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ABSTRACT

In eukaryotes, many stable and heritable pheno-
types arise from the same DNA sequence, owing
to epigenetic regulatory mechanisms relying on the
molecular cooperativity of ‘reader–writer’ enzymes.
In this work, we focus on the fundamental, generic
mechanisms behind the epigenome memory en-
coded by post-translational modifications of his-
tone tails. Based on experimental knowledge, we in-
troduce a unified modeling framework, the painter
model, describing the mechanistic interplay between
sequence-specific recruitment of chromatin regu-
lators, chromatin-state-specific reader–writer pro-
cesses and long-range spreading mechanisms. A
systematic analysis of the model building blocks
highlights the crucial impact of tridimensional chro-
matin organization and state-specific recruitment of
enzymes on the stability of epigenomic domains and
on gene expression. In particular, we show that en-
hanced 3D compaction of the genome and enzyme
limitation facilitate the formation of ultra-stable, con-
fined chromatin domains. The model also captures
how chromatin state dynamics impact the intrinsic
transcriptional properties of the region, slower ki-
netics leading to noisier expression. We finally apply
our framework to analyze experimental data, from the
propagation of �H2AX around DNA breaks in human
cells to the maintenance of heterochromatin in fis-
sion yeast, illustrating how the painter model can
be used to extract quantitative information on epige-
nomic molecular processes.

INTRODUCTION

The ability of organisms to precisely regulate gene expres-
sion is central to their development. Proper temporal and
spatial expressions of genes in eukaryotes require activa-
tion of transcription during the appropriate developmen-
tal stages. In response to environmental and developmen-
tal cues, cells can adopt different gene expression patterns
and differentiate into a variety of cell types. Once estab-
lished, this pattern is frequently maintained over several
cell divisions despite the fact that the initiating signal is no
longer present or significantly weakened. This capacity of
translating transient external stimuli into diverse and sta-
ble phenotypes without alteration of the genomic sequence
is at the heart of the ‘epigenetic’ regulation of gene expres-
sion (1). Epigenetic processes are involved in the control of
somatic inheritance and in the maintenance of cellular iden-
tity as well as in the transgenerational inheritance of traits
by transmission via the germline (2).

A major class of mechanisms driving such epigenetic
‘memory’ relies on chromatin-based processes regulating
gene expression by the control of the local biochemical and
structural properties of chromatin leading to different chro-
matin states more or less permissive to transcription (3).
Such control is mediated in part by biochemical modifica-
tions of the DNA or of histone tails, the so-called epige-
nomic marks. The mechanisms of establishment and her-
itability of these chromatin states, either active or repres-
sive, are governed by similar general rules involving the
combined and self-reinforcing action of specific chromatin-
binding proteins that add or remove epigenomic marks
(4–6).

De novo assembly first proceeds by a nucleation (‘forc-
ing’) stage via the targeting of specific enzymes at dedicated
regulatory sequences by either DNA binding proteins or
the RNAi-based pathways (4,7–11). Such nucleation ele-
ments are often composed by multiple binding sites for dif-
ferent DNA binding proteins that associate to their cognate
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sequence to stably recruit chromatin regulators. For exam-
ple, in Drosophila, the Polycomb-based epigenetic repres-
sion of developmental genes relies on the targeting of the
histone modifying enzymes (HMEs) PRC1 (monoubiquiti-
nation of H2AK118) and PRC2 (methylation of H3K27)
complexes at specific ‘silencers’ regions, the so-called Poly-
comb Response Elements, characterized by various com-
binations of binding sites for adaptor proteins (e.g. Gaga,
Zeste, Pho) (12,13). Similarly, gene activation relies on the
recruitment by Trithorax-group proteins (e.g. MLL2) of
acetyltransferases (e.g. p300) and demethylases (e.g. UTX)
at gene promoters and enhancers (14,15).

Once initiated, the state is able to spread to the neighbor-
ing sequences and to form a stable chromatin domain (10)
that can further propagate through replication and mito-
sis (16). The ubiquitous ability of some chromatin regula-
tors to be recruited by (e.g. Clr4) or to have a boosted ac-
tivity in presence of (e.g. PRC2) the chromatin state they
catalyze (‘reading’ capacity) and to spread this state to the
neighbouring sequences (‘writing’ capacity) introduce an ef-
fective positive feedback which is believed to be a key ingre-
dient of epigenetic maintenance (10,16,17).

Such ‘reader–writer’ principle of chromatin enzymes and
its impact on epigenetic memory has been already investi-
gated using simple mathematical models of chromatin state
regulation with a focus on the dynamics of histone marks
mediated by HMEs (11,18–29). In particular, in their sem-
inal work, Dodd et al. (18) suggested that the maintenance
of stable, extended active or repressed chromatin domains
over generations, even in absence of nucleation signals, is
made possible by the reader–writer property of HMEs cou-
pled to their capacity to spread (or write) a mark at long-
range along the genome. Indeed, such interplay leads to
cooperativity and allows the effective formation of a large
reservoir of modified nucleosomes to serve as templates to
ensure full recovery after random perturbations such as
transcription- (26,28) or replication-mediated (22,30) his-
tone turnover. Actually, the long-range spreading property
reflects the polymeric nature of the genome that that can
bring in close spatial proximity two distant loci. Many ex-
perimental and theoretical studies have indeed highlighted
the correlation between spatial chromosome organisation
and chromatin regulation (31–38), strengthening this hy-
pothesis that the 3D genome impinges on chromatin states
assembly and maintenance.

The reader–writer ability of HMEs coupled to long-range
spreading however raises concerns about the maintenance
of a stable compartmentalization of the genome (24). In-
deed, as observed in many species, the states of chromatin
along the genome are linearly organised into consecutive
‘domains’ of finite sizes, leading globally to a 1D compart-
mentalisation of the genome into active and inactive do-
mains with more or less well defined inter-domain bound-
aries (33,40,41). Because of the requirement to regulate
(activation or silencing) a given part of the genome with-
out affecting its surrounding flanks, chromatin states have
thus to be specifically targeted to and stably confined inside
specific genomic domains. In standard mathematical mod-
els (18,21,30), long-term epigenetic memory goes with great
difficulties to limit the expansion of the mark, questioning
mechanistically how the 1D partitioning of the genome is

established and above all maintained. Several hypotheses
have been proposed to address this question. Spreading may
be slowed down by boundary elements (6,19,26,37), usu-
ally termed ‘insulators’, that restrict the local spreading of
a mark along the genome. These insulators are often as-
sociated with specific DNA-binding proteins (e.g. CTCF,
BEAF, CP190) or actively transcribed genes found at the
boundaries between antagonistic chromatin states (42–49).
Spreading may also be limited by the formation of spatial
compartments (37–39,50,60) as genome 3D compartmen-
talization is strongly correlated with 1D chromatin segmen-
tation (31,33,36), thus providing 3D insulation and restrict-
ing long-range effects.

Nevertheless, recent experimental studies suggest that, in
vivo, the reader–writer mechanism (along with long-range
spreading and insulation) might not be strong enough to
self-sustain by itself an epigenetic state and that a (compart-
mentalized) long-term memory may still be dependent on
genomic bookmarking by keeping a weak ‘forcing’ activity
at regulatory sites (10,51–53). Such role of nucleation sig-
nals in the maintenance of a stable chromatin state has only
been partially addressed (24,27) and a general mechanistic
framework of epigenomic regulation and memory integrat-
ing nucleation, reader–writer mechanisms and long-range
spreading is still lacking.

