investigate sources, spatial and temporal IL-6 concentrations, (3)
distinguish between modifying enzymes and signaling pathways
in specific cardiac regions, (4) understand the role of resident
cardiac macrophages in the interplay between different cells
in adipose tissues and how this may be affected in metabolic
disorders.

Furthermore, the implications of production of distinct
FFAs (SFFAs, monounsaturated FFAs, polyunsaturated FFAs)
and cytokines (IL-6, TNF-α, IL-1β), from different sites
(adipose tissue depot, macrophages, fibroblasts, lymphocytes,
neutrophils, and cardiomyocytes), would be an interesting area of
investigation. These pathways could be defined in animal models
of inflammation and lipotoxicity, without confounding co-
morbidities. Moreover, studies of individual disease phenotypes
will allow us to define the specificity and linkage between
multiple signaling pathways. This is especially important
for precision or personalized medicine and development of
targeted therapeutics for distinct arrhythmogenic mechanisms in
patients.

It is noteworthy that the translational impact of mechanisms
defined in animal models (mice, rats, guinea pig, rabbits,
sheep), may be limited by differences in genetic background.
Therefore, with more studies utilizing state-of-the art approaches,
including human induced pluripotent stem (hiPSC)-derived
cells (cardiomyocytes, macrophages, fibroblasts) and CRISPR-
Cas9, to assess cardiac mechanisms of lipotoxicity, we may
be able to better understand unique phenotypes in patients
and improve our efforts to develop basic patient-specific
interventions.

CONCLUSION

Studies have revealed that there is a pathological link between
dietary SFFAs and cardiac dysfunction. The increasing epidemic
of metabolic disorders (dyslipidemia, obesity, T2D, insulin
resistance, hyperglycemia), suggests that vulnerability to fatal
arrhythmias and sudden cardiac death will remain high
in patients. Despite advances in prognostic approaches
and therapeutics, it is becoming increasingly clear that
significant adjustments of existing approaches are needed.
Pro-inflammatory signaling pathways are beginning to emerge
as substrates for sustained lipotoxic events. While pathological
inflammatory substrates may impair the ability of the heart
to compensate for lipotoxic cardiomyopathies, the complexity
of individual and synergistic effects of pro-inflammatory
cells/cardiomyocytes limits a holistic understanding of
this coupling. Importantly, the interplay with mechanisms
(ion channel modulation) that lead to electrophysiological
remodeling that support sustained and fatal arrhythmias
are poorly understood. Therefore, if we understand the
basic mechanisms involved, we may be able to prevent the
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abnormalities that eventually predispose patients to heart failure.
With the increasing advent of promising tools (Garg et al., 2018;
Heijman et al., 2018), we are better equipped to identify novel
therapeutic sites.
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