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Proteomic Profiling Reveals the
Ambivalent Character of the
Mesenchymal Stem Cell Secretome:
Assessing the Effect of Preconditioned
Media on Isolated Human Islets
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Abstract
Previous studies in rodents have indicated that function and survival of transplanted islets can be substantially improved by
mesenchymal stem cells (MSC). The few human islet studies to date have confirmed these findings but have not determined
whether physical contact between MSC and islets is required or whether the benefit to islets results from MSC-secreted
proteins. This study aimed to investigate the protective capacity of MSC-preconditioned media for human islets. MSC were
cultured for 2 or 5 days in normoxia or hypoxia before harvesting the cell-depleted media for human islet culture in normoxia or
hypoxia for 6–8 or 3–4 days, respectively. To characterize MSC-preconditioned media, proteomic secretome profiling was
performed to identify angiogenesis- and inflammation-related proteins. A protective effect of MSC-preconditioned media on
survival and in vitro function of hypoxic human islets was observed irrespective of the atmosphere used for MSC preconditioning.
Islet morphology changed markedly when media from hypoxic MSC were used for culture. However, PDX-1 and insulin gene
expression did not confirm a change in the genetic phenotype of these islets. Proteomic profiling of preconditioned media
revealed the heterogenicity of the secretome comprising angiogenic and antiapoptotic as well as angiostatic or proinflammatory
mediators released at an identical pattern regardless whether MSC had been cultured in normoxic or hypoxic atmosphere.
These findings do not allow a clear discrimination between normoxia and hypoxia as stimulus for protective MSC capabilities but
indicate an ambivalent character of the MSC angiogenesis- and inflammation-related secretome. Nevertheless, culture of human
islets in acellular MSC-preconditioned media resulted in improved morphological and functional islet integrity suggesting a
disbalance in favor of protective factors. Further approaches should aim to eliminate potentially detrimental factors to enable the
production of advanced clinical grade islet culture media with higher protective qualities.
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Introduction

Human islet allotransplantation has been established as a

successful and safe procedure for reversing life-threatening

hypoglycemia unawareness and restoring normoglycemia in

selected patients with type 1 diabetes mellitus1. Nevertheless,

72% of islet recipients still require two or more procedures to

achieve these outcomes2. This low efficiency can be explained

by a combination of multiple factors inducing a substantial loss

of isolated islets during pretransplant culture and during

engraftment, due to the lack of extracellular matrix3, hypoxic

conditions4,5, and the shortage of essential nutrients6,7.
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Mesenchymal stem cells (MSC) are undifferentiated mul-

tipotent stromal cells that can be found in any type of adult

organs to maintain local tissue homeostasis and initiate tis-

sue repair after damage8. Numerous studies have suggested

that MSC have immunomodulatory9,10, regenerative11,12,

anti-inflammatory13–15, antiapoptotic16–19, and angiogenic

properties19,20 when cocultured or transplanted with rodent

islets. These protective properties improve engraftment of

nonhuman primate islets following transplantation into the

liver21 and also increase graft survival when rodent islets are

placed into the less well-vascularized subcutaneous site that

is usually characterized by poor graft function22. Despite

these promising findings in rodents and primates, only 2 out

of 108 clinical trials involving islet transplantation as treat-

ment for patients with type 1 diabetes are currently regis-

tered to use MSC as supportive co-grafts to enhance human

islet graft function23. The cautious implementation of MSC

in the clinical islet transplantation setting can be partially

explained by concerns about the potential risk of

chromosomal aberrations and spontaneous transformation

in long-term cultured human MSC24,25. Nevertheless, as

demonstrated by previous studies in mice, pretransplant

coculture with MSC is an alternative way of improving islet

graft function without having to simultaneously implant

MSC into the recipient26. It is unclear, however, whether the

protective effects of MSC result from their physical contact

to the islets or whether secretory products from the MSC are

mainly responsible. Previous comparative studies in rodents

are inconclusive and do not clarify the most efficient mode

for MSC-derived protection of islets13,17,18,27,28. Among the

very few coculture studies that have used human islets, only

one out of seven performed indirect culture in transwell

plates29, while the other ones used direct coculture with

physical contact to MSC30–35.

The anti-inflammatory, antiapoptotic, and regenerative

properties of MSC may not only benefit transplanted islets

but may also be protective for islets during pretransplant

culture and during shipment from the islet processing facility

to distant islet transplantation sites36. The aim of our study

therefore was to test the hypothesis that the survival and

function of cultured islets can be improved by cell-free

MSC-preconditioned culture media. The study compared the

efficiency of different protocols for preconditioning to pro-

tect the integrity of isolated human islets exposed to hypoxia.

Materials and Methods

MSC Isolation and Culture

Human MSC were isolated by the Celution system (Cytori

Therapeutics, San Diego, CA, USA) from lipoaspirates of

female donors after signing informed consent. Processing

and use of the tissue was approved by the local ethical com-

mittee (2014/838).