In this paper, we provide such a framework and sys-
tematically investigate the formation and memory of chro-
matin states. In particular, our modular approach allows to
carefully examine the role of sequence-specific nucleation
signals, and how they interplay with reader–writer mech-
anisms and 3D organisation. After a deep analysis of the
generic properties of each contribution, we show that such
framework allows to rationalize the maintenance of con-
fined chromatin states and to address the role of epigenome
regulation in gene expression. Finally, we contextualize
our quantitative approach to several concrete experimental
systems, from the formation of �H2AX domains around
double-stranded breaks and the formation of heterochro-
matin domains around Transposable Elements (TE) inser-
tion sites in mammals to the heterochromatin memory in
fission yeast. The very good agreement between our simple
model predictions and experimental data suggests that such
multi-modal spreading model may provide a very promising
framework to further investigate the link between genomic
and epigenomic organisation during normal development,
pathologies as well as during evolution.

MATERIALS AND METHODS

Our work consists of three main methodological parts: (i)
modeling chromatin state dynamics; (ii) modeling its impact
on transcription; (iii) comparing model predictions with ex-
perimental data.

Chromatin state dynamics

Model. As in our previous studies (21,22,29), chromatin is
modeled by a unidimensional array of n nucleosomes. As a
proxy for the local chromatin state, we assume that each nu-
cleosome can fluctuate stochastically between a finite num-
ber of epigenetic states, each state corresponding to a spe-
cific combination of histone marks. To simplify, we consider
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Figure 1. ‘Painter’ model. (A) Each nucleosome can be in one of the two, unmodified ‘U’ or modified ‘M’, states. The switching between the two states is
controlled by transition rates rUM, rMU. (B) Scheme of functionally distinct spreading mechanisms (respective terms are shown as in Eq. (1)). The painter
region where HMEs are recruited in a sequence-specific manner is framed in red. (C) An example of the stochastic time evolution of the epigenomic state
simulated for a 201 nucleosomes-wide region in the simple painter mode.

a generic two-state model between an unmodified/neutral
state (U) and a modified, either active or inactive, state (M)
(Figure 1A). The switching dynamics from M to U (respec-
tively from U to M) is controlled by the transition rate rMU
(resp. rUM).

rMU integrates all the molecular processes that promote
the removal of the histone modifications. This includes his-
tone turnover (54), enzymatic removal of marks by ‘erasers’
(such as histone deacetylases or demethylases) (55) and his-
tone dilution between sister chromatids at replication forks
(56). In our theoretical study, for simplicity, we lump all
these processes into one constant rMU ≡ k0, except in Fig-
ure 7D where we explicitly account for replication by forcing
the transition from M to U with a probability 1/2 at every
generation time Tcyc = 55/k0.

rUM accounts for the spreading of the state M by ded-
icated ‘writer’ enzymes: HMEs are first recruited at some
positions and then may ‘write’ the M state to any neighbor-
ing U nucleosomes (Figure 1B).

We assume HMEs can be mobilized to chromatin via
two independent, additive, sequence- or state-specific, path-
ways. The quantity of enzymes bound at position i, �w(i), is
then given by �w(i) = � s(i) + ��i, M with � s(i) the sequence-
specific contribution, �i, M = 1 if i is in state M (=0 oth-
erwise) and 0 ≤ � ≤ 1 is the ‘reader’ recruitment strength
accounting for the capacity of some HMEs to co-associate
with the same mark they catalyze (5). For clarity, we only
consider logical distributions for � s with � s(i) = 1 at given
sequence-specific recruitment sites, called the ‘painter’ re-
gions.

Similarly, the activity kw(i) of a bound enzyme may be
sequence- or state-specific: kw(i) = ks(i)(1 + r�i, M) with ks(i)
the normal enzymatic activity and r > 1 a boost factor ac-
counting for the enhancement of enzymatic activity occur-
ring for some HMEs in the presence of the same mark they

catalyze (17). For simplicity, we assume that ks(i) ≡ k is ho-
mogeneous.

We consider that a bound enzyme at position i may
spread the state M not only at nucleosome i (with an on-site
(in cis) activity kw(i)) but also at longer-range (in trans) to
any other nucleosome j at a rate ktrans(i → j) = �kw(i)Pc(i,
j), proportional to the intrinsic enzyme activity kw(i), to �
(0 ≤ � ≤ 1) a multiplicative factor accounting for a putative
modulation of the writing efficiency in trans and Pc(i, j) (≤1)
the probability that i ‘communicates’ or is ‘in contact’ with
j to allow spreading (see below).

Altogether, the propensity for a nucleosome i to switch
from U to M is thus given by the activities of locally bound
HMEs and of HMEs bound to other nucleosomes that may
interact with i:

rU M(i ) = kw(i )ρw(i ) +
∑
j �=i

εkw( j )Pc(i, j )ρw( j )

= k
[
(ρs(i ) + �δi,M)(1 + rδi,M)

+
∑
j �=i

ε(1 + rδ j,M)(ρs( j ) + �δ j,M)Pc(i, j )

⎤
⎦ (1)

Shape of the spreading probability. The capacity for a
HME recruited at position i to spread a mark at long-range
is encoded into Pc(i, j). Pc may translate various physical
mechanisms that allow i to ‘communicate’ with j.

A natural mechanism is to consider that Pc captures the
frequency that i and j are in spatial proximity such that a
HME bound to i may catalyze a reaction in j. In this case,
assuming that the 3D chromatin organization equilibrates
locally faster than the epigenomic landscape, Pc(i, j) can
be approximated by the contact probability between i and
j (60) as observed in Hi-C experiments (61). Indeed, for
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short genomic distances between i and j (<100 kb), theo-
retical and experimental studies suggest that, at this scale,
3D looping rates are ∼s−1 to min−1 (57,58,62,63,124) while
the chromatin modification rates are often ∼h−1 (29,59).
In this paper, for most of our theoretical results (except in
Figure 7C,D and some cases in Figure 5, see below), we
consider a homogeneous 3D contact probability Pc(i, j) =
1/|i − j|� , with � reflecting the average compaction level of
the chromatin fiber. Experimentally, � has been shown to
vary in the range [0.5−1.5] depending on cell cycle stage,
organism and/or cell fate (64–66). In particular, we use the
standard, intermediate value � = 1. Note that the value
of � does not impact qualitatively the main conclusions of
our work but may quantitatively have significant effects on
the spreading process (Supplementary Figure S1) and thus
must be carefully adjusted if possible when considering spe-
cific experimental systems. In Figure 7C, D and in Figure 5,
we also consider, for Pc(i, j), contact matrices, representa-
tive of chromatin regions with (1) a central strongly-self-
interacting domain of nine nucleosomes; and (2) a long-
range loop between the painter region (positions [−2 : 2])
and five nucleosomes at positions [48 : 52]. In both cases,
Pc(i, j) was computed from polymer simulations using the
lattice kinetic Monte-Carlo model developed in (58) (see
Supplementary Information for details).

In Figure 5, we also consider three alternative mecha-
nisms for Pc: (1) HMEs bound at position i may impact only
nearest-neighbor (NN) nucleosomes, i.e. Pc(i, j) = 1 if |j −
i| = 1 and Pc(i, j) = 0 otherwise; (ii) HMEs recruited at i,
while unbinding and diffusing, are more likely to rebind in
the 3D vicinity, leading to a concentration gradient around
i and to an effective Pc(i, j) = 1/|i − j|0.5 (see Supplementary
Information); (iii) HMEs bound at i may spread a mark to
a distal nucleosome j only if they are placed in very closed
proximity by a loop extruding factor (like cohesin or con-
densin) (67–70) translocating along the chromatin, leading
to Pc(i, j) = exp ( − |j − i|/s0) (see Supplementary informa-
tion and Supplementary Figure S2).