Three batches of adipose tissue–derived MSC were used

for this study. The cells were seeded at a density of 3,000

cells/cm2 and expanded using minimum essential medium-

alpha (MEMa) with a CMRL 1066-identical glucose con-

centration of 5.5 mmol/l and supplemented with 2 mmol/l

Glutamax, 10% bovine serum (Gibco, Thermo Fisher

Scientific, Oslo, Norway), 20 mmol/l 4-(2-hydroxyethyl)-

1-piperazineethanesulfonic acid (Gibco), and 50 mg/ml gen-

tamycin (Braun, Frederiksberg, Denmark). Culture medium

was changed every two to three days until 70%–80% of

confluence was obtained.

After harvesting, MSC were stored in liquid nitrogen at

�196�C until further use. Thawed MSC underwent one to

two passages in normal atmosphere (21% O2, 5% CO2, 95%
humidity) for cell attachment. Afterward, culture flasks were

divided and incubated in normoxia for 2 or 5 days (21% O2–

2d MEM, 21% O2–5d MEM) or in severe hypoxia (1% O2)

for 2 days only (1% O2–2d MEM). During the 2- and 5-day

culture periods for media preconditioning, medium change

was not performed. After culture, media were collected, spun

at 5,000� g for 10 min, and the supernatant stored at�80�C
until used for islet culture. Nonconditioned supplemented

MEMa served as native control medium. In the first series

of experiments (normoxic islet culture atmosphere), human

islets were suspended in native MEM, 1% O2–2d MEM, and

21% O2–2d MEM. In addition, nonconditioned CMRL 1066,

supplemented as described for MEM, was used as gold stan-

dard. In the second series (hypoxic islet culture atmosphere),

human islets were incubated in native MEM, 1% O2–2d

MEM, 21% O2–2d MEM, and 21% O2–5d MEM. The

experimental design of the study is shown in Fig. 1.

MSC Characterization

Characterization of MSC was performed before further

experiments were initiated following the position statement

of the International Society for Cellular Therapy37. Cell

counting and viability assessment were performed in a

hemocytometer by means of a dye exclusion test using

0.4% Trypan-blue solution (Gibco). Expression of key cell

surface markers was analyzed using flow cytometry with a

BD FACS Canto II (Becton Dickinson, San Diego, CA,

USA) and BD Stemflow Human MSC Analysis Kit (BD

Biosciences, San Jose, CA, USA) according to manufactur-

er’s instructions. Briefly, 5 � 105 cells/100 ml were incu-

bated with the conjugated monoclonal or isotype matched

IgG control antibodies, then analyzed by FACS to measure

the levels of positive (CD105 PerCP-Cy™5.5, CD73 allo-

phycocyanin, and CD90 fluorescein isothiocyanate) or neg-

ative (CD45, CD34, CD11b, CD19, and HLA-DR PE)

markers of MSC.

Differentiation capacity was evaluated using StemPro

chondrogenic, osteogenic, and adipogenic differentiation kits

(Gibco) following the manufacturer’s instructions. Briefly,

1 � 104 cells/cm2 were seeded into 12-well tissue culture

plates (Costar, Corning, NY, USA) and incubated for 14 days

in tissue-specific medium changed every 3–4 days. While

control cells were cultured for 14 days in tissue-specific
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basal media, cells treated for differentiation were cultured for

the same period of time in tissue-specific media supplemented

with corresponding stimulation factors. At the end of the dif-

ferentiation period, all cultures were fixed with 4% formalde-

hyde (Chemi-teknik, Oslo, Norway) before differentiated

cells were stained with Alcian Blue, Alizarin Red S, and Oil

Red O (Sigma-Aldrich, St. Louis, MO, USA) to detect gluco-

saminoglycan deposition, punctate mineral deposition, and

lipid droplet formation specific for chondrocytes, osteocytes,

and adipocytes, respectively.

Islet Isolation and Culture

Nineteen human donor pancreases were retrieved with

appropriate consent and ethical approval by the institutional

review board. After a mean cold ischemia time of 6 h (range

4–8), islets were isolated and purified as previously

described3. Aliquots of 300 islet equivalents (IEQ) were

incubated in 24-well plates (Greiner Bio-One, Stonehouse,

UK) and suspended in 300 ml of nonconditioned or precon-

ditioned MEMa. In the first series of experiments (normoxic

islet culture atmosphere, n ¼ 6), human islets were sus-

pended in native MEM, 1% O2–2d MEM, and 21% O2–2d

MEM. Nonconditioned CMRL 1066, supplemented as

described for MEM, was used as gold standard. In the second

series (hypoxic islet culture atmosphere, n¼ 8), human islets

were incubated in native MEM, 1% O2–2d MEM, 21%

O2–2d MEM, and 21% O2–5d MEM. The experimental

design of the study is shown in Fig. 1.

Islet Characterization

Before and after islet culture, islet number was quantified as

islet particle number (IN) and IEQ as previously described in

detail38. Islet yield (%) was calculated by normalizing IEQ,

as counted post-culture, to pre-culture yield of IEQ. Islet

morphological integrity was determined as fragmentation

index by calculating the ratio of IN over IEQ. Islet viability

was assessed utilizing 0.67 mmol/l fluorescein diacetate

(Sigma-Aldrich, UK) and 4.0 mmol/l propidium iodide

(Sigma-Aldrich) for staining of viable and dead cells, respec-

tively39. Islet overall survival was utilized to consider the

recovery of viable cells only. For this variable, normalized

post-culture islet yield was multiplied by the proportion of

viable cells. In vitro function of 20 hand-picked islets of

similar size (150–200 mm) was assessed in duplicate during

static glucose incubation. Islets were seeded on 0.8 mm pore

size filter inserts, transferred into 24-well plates, and sequen-

tially incubated for 45 min in 1 ml Krebs-Ringer buffer

supplemented with 2.0 mmol/l glucose followed by 45 min

at 20 mmol/l followed by a second period of 45 min at

2 mmol/l glucose. Afterward, islets were recovered and soni-

fied in distilled water prior to insulin extraction in acid etha-

nol and for subsequent determination of DNA content.

Intracellular and secreted insulin was determined utilizing

an enzyme immunoassay for human insulin (Mercodia,

Uppsala, Sweden) and normalized to islet DNA content mea-

sured by the Pico Green assay (Life Technologies, Paisley,

UK). The glucose stimulation index was calculated by divid-

ing the insulin release at 20 mmol/l glucose by the mean of

the two basal periods.

Quantitative Real-time Polymerase Chain Reaction

Gene expression of cultured islets (n ¼ 5) was measured

using Taqman-based quantitative real-time polymerase

chain reaction (qRT-PCR). Briefly, total RNA was extracted

from 100 cultured handpicked islets of similar size (150–

200 mm) using the RNeasy Micro kit (Qiagen, Hilden,

Germany) before being run in triplicate for 35 cycles

on a QuantStudio 7 (Applied Biosystems, Carlsbad, CA,

USA) using the CellsDirect One-Step qRT-PCR kit (Invi-

trogen, Carlsbad, CA, USA). Duplex reactions were per-

formed using TaqMan assays specific for the target genes

BCL-2 associated X protein (BAX, Hs00180269_m1), B-

cell lymphoma-2 (BCL-2, Hs00608023_m1), insulin

(Hs00355773_m1), and pancreatic and duodenal

homeobox-1 (PDX-1, Hs00236830_m1) normalized to 18

S ribosomal RNA (rRNA) (18 S rRNA, Hs99999901_s1).

All primers were provided by Applied Biosystems (War-

rington, UK). Quantitative values were obtained using the

threshold cycle number and the x-fold change in expression

using the DDCT method40.

Fig. 1. Experimental study design of human islet culture in MEMa
preconditioned with MSC isolated from human adipose tissue. MSC
were suspended in supplemented MEMa and cultured for 2 or 5
days in normoxia at 21% O2 or for 2 days in severe hypoxia at 1%
O2 prior to medium collection. In the first and second trial, human
islets were suspended in conditioned or nonconditioned MEMa and
cultured for 6 to 8 days in normoxia (n ¼ 6) or for 3 to 4 days in
hypoxia at 2% O2 (n¼ 8), respectively, prior to islet assessment and
characterization. In the normoxia trial, CMRL 1066 was additionally
used as gold standard. MEMa: minimum essential medium-alpha;
MSC: mesenchymal stem cells.
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Proteomic Secretome Profiling

Three batches of freshly thawed MEM preconditioned at

either 21% (21% O2–2d MEM) or 1% O2 (1% O2–2d MEM)

were analyzed in duplicate utilizing a proteome profiler

array kit for human angiogenesis (R&D Systems, Abingdon,

UK) measuring the relative production of 55 human

angiogenesis-related factors by chemiluminescence. The

expression of each detectable protein was measured by den-

sitometric analysis using ImageJ (National Institutes of

Health, Bethesda, ML, USA) and normalized to its presence

in native MEMa.

Statistical Analysis

Statistical analysis was performed utilizing Prism 7.0d for

MacIntosh (GraphPad, San Diego, CA, USA). Data anal-

ysis was carried out by the nonparametric Friedman test

followed by Dunn’s test for multiple comparisons or by

the Wilcoxon test. Differences were considered

significant at P less than 0.05. P-values more than 0.05

are termed nonsignificant. Results are expressed as mean

+ standard error and are normalized to islet variables

determined pre-culture if appropriate.