Stochastic simulations. For a given set of parameters, the
stochastic dynamics of the system is simulated using the
standard Gillespie algorithm (71) implemented on Python
(can be downloaded at https://github.com/physical-
biology-of-chromatin/Painter-Model). In all our work,
we simulated the dynamics of n = 201 nucleosomes corre-
sponding to ∼40 kb-long genomic region. Starting from
a random initial macro-state (i.e random choice between
U or M states for each nucleosome), the system relaxes to
a steady state. Each simulation corresponds to a ‘single
cell’ trajectory of the local epigenetic state (Figure 1C).
Unless specified (Figures 6 and 7), characterization of the
system was done at steady-state. In each condition, 500
different trajectories were simulated. Times are given in
1/k0 unit that characterizes the typical turnover time of
histone marks and is ∼h (29,54).

Analytical solutions. In the case where state-specific terms
are negligible (r = � = 0, painter mode), the steady-state
probability P(Mi) of being in modified state M at any posi-

tion i is simply given by:

P(Mi ) = rU M(i )
rU M(i ) + rMU(i )

(2)

= (k/k0)(ρs(i ) + ε
∑

j �=i ρs( j ) Pc(i, j ))

(k/k0)(ρs(i ) + ε
∑

j �=i ρs( j ) Pc(i, j )) + 1
. (3)

In the case where only state-specific recruitment is negli-
gible (� = 0) and where the sequence-specific recruitment
is localized in a finite painter region, by doing a mean-field
approximation, the average probability of the M-state in-
side the painter region Pp is given by analytically solving
(see Supplementary Information and Supplementary Fig-
ure S3):

P p = 1 + ε
∑

j �=i Pc(i, j )(1 + r Pp)

1 + ε
∑

j �=i Pc(i, j )(1 + r Pp) + (k0/k)
. (4)

Outside the painter region, P(Mi) is then given by replacing
ε by ε(1 + r Pp) in Eq. 3.

Enzyme limitation. In the model described above, we as-
sumed that the concentration of HME is large enough to
not have to consider the depletion of the pool of freely-
diffusing HMEs (that impacts the sequence- and state-
specific recruitment strength) by bound HMEs. In Figure 7,
we consider a scenario where the number of enzymes is actu-
ally limited. Assuming fast binding-unbinding kinetics for
the enzymes, we can show (see Supplementary Information
and Supplementary Figure S4) that such system is equiva-
lent to our simple model (Eq. (1)) but by replacing the state-
dependent parameter � by P(E) the probability that a HME
is bound to a modified nucleosome. P(E) explicitly depends
on Ntot

e the total number of HMEs, kb and ku the binding
and unbinding rates (see Eq. (7) in Supplementary Infor-
mation). In the limit of a non-limiting number of enzymes
(Ntot

e � 1), P(E) ≈ kb Ntot
e /(ku + kb Ntot

e ) ≡ �. In Figure 7,
we fix kb/ku = 1.

Contact domains. The spreading probability Pc(i, j) rep-
resents how frequent pairs of nucleosomes are ‘in (effec-
tive) contact’. Therefore, the genomic region is not only a
unidimensional string of beads with only NN links but a
network of interactions. In order to capture at the single-
cell level, the propensity of nucleosomes in the M-state to
be ‘connected’, we randomly generated for every configura-
tion an undirected graph (Mnet) for the corresponding set of
M-states (Supplementary Figure S5). More precisely, for all
pairs (i, j) of nucleosomes in this set, an edge between them
is inserted in Mnet with a probability Pc(i, j). Then, we in-
fer the disconnected subgraphs of Mnet that would represent
the different clusters of connected M-state nucleosomes. Fi-
nally, for each node/nucleosome i, we compute the size of
the contact domain it belongs to.

In the reader–writer mode, a M-state nucleosome may in-
fluence a U-state nucleosome via Pc. Thus, to behave coher-
ently, a genomic region may not necessarily need to have all
nucleosomes in the M-state, but rather that all M-states be-
long to the same graph and that all U-states can be reached
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via Pc(i, j) and are connected to such network. To quan-
tify this, for each configuration, we consider the largest M-
state subgraph Mnet* in Mnet. For each U-state nucleosome
i, random links with any M-state nucleosome j of Mnet* are
generated with probability Pc(i, j). i is added to Mnet* if it
has been linked to at least two M-state nodes of Mnet* (see
Supplementary Figure S5, Figure 5C). The size of such ex-
tended contact domain can thus be considered analogous
to a percolation parameter (72), indicative of the extent of
M-state spreading in the region.

Nucleosome state correlations. To compute the spatial cor-
relations between nucleosome states, we divide the genomic
region into 40 bins of five nucleosomes. In one configura-
tion, these bins are thus characterized by a M-state ranging
from 0 to 5. Nucleosome state correlation matrix shown in
Figures 2, 3, 4C represents the Pearson correlation between
the M-states computed for each pair of nucleosomes over
all the configurations extracted from the simulations.

Transcription dynamics

Assimilating the modified state M to a silencing state, we as-
sume that the instantaneous transcription rate � of a gene
localized inside the region of interest is negatively impacted
by the current proportion of M-state nucleosomes inside
the promoter region. More precisely, we use the coopera-
tive switch model of transcription (Figure 8A), proposed by
Zerihun et al. (22).

α(M) = α0
tanh((M − M

∗
)/d) − tanh((−1 − M

∗
)/d)

tanh((1 − M
∗
)/d) − tanh(−1 − M

∗
)/d)

+ α1 (5)

where �0 + �1 is the maximal transcription rate, �1 is the
minimal, leaky, rate, M = (1/L)

∑
δi,M the current propor-

tion of modified state in a L nucleosome-wide promoter re-
gion around, M

∗
the critical value of modification above

which the gene is repressed and d defines the sharpness of
the transition between activation and repression.

Gene expression dynamics is simulated along with the
chromatin state dynamics within the same Gillespie simu-
lations by considering, in addition to {rUM(i), rMU(i)}, the
transcription of mRNA molecules at rate � (Eq. 5), their
degradation at rate �, their translation into proteins at rate
�, the degradation of proteins at rate 	 and the maturation
of proteins at rate � (73). In Figure 8, we fix L = 5, �1 =
0.2�0, d = 0.05, M

∗ = 0.15, � = 0.1�0, � = �0, 	 = 0.3�0
and � = 0.1�0.

Analysis of experimental data

In Figure 9A, the average experimental profile S(i) of
H2A.X phosphorylation in human cells around double
strand breaks is extracted from Supplementary Figure S1k
(right) of Arnould et al. (70). We fit the experimental data
by the chromatin state model in the painter mode (r = �
= 0) with one painter (ATM kinase) at position 0 (see Sup-
plementary Figure S1k, left of (70)) for a ±1Mbp-region
around the break by using Eq. (3) and assuming that S(i) =
AP(Mi) + B with A and B two constants. Parameter infer-
ence is done by minimizing the L2-distance between predic-
tions and experiments.

Similarly, in Figure 9B, the average density of H3K9me3
modifications flanking a transposable element in mESC
cells is obtained from Robollo et al. (74). Fit to experi-
mental data using Eq. (3) is performed for a 10 kb-region
with a centered painter region of size 7 nucleosomes corre-
sponding to 1 kb transposable element. Parameter inference
is done by minimizing the L2-distance between predictions
and experiments.