Results

MSC Characterization

The percentage of viable cells was >95% in all samples

assessed. After culture, the surface marker expression of the

cells fulfilled the criteria for MSC according to the guide-

lines of the International Society for Cellular Therapy37. As

shown in Table 1, MSC-specific surface markers such as

CD105, CD90, or CD73 were highly expressed while

expression of negative markers such as CD45, CD34,

CD19, CD11b, or HLA-DR was virtually absent.

After 14 days of specific stimulation, MSC of all batches

demonstrated the ability to differentiate into chondrocytes

(Fig. 2A, B), osteocytes (Fig. 2C, D), and adipocytes (Fig. 2E, F).

Table 1. Immunophenotyping of Human MSC After 2 Days of Culture (n ¼ 3).

CD105 (%) CD90 (%) CD73 (%) CD45 (%) CD34 (%) CD19 (%) CD11b (%) HLA-DR

94.8 + 3.4 99.9 + 0.04 99.9 + 0.04 0.6 + 0.13 2.9 + 0.6 1.2 + 0.6 2.3 + 1.6 1.0 + 0.4

MSC: mesenchymal stem cells.

Fig. 2. Trilineage differentiation potential of human MSC isolated from human adipose tissue. MSC were stimulated over a culture period of
14 days using tissue-specific media supplemented with corresponding stimulation factors for chondrogenesis (B), osteogenesis (D), or
adipogenesis (F). Control MSC were cultured in tissue-specific basal media (A, C, E). Differentiation of MSC was detected using staining with
(A, B) Alcian Blue for glucosaminoglycan deposition, (C, D) Alizarin Red S for punctate mineral deposition, and (E, F) Oil Red O for lipid
droplet formation specific for chondrocytes, osteocytes, and adipocytes, respectively. Actual size of the tissue is shown by scale bars.
Pictures are representative for all batches assessed. MSC: mesenchymal stem cells.
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Islet Characterization after Normoxic Islet Culture

The major characteristics of human islets cultured in native

CMRL 1066, native MEM, or MEM preconditioned at either

21% (21% O2–2d MEM) or 1% O2 (1% O2–2d MEM) are

shown in Table 2. Islet yield was not significantly different

after 6–8 days of normoxic islet culture in native CMRL and

native MEM or 21% O2–2d MEM. When islets were cul-

tured in 1% O2–2d MEM, significantly improved recovery

was obtained compared with native MEM. This corre-

sponded with the lowest fragmentation index among all

experimental groups. The improved preservation of islet

integrity by means of preconditioned MEM is reflected by

a significantly higher viability after culture in 1% O2–2d

MEM and 21% O2–2d MEM. Calculation of overall survival

demonstrated highest survival rates when islets were cul-

tured in 1% O2–2d MEM.

Overall survival inversely correlated with gene expres-

sion of proapoptotic BAX and antiapoptotic BCL-2 calcu-

lated as BAX-over-BCL-2 ratio (Fig. 3A). While no

difference was found between CMRL and native MEM, a

substantial reduction was observed in islets cultured in 1%
O2–2d MEM (P < 0.01) or 21% O2–2d MEM (P ¼ 0.086).

The in vitro function of islets varied only slightly

between different media except in islets cultured in 1%
O2–2d MEM, which demonstrated a marginal insulin

response toward glucose (Fig. 3B). This treatment was also

associated with a significantly reduced stimulation index

corresponding to the significantly highest insulin content as

shown in Table 2. Vice versa, islets cultured in CMRL were

characterized by the highest stimulation index and the low-

est insulin content.

Despite these findings, microscopical assessment

revealed a distinct change of islet morphology after nor-

moxic islet culture in 1% O2–2d MEM. While control islets

cultured for 6–8 days in native MEM had an ovoid shape

(Fig. 4A), islets cultured for the same period of time in 1%
O2–2d MEM transformed into a spindle-like form, which

may indicate beginning of spreading (Fig. 4B). In contrast,

islets cultured for 6–8 days in 21% O2–2d MEM showed

only a marginal number of longitudinal flat extensions

(Fig. 4C). To clarify whether change of islet morphology

is associated with an alteration of the genetic phenotype,

mRNA expression of PDX-1 and insulin was analyzed by

qRT-PCR (n ¼ 5). As demonstrated in Fig. 4D, PDX-1 gene

expression of islets cultured in 1% O2–2d MEM was nearly

identical with expression of control islets cultured in native

MEM. Surprisingly, when islets were cultured in 21% O2–2d

MEM, a higher PDX-1 mRNA expression was measured. A

similar trend was observed for insulin gene expression with-

out reaching statistical significance (Fig. 4E).

Table 2. Islet Culture Outcome After 6–8 Days of Islet Culture in Normoxic Atmosphere (n ¼ 6).

Media IEQ yield (%) Fragmentation (IN/IEQ) Viability (%) Overall survival (%) Stimulation index Insulin (mU/ng DNA)

Native CMRL 39.5 + 14.5 1.71 + 0.26 76.9 + 7.7 27.0 + 6.4 1.27 + 0.05 107.9 + 23.4
Native MEMa 45.5 + 12.1 1.65 + 0.29 82.6 + 7.2 35.4 + 6.5 1.21 + 0.03 140.7 + 45.7
1% O2–2d MEM 60.2 + 16.6z 1.35 + 0.22z 89.9 + 7.7y 50.2 + 9.1y 1.12 + 0.02y 201.8 + 64.6z

21% O2–2d MEM 54.1 + 17.3 1.54 + 0.26 90.3 + 6.7y 45.9 + 11.3 1.16 + 0.02 172.6 + 60.9

1% O2–2d MEM: medium preconditioned by hypoxic MSC culture for 2 days; 21% O2–2d MEM: medium preconditioned by normoxic MSC culture for 2 days;
MSC: mesenchymal stem cells.
yP < 0.05, zP < 0.01 versus native MEMa.

Fig. 3. Human islet characterization after 6–8 days of normoxic
islet culture. (A) Postculture BAX and BCL-2 mRNA expression
calculated as BAX-over-BCL-2 ratio (n ¼ 5) after culture in native
CMRL 1066 (light grey bars), native MEMa (white), or MEMa pre-
conditioned for 2 days at 1% O2 (black) or 21% O2 (dark grey); **P
< 0.01 and P ¼ 0.086 versus native MEMa. (B) Glucose-stimulated
insulin release of 20 islets at 2 mmol/l (white bars), 20 mmol/l
(grey), and again 2 mmol/l of glucose was normalized to islet DNA
content (n ¼ 6); *P < 0.05, **P < 0.01 for 2 versus 20 mmol/l of
glucose. MEMa: minimum essential medium-alpha.
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Islet Characterization After Hypoxic Islet Culture

In the second trial (n ¼ 8), islets were cultured for 3–4 days

in hypoxia (2% O2) in order to estimate the protective

potency of MSC-preconditioned MEM. For these experi-

ments one additional aliquot of MSC was cultured for 5 days

at 21% O2 (21% O2–5d MEM) to increase the release of

potentially protective factors.

As shown in Table 3, islet yield after hypoxic islet culture

was significantly improved in MEM preconditioned at 1% or

21% O2 compared with native MEM. A negative effect was

observed when MEM preconditioning at 21% O2 had been

extended to 5 days (21% O2–5d MEM). This is consistent

with the increased fragmentation index of islets cultured in

21% O2–5d MEM, which was the highest among all experi-

mental groups. The detrimental effect of extended precondi-

tioning on islet morphology is also reflected by islet viability

that was identical compared with native MEM. No effect on

islet viability was noted comparing islets cultured in 1% O2–

2d MEM or 21% O2–2d MEM. In contrast to the first series of

experiments in normoxic islet culture atmosphere, alterations

of islet morphology were not observed (data not shown).

Fig. 4. Morphology of dithizone-stained human islets and the corresponding genetic phenotype after 6–8 days of islet culture in normoxic
atmosphere. Morphology was assessed after culture in (A) native MEMa or in MEMa preconditioned for 2 days at (B) 1% O2 or (C) 21% O2.
Photographs at�50 magnification are representative for all islet preparations assessed. mRNA expression (n¼ 5) of (D) PDX-1; *P < 0.05 as
indicated, P ¼ 0.077 versus native MEMa; and (E) insulin, P ¼ 0.077 as indicated. MEMa: minimum essential medium-alpha.

Table 3. Islet Culture Outcome After 3–4 Days of Islet Culture in Hypoxic Atmosphere (n ¼ 8).

Media IEQ yield (%) Fragmentation (IN/IEQ) Viability (%) Overall survival (%) Stimulation index Insulin (mU/ng DNA)

Native MEMa 42.1 + 2.4 1.55 + 0.20 79.4 + 3.8 33.5 + 2.8 0.95 + 0.08 40.4 + 6.7
1% O2–2d MEM 65.1 + 6.2§ 0.92 + 0.05§ 83.4 + 4.4z 55.0 + 7.1§ 1.52 + 0.08§ 59.1 + 7.7{

21% O2–2d MEM 58.6 + 5.5§ 1.06 + 0.09z 83.9 + 4.2z 49.7 + 6.1§ 1.41 + 0.08z 72.4 + 8.4§

21% O2–5d MEM 53.1 + 5.7{ 1.34 + 0.14{ 79.5 + 3.9# 42.8 + 5.9{ 1.34 + 0.11y 67.0 + 9.9§