In Figure 9C, the distribution of fluorescence of the re-
porter gene as a function of time and the corresponding
fractions of ‘OFF’ cells are extracted from Ragunathan
et al. (10) for different strains. Modeling of the system is
performed using the chromatin state+transcription model
(see above) with k = 0.05, ε = 0.6, L = 5, �0 = 1, �1 =
0.2�0, d = 0.05, M

∗ = 0.1, � = 0.1�0 (in min−1) and the
same parameters for protein dynamics as above. A scal-
ing is applied to convert the number of proteins p into a
fluorescence level F (F = p + C with C = 380). The frac-
tion of OFF cells is defined by the fraction of cells whose
fluorescence is below 530 as defined experimentally (10).
The extracted experimental fluorescence at 6 hours is not
aligned with the fluorescence peak observed at other time
points. Fit to experimental data is performed by minimizing
χ2 = ∑

ti [(OF Fpred (ti ) − OF Fexp(ti ))/OF Fexp(ti )]2, where
OFFpred(ti) is the predicted fraction of OFF cells at time
ti and OFFexp(ti) the corresponding experimental observa-
tion, using a simple grid-search algorithm to scan parame-
ters (see Supplementary Figure S6).

RESULTS

A generic model of epigenomic regulation

To investigate in detail the main mechanisms driving epige-
nomic regulation, we develop a simple generic two-state
model (Figure 1A) where the local chromatin state can
fluctuate between an unmodified, neutral state U and a
modified state M that may correspond to an active (e.g.
H3K4me3 or H3K27ac) or repressive (e.g. H3K27me3 or
H3K9me2/3) state. We model chromatin as a unidimen-
sional string of nucleosomes, each nucleosome being in
state U or M. We consider a ∼40-kb-long genomic do-
main (201 nucleosomes), a size that typically encompasses
epigenetically-regulated regions like transposable elements
(75), gene promoters and enhancers, the Mating type locus
or subtelomeres in yeast (76).

The stochastic dynamics of the state is driven by histone-
modifying enzymes (HMEs) that deposit (‘writers’, tran-
sition from U to M) or remove (‘erasers’, from M to U)
specific histone modifications (5,10,16). For example, PRC2
via its methyltransferase subunits EZH1 or EZH2 catalyzes
the methylation of H3K27 (2,77). Our model integrates the
key mechanisms acting on HME recruitment or activity, fo-
cusing on ‘writer’ enzymes and lumping all the processes
participating in histone mark removal into one effective
turnover rate k0 (see Materials and Methods for details).
Briefly (Figure 1B), we have delineated the chromatin asso-
ciation of HMEs into sequence- and state-specific contri-
butions: (a) writers, in association with DNA-binding pro-
teins, may localize around specific genomic location with
probability � s, or (b) HME may be recruited to M-state
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Figure 2. Sequence-specific recruitment––Painter mode. (A) Virtual Chip-seq profiles of the M-state. Probability P(M) to be modified as a function of
the position around the five nucleosomes-long region where HMEs are recruited (yellow region) for different spreading efficiency ε and painter activity
k/k0. (B) Average probability P p(M) of the M-state within the recruitment region as a function of ε and k/k0. (C) Spatial correlation matrix between the
nucleosome state at two positions (see Materials and Methods) for ε = 0.6 and k/k0 = 1 (lower part) or =2 (upper part). (D) Average M-state contact
domain size as a function of the nucleosome position for different ε and k/k0 values.

nucleosomes with efficiency �. Recruited HMEs at posi-
tion i can then write the epigenetic mark on-site with a
rate k (action in cis) but may also spread it to a distal nu-
cleosome j with a rate (εk)Pc(i, j) (action in trans) (15),
where Pc(i, j) accounts for the capacity of two nucleosomes
to interact and may depend on the exact spreading mech-
anism (see Materials and Methods). In the following, we
consider that bound HMEs may catalyze reaction in their
3D neighborhood, as evidenced experimentally for several
epigenetic systems including H3K27 methylation (15,83),
H3K9 methylation (78), �H2AX phosphorylation around
DNA double strand breaks (79) and Pc(i, j) is thus defined
as the average 3D contact frequency between two genomic
regions. HME enzymatic activity may be also boosted by
allostery by a factor r if bound to a M-state nucleosome
(17,77,80). State-specific effects (recruitment and allosteric
boost) are the so-called reader–writer mechanisms that are
thought to be crucial for the establishment and maintenance
of many epigenomic states (16).

In the following sections, we will systematically dis-
sect the role of sequence-specific recruitment and of these
reader–writer processes in epigenetic regulation using ex-
tensive simulations of our generic two-state model.

Spreading by sequence-dependent recruitment of enzymes:
the ‘painter’ mode

We first investigate the contribution of a simple mode of
spreading where enzymes bind only to specific genomic lo-
cations and then may spread epigenetic marks in the 3D
vicinity, in absence of reader–writer mechanisms. In this
case, HMEs can be considered as ‘painters’ that sit at spe-
cific places along the genome and ‘paint’ the surround-
ing chromatin with a given modification. As sequence-
dependent recruitment of enzymes is essential for de novo
establishment of epigenetic domains (13,81) and as many
writers do not carry a ‘reader’ subunit (that may drive
state-dependent effects), such mode of regulation, hereafter
called the ‘painter’ mode, is likely to be a major way of epi-
genetic spreading.

To illustrate this model, we consider a simple case where
painters are only recruited to a single 1 kb-long locus lo-
cated in the middle of the 40 kb-long region (yellow area in
Figure 2A). In this situation, the probability P(M) to have
a modified nucleosome at a given position can be derived
analytically (see Eq. 3 in Materials and Methods) and only
depends on the ratio (k/k0) between the cis-spreading rate
k and the turnover rate k0 and on the ratio ε between the
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trans- and cis-activities (Figure 2A,B). For all positions, we
observe that P(M) is a gradually increasing function of both
parameters (Figure 2B, Supplementary Figure S7). In the
limit of very low trans-efficiency (ε ≈ 0), modified states are
essentially confined within the recruitment region due to the
remaining on-site writing activity. For larger ε values, P(M)
is peaked at the painter region and decays at large genomic
distances. The stronger ε and k/k0 the wider the peak in
P(M) profiles and thus longer the range of spreading of the
M-state (Figure 2A).

Actually, the observed decay of P(M) outside the recruit-
ment zone is translating the decay of contact probability Pc
with the painters bound to recruitment zone. More gener-
ally, in the limit of low contact probability or low spreading
efficiency ((k/k0)Pcε � 1), P(M) is directly proportional to
the spreading probability Pc (see Eq. 3) which, in our case, is
taken to be ∝1/s� with s the genomic distance to the painter
region and � = 1 (see also Supplementary Figure S1). This
illustrates the direct relationship between the local 3D or-
ganization and the profiles of epigenomic marks around re-
cruitment sites (82).

In the painter mode, the local chromatin state only de-
pends on the position of the bound painters and does not
feedback on the recruitment of HMEs or on their activity.
This lack of cooperativity leads to the absence of correlation
between the nucleosome states at two different positions
along the region (Figure 2C). To quantify the efficiency of
the spreading mechanism and its capacity, at the single-cell
level, to form more or less expanded, coherent M-state do-
mains, we estimate how nucleosomes in the M-state are ef-
fectively ‘colocalized’ in space. For each configuration and
each M-state nucleosome, we compute the number of other
M-state nucleosomes present in the same 3D contact do-
main (see Materials and Methods). Figure 2D shows that,
in average, except around the painter region, M-state nucle-
osomes are isolated from each other and are only part of
small domains.