1% O2–2d MEM: medium preconditioned by hypoxic MSC culture for 2 days; 21% O2–2d MEM: medium preconditioned by normoxic MSC culture for 2 days;
21% O2–5d MEM: medium preconditioned by normoxic MSC culture for 5 days; MSC: mesenchymal stem cells.
yP < 0.05, zP < 0.01, §P < 0.001 versus native MEMa; {P < 0.05, #P < 0.01 versus 21%–2d MEM.
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Calculation of overall survival significantly suggested

best islet protection after hypoxic islet culture in 1% O2–

2d MEM. A slightly lower grade of protection was reached

using 21% O2–2d MEM. A protective effect of 21% O2–5d

MEM was virtually not existing when compared with native

MEMa (Table 3). In contrast, the BAX-over-BCL-2 mRNA

ratio was substantially decreased in all treatment groups

regardless whether hypoxic preconditioning or normoxic

preconditioning for 2 or 5 days had been applied

(Fig. 5A). No significant difference was found between

21% O2–2d MEM and 21% O2–5d MEM.

Islet responsiveness to glucose after hypoxic islet culture

was significantly preserved by any mode of preconditioning

applied. Stimulated insulin release was significantly

increased incubating islets in 1% O2–2d MEM, 21% O2–

2d MEM, or 21% O2–5d MEM compared with native

MEMa (Fig. 5B). Hypoxic islets incubated in the latter

medium did not show any stimulated insulin response,

resulting in a stimulation index of <1, which was signifi-

cantly reduced compared with 1% O2–2d MEM, 21% O2–

2d MEM, or 21% O2–5d MEM (Table 3).

Proteomic Secretome Profiling

To clarify the effect of severe hypoxia on MSC secretion of

angiogenesis- and inflammation-related proteins, a proteome

profiler assay was applied on three lots of MEM precondi-

tioned for 2 days in normoxia or hypoxia.

Twenty out of 41 soluble biomarkers that could be

detected in measurable amounts were expressed on a

higher level, while 21 factors were decreased compared

with native MEMa (Fig. 6). Among those that were sub-

stantially increased by more than five-fold, we found the

angiogenic or antiapoptotic factors Activin-A, angio-

genin, fibroblast growth factor-7 (FGF-7), tissue inhibitor

of metalloproteinases-1 (TIMP-1), and vascular endothe-

lial growth factor-A (VEGF-A), but also proinflamma-

tory, antiangiogenic, or antiproliferative mediators such

as insulin-like growth factor binding protein-3 (IGFBP-

3), interleukin-8 (IL-8), Pentraxin-3 (PTX-3), or Serpin

F1. In contrast, the group of reduced factors included

CXCL-4, CXCL-16, granulocyte macrophage colony-

stimulating factor (GM-CSF), interleukin-1 beta (IL-1b),

monocyte chemoattractant protein-1 (MCP-1), macro-

phage inflammatory protein-1a (MIP-1a), transforming

growth factor-beta 1 (TGF-b1), and tissue factor as well

as IGFBP-1 and IGFBP-2. However, protective, angio-

genic, or proliferation-related factors such as FGF-4,

heparin-binding epidermal growth factor (HB-EGF),

hepatocyte growth factor (HGF), placental growth factor

(PlGF), and prolactin were also reduced.

The amount of secreted proteins partially differed

between 21% O2–2d MEM and 1% O2–2d MEM, particu-

larly regarding angiogenin, FGF-7, and VEGF-A. Neverthe-

less, Fig. 6 demonstrates a similar pattern of MSC secretome

release irrespective of whether normoxic or hypoxic atmo-

sphere had been used for MSC culture.

Discussion

Our findings confirm previous observations that MSC-

secreted proteins protect the integrity of isolated islets even

when exposed to a hypoxic environment. However, the vast

majority of these previous studies have been conducted with

rodent islets41. The present study is one of the few to demon-

strate this with human islets and is the first study to demon-

strate the beneficial effect of media preconditioned by

human adipose tissue-derived MSC on human islets exposed

to hypoxia that is similar to the marginal oxygen supply

encountered during pretransplant clinical islet culture, islet

Fig. 5. Human islet characterization after 3–4 days of hypoxic islet
culture. (A) Postculture BAX and BCL-2 mRNA expression was
calculated as BAX-over-BCL-2 ratio (n ¼ 6) after culture in native
MEMa (white bar) and in MEMa preconditioned at 1% O2 (black) or
preconditioned at 21% O2 for 2 days (light grey) and 5 days (dark
grey), *P < 0.05, **P < 0.01 versus native MEMa. (B) Glucose-
stimulated insulin release of 20 islets at 2 mmol/l (white bars),
20 mmol/l (grey), and again 2 mmol/l of glucose was normalized
to islet DNA content (n¼ 8); *P < 0.05, **P < 0.01, ***P < 0.001 for
2 versus 20 mmol/l of glucose; *P < 0.05, **P < 0.01 for 1%–2d
medium, 21%–2d medium, and 21%–5d medium versus native
MEMa as indicated. MEMa: minimum essential medium-alpha.
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shipment, and after intraportal islet transplantation. The

experimental design of this study purposely investigated var-

ious protocols for preconditioning to maximize reduction of

hypoxia-induced damage as the key determinant for survival

and integrity of cultured and/or transplanted islets. Impor-

tantly, a decreased expression of proapoptotic key markers,

as well as increased islet survival and viability, were

observed when human islets were suspended in MSC-

preconditioned media and cultured in normoxic atmosphere.

With regard to in vitro function, apoptosis, and viability of

human islets, only minor differences were noted between

media preconditioned during either normoxic or hypoxic

MSC culture. The major difference between normoxic and

hypoxic preconditioning protocols was an alteration of islet

morphology into a spindle-like shape observed when cul-

ture in medium from hypoxic MSC was performed. The

present secretome profiling was focused on angiogenesis-

and inflammation-related proteins, thus analyzing a limited

range of the entire MSC secretome. We therefore have to

speculate whether a nonspecific growth factor, that is par-

ticularly produced and secreted by hypoxic MSC, may

induce dedifferentiation of the islet phenotype as suggested

by the nontypical shape of islets cultured in 1% O2–2d

MEM.

Elements of the MSC secretome, that can theoretically be

considered for islet dedifferentiation, are angiogenin, endo-

glin, and FGF-7, which are secreted in substantially higher

quantities when MSC are exposed to hypoxia. Angiogenin

plays a major role in endothelial cell proliferation and in the

formation of tube-like structures42, but it is unknown

whether it has an impact on islets apart from its angiogenic

properties. The proliferative and insulinotropic effect of

FGF-7 is documented only in human beta cells from fetal

origin43,44. Therefore, endoglin might be one of the most

likely candidates to be involved in downregulation of insulin

gene expression. Serving as receptor for TGF-b45, endoglin

Fig. 6. Proteomic secretome analysis of angiogenesis- and inflammation-related proteins in MSC-preconditioned media. MEMa was pre-
conditioned by MSC for 2 days at 1% O2 (dark grey bars) or 21% O2 (light grey bars). Proteins related to islet protection and/or proliferation
are underlined. Angiostatic and inflammation-related substances are indicated by dotted and grey arrows, respectively. Data are from six
samples of preconditioned media and were normalized to native MEMa; *P < 0.05 for normoxic versus hypoxic preconditioning. MEMa:
minimum essential medium-alpha; MSC: mesenchymal stem cells.
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has the potential to promote the inhibitory effect of TGF-b
on insulin gene transcription46. On the other hand, TGF-b
belongs to the downregulated secretome group.

Despite the change in morphology, islets still positively

stained with dithizone. In addition, PDX-1 and insulin

mRNA expression could not confirm a change of the b-cell

phenotype when compared with islets cultured in native

MEMa. Interestingly, the gene expression of PDX-1 and

insulin was significantly higher after culture in 21% O2–2d

MEM when compared with 1% O2–2d MEM suggesting a

specific stimulatory effect on beta cells rather than dediffer-

entiation of islets. In this context, we have to underline the

disadvantage of the present approach to focus solely on the

gene expression of PDX-1 and insulin. PDX-1 is a major

regulator of numerous genes expressed in b-cells47. Its tight

control of insulin transcription and translation means that

PDX-1 has been used as a specific marker of human mature

b-cells48,49 in the majority of b-cell profiling studies per-

formed so far50. From this perspective, an altered expression

of PDX-1 and insulin could reflect an adaptation to meta-

bolic demands, rather than a change in islet cell phenotype.

Because PDX-1 is a significant but not an exclusive regula-

tor gene that controls viable b-cell functions in collaboration

with other transcription factors51, a simultaneous up- or

downregulation of a broad range of genes can be

observed52,53. To address this dilemma in the future, subse-

quent studies should include the assessment of multiple

b-cell-related genes54.

The morphological alterations we exclusively observed in

islets cultured in normoxic atmosphere may also reflect the

major physiological stresses that islets experience in hypoxic

atmosphere. The lack of oxygen prevents efficient mitochon-

drial ATP generation and results in a rapid depletion of

resources that would be essentially needed for remodeling

of islet morphology55.

As noted with normoxic human islet culture, only mar-

ginal differences were observed after islet culture in hypoxia

comparing the protective effect of MSC media precondi-

tioned at normoxia or hypoxia. The attempt to increase the

protective capability of preconditioned medium by pro-

longed MSC culture did not result in any improvement of

islet survival after hypoxia. Moreover, a significant decrease

of all quality parameters assessed was observed, when islets

were cultured in 21% O2–5d MEM. So far, we can only

speculate whether a less frequent medium change during

MSC expansion most likely results in an accumulation of

metabolic waste products that affect islet integrity or

whether the amount of proinflammatory mediators reaches

a toxic level as discussed below.