State-dependent enzymatic activity: the ‘boosted-painter’
mode

In some systems such as Polycomb regulation (associ-
ated with the H3K27me3 modified state), it has been ob-
served that the activity of the writers can be ‘boosted’ by
the presence of pre-existing modifications (17,77,80,83,84).
For example, the binding of the Polycomb writer PRC2
to H3K27me3 marked nucleosomes, triggers a boost in
methyltransferase activity of its subunit EZH2 by allostery,
via its other subunit EED. In our theoretical framework,
this effect can be formalized by an increase in the writ-
ing rate of HMEs bound to a modified nucleosome via a
multiplicative factor r > 1 (see Materials and Methods).
For example, for mammalian PRC2, in vitro experiments
suggested an allosteric boost of r � 10-fold in presence of
H3K27me3 peptides (17,84).

In Figure 3, we characterize the impact of this boost
on the simple painter mode described above (stably bound
writers at a specific 1 kb-long region), still neglecting state-
specific recruitment of HMEs (� = 0). As shown in Fig-
ure 3A, a weak ε value that essentially confines the M-state

to the painter region in the simple painter mode (r = 0, green
line), can be compensated by a strong boost term (r = 20,
black line) with a significant overall enhancement of P(M):
the presence of modified nucleosomes in the painter region
due to the ‘on site’, cis-activity of painters (controlled by
k/k0) boosts globally the cis- and trans-spreading capacity
of bound writers (via r) and favors further spreading inside
and outside the painter region.

To get a better understanding of this ‘boosted-painter’
mode, we first focus on the painter region by computing
P p(M), the average value of P(M) inside this region (Fig-
ure 3B). As expected, P p(M), is an increasing function of
k/k0 and r. However, contrary to the simple painter mode
(Supplementary Figure S7B), the transition from low to
high M-state is a much sharper sigmoid function. Such
switch-like behavior suggests a phase transition (27) in-
side the painter region that reflects the cooperative dynam-
ics between writer-bound nucleosomes due to the state-
dependent boost. The sharpness and position of the transi-
tion depends on k/k0 and ε. High values lead (i) to smoother
transition as the simple painter mode is significant enough
to buffer the boost effect and (ii) to lower critical r-values
as less boost is required to get high enzymatic activity.

In this spreading mode, the chromatin states of nucleo-
somes localized outside the painter region are now dynam-
ically coupled to the ones inside, leading to positive spa-
tial correlations that are maximal for r-values around the
critical boost (Figure 3C). Such coupling makes an exact
analytical treatment of P(M) intractable. However, using a
mean-field approximation inside the painter region, we can
derive an expression for Pp(M) (see Materials and Meth-
ods and Supplementary Information). Outside the painter
region, P(M) is thus just as in the simple painter mode but
for a boosted trans-activity ε(1 + r Pp(M)) (blue and black
circles in Figure 3A). Hence, regarding the profile of epige-
nomic mark and of coherent 3D contact domain size (Fig-
ure 3D), the boosted painter mode is indistinguishable from
a simple painter mode with a greater ‘on site’ and ‘off site’
spreading rates (Blue dots, Figure 3D). Only the presence
of spatial correlations of nucleosome states with the recruit-
ment region (Figure 3C) might be a clear signature of this
mode of propagation.

State-specific recruitment of enzymes: the ‘reader–writer’
mode

Some writer enzymes have been shown to be recruited in
a state-dependent manner to chromatin, having the ability
to ‘read’ (i.e. to be recruited at) a particular histone tail
modification and ‘write’ the same on another nucleosome
in the 3D vicinity (2,3,5,10). For example, the methyltrans-
ferase Clr4 (associated with heterochromatin formation and
H3K9me2/3 modifications in fission yeast) contains a chro-
modomain that may trigger its recruitment by H3K9me2/3
(10). In our framework, we introduce this ‘reader–writer’
mode by assuming that the probability of finding a HME
bound at a M-state nucleosome is enhanced by a factor �
(see Materials and Methods). In the following part of this
section, we focus on this effect coupled to the simple painter
mode neglecting possible state-specific boost (r = 0).
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Figure 3. State-specific enzyme activity––boosted painter mode. (A) Virtual Chip-seq profiles of the M-state. P(M) as a function of the position around
the five nucleosomes-long region where HMEs are recruited (yellow region) for different values of the boost factor r. The scatter points are the analytical
solution of the model. (B) P p(M) within the recruitment region as a function of r. (C) Spatial correlation matrix between the nucleosome state at two
positions for ε = 0.1, k/k0 = 0.5 and r = 20 (lower part) or =100 (upper part). (D) Average M-state contact domain size as a function of the nucleosome
position with boost r = 20 (full line). Dots correspond to a simple painter mode with an adjusted ε value to reproduce the P(M) profile.

In that case, thanks to the long-range action of M-state
bound writers, the state dynamics of every nucleosome is
coupled to the states of all the other nucleosomes which is
well illustrated in Figure 4C by the global increase in spa-
tial correlations. Such reader–writer mode introduces a pos-
itive feedback in the global M-state dynamics which has
been shown to promote the formation and inheritance of
extended, stable M state domains (18,32). As shown in Fig-
ure 4A, when combined with the simple painter mode, state-
specific recruitment strongly modifies the spreading pat-
tern by notably increasing M-state occurrence away from
painter region. In particular, we observe heavy tails for
P(M) (black and blue lines in Figure 4A) that qualitatively
differs from the typical 1/s� contact decay observed for the
sole painter mode (red dotted curve in Figure 4A). Such
signature (heavy tails, deviation from simple painter model)
in experimental profiles of epigenomic marks may thus be
suggestive of a dominant reader–writer mechanism. In this
regime, we also observe that the reader–writer process fa-

cilitates the formation of expanded 3D M-state contact do-
mains away from the sequence-dependent recruitment re-
gion (Figure 4D) unlike the simple and boosted painter
modes.

To quantify the resulting global increase in P(M), we sys-
tematically compute P(M), the average value of P(M) inside
the whole genomic region (Figure 4B). For a given trans-
spreading activity (ε), we observe a sharp transition when
state-specific recruitment efficiency (�) augments: from a
pure simple painter profile localized around the painter re-
gion (P(M) � 0.5) to a globally modified state (P(M) �
0.5). As in the boosted-painter mode, this also suggests a
phase transition but here that reflects the cooperative dy-
namics between all nucleosomes of the region (see also next
section). Around the critical �-value (e.g. �c ≈ 0.2 for k/k0
= 1 and ε = 0.6), fluctuations in P(M) are maximal and
lead to high inter-nucleosome correlations (Figure 4C and
Supplementary Figure S8).
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Figure 4. State-specific recruitment of enzyme––reader–writer mode. (A) Virtual Chip-seq profiles of the M-state. P(M) as a function of the position around
the five nucleosomes-long region where HMEs are recruited (sequence specific) for different values of reader recruitment strength � (at the critical point
� = 0.2 and above =0.4). (B) Average value P(M) of P(M) inside the whole genomic region as a function of ε and � (for k/k0 = 1). (C) Spatial correlation
matrix between the nucleosome state at two positions for ε = 0.6, k/k0 = 1 and � = 0.2 (lower part) or =0.4 (upper part). (D) Average M-state contact
domain size as a function of the nucleosome position for different � values. Colors as in (A).