The proteomic secretome profiling revealed that the large

majority of the proteins was secreted at a very similar pattern

irrespective of the atmosphere used for MSC culture.

Increased secretion, which was observed in approximately

half of all factors assessed, was significantly higher in 8 out

of 20 (40%) cell products when MSC were stimulated by

hypoxia, while 3 out of 20 (15%) factors were significantly

enhanced after normoxic MSC culture. One increased mem-

ber of the latter group is Activin A. In contrast to the other

two compounds Serpin-E1 and TIMP-4, characterized by

angiostatic properties56,57, Activin A has been shown to have

a stimulatory effect on insulin secretion of adult human

islets58.

As expected, VEGF was detected in significantly higher

levels among the hypoxia-stimulated proteins (1% O2–2d

MEM) in comparison with normoxia-preconditioned

medium (21% O2–2d MEM). Together with angiogenin, it

is a decisive factor for revascularization of islets42,59,60. In

this context it is important to consider recent findings, which

demonstrate that newly formed vessels in transplanted rat

islets occupy approximately 20% of the intraislet volume61.

This may explain why the MSC-induced neo-formation of

vessels in human islets results in increased islet size, there-

fore contributing to increased yield of IEQ32. Apart from its

role as proangiogenic factor, VEGF seems to have an islet-

protective effect that is independent of revascularization and

may contribute to human islet survival during hypoxia62.

The same applies to Angiopoietin-1 that mediates protective

effects on cytokine-induced apoptosis in isolated islets63.

Approximately half of the angiogenesis- and inflammation-

related secretome factors were decreased in preconditioned

media compared with the native medium. Among these are

biomarkers with proven growth or angiogenic benefits for

human adult or fetal islet tissue. These include FGF-4, HB-

EGF, HGF, GM-CSF, glial-derived neurotrophic factor

(GDNF), PDGF-AB/BB, or prolactin64–70. Nevertheless, sev-

eral proinflammatory mediators such as CXCL-4, CXCL-16,

MCP-1, MIP-1a, tissue factor, and IL-1b71–73 but also potent

angiostatic substances like angiostatin, endostatin, PDGF-AA,

or Serpin-E1 and Serpin-F156,74 decreased as well during MSC

culture. It is quite likely that the reduction of proinflammatory

or angiostatic proteins may have positive implications for early

survival of intraportally transplanted islets. The reasons for the

reduction of certain proteins are unknown and may be attrib-

uted to degradation or to metabolization through expanding

MSC.

The decline of proinflammatory mediators in precondi-

tioned media could not be confirmed for all proteins of this

category. Besides PTX-3, involved in tissue repair but also

identified as activator and regulator of the complement sys-

tem75, IL-8 is another chemokine that was massively

increased in preconditioned media. Together with angio-

genin and FGF-7, IL-8 is among the top three of secreted

MSC proteins. Although IL-8 belongs to the group of proan-

giogenic chemokines that can stimulate neovascularization

in isolated islets76, it is involved, together with MCP-1, in

proinflammatory pathways in transplanted islets contribut-

ing to early loss of islet viability and post-transplant func-

tion77. The ambivalence of IL-8 is shared by tissue inhibitor

of metalloproteinases-1 (TIMP-1) and TIMP-4, proteins

with antiangiogenic attributes57 that were secreted in rela-

tively large amounts by hypoxic as well as normoxic MSC.

Apart from its angiostatic properties, TIMP-1 has been
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characterized as an antiapoptotic compound protecting rat

islets from cytokine-induced dysfunction and cell death78.

The properties of IL-8, TIMP-1, and TIMP-4 seem to be

representative for the ambivalent character of MSC-

preconditioned media as reflected by the secretome profile.

The potential problems related to this ambiguity do not only

apply to acellular preconditioned media but also to the

approach to perform MSC-islet cotransplantation in patients

with type 1 diabetes.

In conclusion, the findings of this study suggest that

media preconditioned by human adipose tissue-derived

MSC exert a beneficial effect on survival and function of

hypoxic human islets irrespective of the atmosphere used for

MSC preconditioning. Proteomic profiling of precondi-

tioned media revealed the heterogenicity of the secretome

comprising angiogenic and antiapoptotic as well as angio-

static or proinflammatory mediators. The ambivalence of

MSC-secreted proteins is a substantial obstacle that has to

be overcome before the application of MCS-derived prod-

ucts or MSC-islet cotransplantation can be translated into

clinical practice. Further approaches should aim to identify

and to eliminate potentially detrimental factors to enable the

production of advanced clinical grade islet culture media

with higher protective qualities as an initial step for future

clinical applications.
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