The spreading probability drives the percolation of the chro-
matin landscape

A key element of the different writing modes investigated
above is the capacity of recruited HMEs to spread an epige-
netic signal (2,3,5,10). This property depends on the spread-
ing probability Pc(i, j) that captures the ability of two nu-
cleosomes to interact. In the previous sections, we assumed
that Pc(i, j) = 1/|j − i|� with � = 1, a generic scaling law
accounting for a mechanism of spreading via 3D contacts
as already observed for some HMEs like Polycomb group
proteins (H3K27 methylation) (15), Clr4 methyltransferase
(H3K9) (10), ATM kinase (�H2AX) (70) and characteristic
of the polymeric nature of chromatin (92). In this section,
we explore the role of the shape of Pc(i, j) in epigenomic
regulation.

This shape may depend on the specific spreading mech-
anism and on the experimental system or genomic region
under study. Here, we consider five alternative forms for
Pc(i, j) (see Materials and Methods). (1) Two that still corre-
spond to a 3D contact spreading process but with contextu-
alized, heterogeneous Pc(i, j) (Supplementary Figure S9A):

one for a small 3D compact domain localized around the
recruitment zone and another for a region with a strong
loop between the painter area and a locus 10 kb away, mim-
icking, for example, a repressed MAT locus in yeasts and
a promoter–enhancer loop in mammals, respectively. (2) A
shape accounting for a spreading to only nearest-neighbor
(NN) nucleosomes that might be relevant in scenarios where
an epigenomic state propagates unidimensionally along the
chromatin (24,91,115). (3) A form compatible with an effec-
tive contact spreading mechanism where HMEs recruited
at a given position may diffuse in 3D to nearby positions
and thus impact the state of distal nucleosomes (Pc(i, j) =
1/|j − i|0.5). (4) A scenario where two nucleosomes may in-
fluence each other only if they have been placed in very
close proximity by loop extruding factors (eg, cohesin or
condensin) that are molecular motors translocating along
the chromatin and implicated in TAD formation in mam-
mals (67–70) (Pc(i, j ) = e−| j−i |/s0 ).

In the simple painter mode (Figure 5A, � = 0), spread-
ing from the central recruitment zone is limited by the shape
of Pc(i, j): long-range effective interactions like in the dif-
fusion scenario lead to more extended P(M) profiles com-
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for three situations described in (B). (D) Illustration of the percolation of the system. For four different � values in the loop case (brown curves in (B)
and (C)), most extended generalized domains observed in different configurations (100 examples) are stacked together to show cell to cell variability (all
nucleosomes belonging to a domain are colored in blue).

pared to localized spreading as the NN case. In the 3D loop
case, the M-state is able to stably propagate distally thanks
to enriched 3D contacts with the painter area of sequence-
specific recruitment.

In the reader–writer mode (Figure 5A, � > 0), as ob-
served in the previous section, state-specific recruitment al-
lows a facilitated spreading and modifies the shape of P(M).
For a given reader–writer strength �, scenarios with longer-
range Pc(i, j) are more impacted. However, for all scenar-
ios, it exists a critical � value (�c) above which the M-
state spreads over the whole region (Figure 5B), more local
Pc(i, j) shapes (eg, NN or compact domain cases) exhibiting
larger �c values. Such transition driven by the reader–writer
capacity of HMEs resembles actually to a generic percola-
tion transition (27) where the system starts to be fully con-
nected (or percolated) (72). In our context, it corresponds to
a situation where all the M-state nucleosomes form a unique
expanded contact domain from which all the remaining
U-state nucleosomes can be reached via Pc(i, j) to allow
spreading (see Materials and Methods, Supplementary Fig-

ure S5 and S10). To quantify this, for each configuration,
we look how the most expanded M-state contact domain is
connected to the unmodified regions. Figure 5C shows the
evolution of the average size of such extended generalized
contact domains (containing U- and M-state nucleosomes)
for three different scenarios. The global epigenomic state
becomes percolated when this size approaches 200, meaning
that the extended domain covers the whole genomic region
(Figure 5D). Interestingly, a full overall M-state (P(M) ∼ 1)
is not required to reach percolation, in particular for long-
range spreading mechanism. For example, in the Pc(i, j) =
1/|j − i| case, percolation transition occurs at �c ≈ 0.2 where
P(M) ≈ 0.3 (Supplementary Figure S10).

The reader–writer mode may lead to epigenetic memory

Having characterized how the various writing modes estab-
lish typical epigenomic profiles from the painter region, we
now investigate how these different modes impact the ‘epi-
genetic memory’ of these states. By definition, epigenetic
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Figure 6. Epigenetic memory. (A) Normalized time-evolution of P(M) after the unbinding of sequence-recruited painters at t = 0 for different values of
� and with k/k0 = 1, ε = 0.6. Inset shows the non-normalized evolution. (B) Fast (main) and slow (inset) relaxation times as a function of � obtained by
fitting the curve in (A) by one or two time-scale exponential decay (see text). The fast time scales as ≈�4. (C) Examples of ‘single cell’ time-evolution of
the M state decay (

∑
�i, M/201 versus t) for different values of �.

memory stands for the ability of maintaining a given tran-
scriptional or chromatin state in the absence of the initial,
sequence-dependent stimulus (e.g. transcription factors or
HMEs).

For such purpose, focusing on a 3D spreading mech-
anism (Pc(i, j) = 1/|j − i|), we follow the time evolution
of the mean genomic M-state M ≡ 1/n

∑
δ(i, M) once the

sequence-specific recruitment of painters have been released
(for examples of individual trajectories, see Figure 6C). In
Figure 6A, we plot the ensemble average-value P(M) of M
for different situations. In the simple painter mode (� = 0,
green line), the M-state relaxes very quickly to the U state.
Indeed, in absence of recruited writers in the painter area,
only transitions from M to U are possible and the global
state decays exponentially with a characteristic time 1/k0.
Similar behaviors are observed in the booster-painter mode
(Supplementary Figure S11).

In the reader–writer mode, for low � values, the decay re-
mains fast and exponential (� = 0.1 in Figure 6A, C) with
a relaxation time that increases with � (orange dots in Fig-
ure 6B). Above a critical value, state-dependent recruitment
is strong enough to stably maintain a M-state after HMEs
unbind from the painter region (� = 0.3 in Figure 6A, C)
and to keep the memory of an initial (even small) M-state
enrichment (Supplementary Figure S12). The initial profile
along the genome is lost and gives rise to a uniform spread-
ing of the M-state (Supplementary Figure S13).

Interestingly, for �-values just below this critical point,
the relaxation dynamics is better described by a two time-

scale exponential (Supplementary Figure S14) kinetics (� =
0.2 in Figure 6A, C): a fast initial decay following the trend
of the low-� regime (blue dots in Figure 6B) and a slow de-
cay at larger time (inset in Figure 6B). In this regime, ran-
dom M → U conversions dominate but the state-dependent
recruitment allows self-maintenance of a coherent M-state
for long time periods before reaching a global, absorbing
U-state (M = 0) from which the system cannot escape as
also observed by (27). Such maintenance time-period is very
stochastic (� = 0.2 in Figure 6C) while, in the low and high
�-regimes, convergence to steady-state behaves quite uni-
formly.

Maintenance of a confined chromatin state requires chro-
matin compaction and enzymatic titration

In the previous section, we showed that epigenetic mem-
ory was possible for strong-enough state-specific recruit-
ment. However, in this regime of parameter, the spread-
ing of the M-state along the genome is not constrained
(39), leading to unconfined memory (24) (Figure 7A).
Of course, experimentally, epigenomic domains are con-
fined to specific regions in the genome and do not
spread ubiquitously (10,16). In this section, we investi-
gate what could be the minimal changes to our model
to support confined memory and the maintenance of
a localized M-state even in absence of sequence-specific
recruitment.
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Figure 7. Confined epigenetic memory. (A) Evolution of P(M) in the enzyme non-limiting regime Ntot = 45. The initial configuration is a domain of
modified states around nucleosome position 0. There is no sequence-specific recruitment for t > 0. k/k0 = 2, � = 0.9. (B) As in (A) but with enzyme
limitation, Ntot

e = 9. (C) As in (A) but with 3D compaction of the domain (Supplementary Figure S9A shows the corresponding contact probability
matrix), in the large Ntot

e = 45 limit. (D) As in (A) but with enzyme limitation (Ntot
e = 9) and 3D compaction. Modified state domain remains confined

even under replicative dilution (Tcyc = 55/k0, dashed black line).

Our simple epigenomic model assumes implicitly that
the number of HMEs is not limiting in the system. Re-
cent quantitative proteomics experiments however suggest
that such assumption might not be satisfied for some epige-
nomic marks like the Polycomb/H3K27me3 system dur-
ing fly embryogenesis (85). Therefore, a mechanism that
could possibly restrict the spreading of M-state might be
enzyme limitation. In the model, under the approximation
of fast binding-unbinding enzyme kinetics at M-state nu-
cleosomes, it is possible to account for enzyme titration via
an effective � parameter that depends explicitly on the total
number of HMEs Ntot

e and on the current fraction of bound
HMEs (see Materials and Methods), high fractions being
associated with low effective state-dependent recruitment.
Limiting the number of HMEs thus reduces the spreading
efficiency (Supplementary Figure S4), however in ranges
of parameters that support epigenetic memory, the long-
range-spreading activity of bound HMEs still lead to un-
confined epigenomic domains (Figure 7B).

As long-range spreading via the trans-activity of HMEs
seems to promote unconfined memory, another possible
mechanism to restrict spreading might thus be to modulate
the 3D communication between loci (37). Some epigenomic
marks are associated with architectural proteins that may
indeed impact chromatin organization. For example, PRC1
and HP1 that can bind H3K27me3- and H3K9me2/3-
marked chromatin respectively, are known to promote chro-
matin compaction in vitro (86,87) and in vivo (88–90). To
explore how 3D compaction of domains would influence
epigenetic memory, we introduce a nucleosome-nucleosome
contact probability Pc(i, j) that is consistent with the for-
mation of a compact domain around the painter region
(see Materials and Methods) with Pc inside the domain
being stronger than outside (Supplementary figure S9). In
the limit of high Ntot

e (Figure 7C), such 3D organization
clearly facilitates the maintenance of a stable M-state inside
the compacted region even in absence of sequence depen-
dent stimulus, but exhibits ‘flooding’ of the M-state outside
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L

∑
δi,M) with steepness d = 0.05. (B) P(M) profile for k/k0 = 2, ε = 0.6. Black dotted line indicates the value of P(M) at the transcriptional switch

(P(M) = M*,see (A)). (C) Average mRNA count for the two different epigenomic dynamics as a function of the distance of the gene from the painter
region. (D) The coefficient of variation of the mRNA count for the same parameters as in (C). The dashed line shows 1/

√〈mRNA〉 with 〈mRNA〉 taken
from panel (C).

this region with time due to the residual spreading between
nearest-neighbor sites. However, when we couple 3D com-
paction and enzyme limitation, the initial domain remains
very stable with limited flooding even under strong pertur-
bation like replication (Figure 7D), suggesting that both in-
gredients can lead to confined epigenetic memory.

Chromatin state dynamics regulates transcriptional noise

Histone modifications are likely to play a role in the regu-
lation of genome accessibility thereby impacting transcrip-
tional activity of genes (3). To understand how gene expres-
sion may be affected by the dynamics of chromatin states,
we consider a simple toy model where the transcriptional
state of a gene depends on the current mean M-state pro-
portion M = 1

L

∑
δi,M over a 1 kb-wide (L = 5) region that

would represent the gene promoter. We consider in this sec-
tion that the state M is a repressive state (e.g. constitutive
heterochromatin via H3K9me2/3) and that the transcrip-
tion rate is inhibited by the presence of modified nucleo-
somes at the promoter (M ≥ M

∗
) in a switch-like manner

(22) (Figure 8A, see Materials and Methods).

To only focus on the epigenetics-transcription relation,
we consider a simple painter mode (as in Figure 2) with k/k0
= 2 and investigate the transcriptional properties of a gene
as a function of the proximity of its promoter to the painter
region (Figure 8). We observe that the steady-state average
number of mRNA per cell 〈mRNA〉 for this gene is larger
for more distant promoters (Figure 8C), qualitatively mir-
roring the decrease in P(M) (Figure 8B). Interestingly, for
the same relativek/k0 value (and thus the same average M-
state profile, see Eq. (3), Figure 8B), the average transcrip-
tion level depends on the absolute values of k and k0 that
control the kinetics of M state dynamics, comparatively to
the transcription dynamics that is itself driven by the tran-
scription and mRNA degradation rates (see Materials and
Methods). We detect that slow epigenetic dynamics (red line
in Figure 8C) tend to favor a slightly more repressed state
compared to fast dynamics (blue line in Figure 8C).

Such kinetic effect is more striking when considering the
intrinsic stochastic fluctuations of gene expression by esti-
mating the coefficient of variation (CV) (Figure 8D), de-
fined as the ratio between the standard deviation of the cor-
responding steady-state distribution of mRNA number per
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cell and its average value, a high CV meaning a noisy, highly
fluctuating gene. For fast dynamics (blue line in Figure 8D),
relative fluctuations decrease with the distance from the
painter region. CV follows ∼ 1/

√〈mRNA〉 (dashed blue
line in Figure 8D), characteristic of the intrinsic transcrip-
tional noise found in elementary gene expression models
(93): lowly expressed gene being relatively more noisy. For
slow dynamics (red line in Figure 8D), we instead observe
a sharp increase up to a distance s* where fluctuations be-
come maximal, followed by a gradual decrease at larger
distances; fluctuations remaining always larger than in the
fast dynamics case. Indeed, in our transcription rate model
(Figure 8A), close to the transition point M

∗
, small vari-

ations of M result in large deviations for the transcription
rate. If the epigenetic dynamics is faster than mRNA pro-
duction and degradation rates, the transcription level can-
not adjust to the rapid fluctuations of M(t) that are filtered
by the slow mRNA dynamics (94). However, if the chro-
matin dynamics is much slower, mRNA level adapts to the
current, slowly fluctuating M-state. Hence expression will
stochastically switch between a repressed (M(t) > M

∗
) and

expressed state (M(t)lt; M
∗
) leading to large fluctuations of

expression. The peak observed in CV in this case thus trans-
lates the interplay between such ultra-sensitivity to epige-
netic fluctuations with the more standard dependence of
the noise to 〈mRNA〉 (fast chromatin dynamics case). Bio-
logically, this strong propagation of epigenetic fluctuations
to the gene expression level may be related to the well-
known variegation phenomenon where genes inserted near
heterochromatin domains may have variable transcriptional
pattern, depending on the distance of their insertion sites to
the heterochromatin domains (95).

Applications to diverse biological contexts

Above we studied systematically the behavior of our generic
model of epigenomic regulation and its consequences on
epigenetic memory and transcription. In the next, we will
describe three applications of this framework to specific bi-
ological situations.

Phosphorylation of H2AX around double-stranded breaks.
During our analysis of the simple painter mode (Figure 2),
we showed that there is a direct relationship between the
distribution of marks around the painter binding sites and
the local 3D chromatin organization. This 3D↔1D rela-
tionship has been evidenced experimentally in the context
of DNA double-stranded breaks (DSB) in humans (70). Af-
ter a break had occurred, variant histones H2AX present in
the chromatin are phosphorylated (the so-called �H2AX
mark) by the ATM kinase recruited at the DSB site. The
correlative analysis of the 4C and �H2AX Chip-seq signals
around DSBs clearly reveal high similarities (e.g. see Fig-
ure 1A in (70)), suggesting that the spreading by painter
mode is at work in that system. In Figure 9A, we extracted
the average �H2AX profile observed around DSBs (red
dots) from (70) that extends over Mbps. Using the analytical
formula for a simple painter model (Eq. 3) with a painter re-
gion localized at the DSB and Pc(s) ∼ 1/s the typical average
contact probability found in human cells (61), we were able

to fit very well the experimental data (blue line in Figure 9A,
L2-distance =1.4 × 10−4)(see Materials and Methods). This
leads to one identifiable parameter (k/k0)ε = 1213. In the
original article, Arnould et al. suggested that the loop extru-
sion mechanism might be directly implicated in the spread-
ing mechanism (70). To test this alternative hypothesis, we
perform a similar inference using the loop extrusion-like
spreading probability (Pc(s) ∼ exp [−s/s0]) which leads to
a less precise fit even if the model has an additional pa-
rameter (processivity s0 ∼ 150−200 kb) (green line in Fig-
ure 9A, L2-distance = 5.1 × 10−4). Note that the diffusion-
like spreading mechanism (Pc(s) ∼ 1/s0.5) is also inconsis-
tent with the experimental data (orange line in Figure 9A,
L2-distance=9.0 × 10−4). These results differ from a similar
analysis performed by Li et al. (91) in yeast. Using a two-
state mathematical model neglecting the turnover rate of the
mark, they suggested that Tel1, the yeast homolog of ATM,
spreads phosphorylation around DSB via a loop extrusion-
like mechanism while within our framework the best pre-
diction (minimum L2-distance) is given by the spreading-
by-3D-contact mechanism (Pc(i, j) = 1/|j − i|)).

Heterochromatin formation around retrotransposons. An
entirely different system where the simple painter mode may
also be operative is the spreading of H3k9me2/3 modifi-
cations over few kb around retrotransposons in mouse ES
cells by Setdb1 (74,96), a lysine methyltransferase recruited
by the KRAB–Zinc Finger Protein KAP1 (97). As in the
previous example, we can fit the experimental Chip-seq pro-
files (red dots in Figure 9B) by a simple model with a painter
zone corresponding to the typical size range of a transpos-
able element ∼1 kb (75) (blue line in Figure 9B). In this case,
we found (k/k0)ε = 0.78. Note that these predictions were
done without invoking the reader–writer mechanism which
might be relevant in other heterochromatin contexts (see be-
low).

Compared to �H2AX, the spreading of H3K9me2/3 is
much less efficient leading to smaller domains (kb- versus
Mb-wide). This may translate fundamental differences in
the spreading and turnover rates as histone methylation
maintenance in mammalian cell lines could be slow (∼10–
20 h) (29,59) while establishment of �H2AX foci is much
faster (∼1–30 min) (98,99).

Memory of heterochromatin in fission yeast. Finally, we ap-
ply our chromatin state dynamical model to quantitatively
characterize the stability of epigenetic memory for fission
yeast heterochromatin. In Schizosaccharomyces pombe, es-
tablishment of H3K9me2/3 domains is in part regulated by
the balance between the methyltransferase activity of Clr4,
its state-dependent recruitment by H3K9me histones and
the demethylase-like action of Epe1 (10,100). In (10), a hete-
rochromatin domain is established via the sequence-specific
recruitment of Clr4 at an ectopic locus containing a fluo-
rescent reporter gene, leading to the repression of the gene.
Epigenetic memory of this domain and involved mecha-
nisms are then characterized by releasing sequence tether-
ing and by tracking the progressive re-activation of the gene
as a function of time (full lines in Figure 9C). In particular,
they considered four different strains: (i) TetR − Clr4 − I,
epe1 + with a mutated Clr4 (Clr4 − I) with no reader–writer
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Figure 9. Applications to experimental data. (A) Experimental phosphorylation profile (dots) around a DNA double strand break (70) and the corre-
sponding model prediction (i) S(i) = 0.58P(Mi) + 0.11, (k/k0)ε = 1213 Pc(i, j) = 1/|i − j| (blue) (ii) S(i) = 0.85P(Mi), (k/k0)ε = 29.6, Pc(i, j) = 1/|i − j|0.5

(orange) (iii) S(i) = 0.9P(Mi) + 0.2, (k/k0)ε = 1, Pc(i, j ) = e−|i− j |/s0 , s0 = 1050 (green). (B) Experimental H3K9me3 density (dots) flanking a transposable
element in mouse ES cells (74) and the corresponding model prediction S(i) = 10.75P(Mi) + 0.1 (full line). (C) Heterochromatin maintenance in fission
yeast. Distributions of fluorescence expressed from a reporter gene at specific time points after painter release at t = 0 for different strains (experiments:
dashed lines (10), model predictions: full lines). Brown and green vertical lines mark the mean fluorescences in the OFF and ON states respectively. (D)
Experimentally-measured (dots) and predicted (full lines) time-evolution of the proportion of OFF cells in the population for the various strains.

property and a normal demethylase-like activity (epe1 +),
the model analogue being � = 0, k0 = x; (ii) TetR − Clr4
− I, epe1� same as (i) but without demethylase-like activity
(epe1�) (model equivalent: � = 0, k0 < x); (iii) TetR − Clr4
− I, Clr4 +, epe1 + with wt-like Clr4 and Epe1 activities (�
> 0, k0 = y); and (iv) TetR − Clr4 − I, Clr4 +, epe1� as
in (iii) but in epe1� background (� > 0, k0 < y). They ob-
served that memory of a repressed state was enhanced by
the reader–writer module of Clr4 and the absence of Epe1
(dots in Figure 9D).

To rationalize these experiments with our quantitative
framework, we simulate the experimental memory assay like
in Figure 6 but for various values of � and k0 and by track-
ing the transcriptional activity of the region using the model
described in Figure 8 (see Materials and Methods). More
precisely, we follow the experimental protocol and moni-
tor the time-evolution of the distribution of fluorescence of
the reporter gene within the cell population (Figure 9C),

from which we can define the proportion of cells that are
still repressed (‘OFF’) by heterochromatin (see Materials
and Methods) (Figure 9D). The predicted time-evolution of
this proportion for each scanned (�, k0) value is then quan-
titatively compared to the experimental data obtained for
each of the four strains (Supplementary Figure S6, see Ma-
terials and Methods). For strain (i), gene activation is fast
(Supplementary Figure S15, black dots in Figure 9D) and
data are compatible with a simple painter mode with high
turnover rate (k0 > 0.007 min−1, � = 0) (Supplementary
Figure S6A, and black line in Figure 9D), consistent with
the presence of Epe1 and the absence of reader–writer re-
cruitment which, we demonstrated in Figure 6, is essential
for epigenetic memory. For strain (ii), the gene de-repression
is slower than in (i) (blue dots in Figure 9D) but can still be
well captured by a simple painter mode (� = 0) (blue line in
Figure 9D) associated with decrease of k0 by at least 6-fold
(Supplementary Figure S6B), consistent with the absence of
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Epe1 in this strain and thus with less turnover. In both back-
grounds (iii)(epe1 +) and (iv)(epe1�), the reader–writer ca-
pacity of Clr4 strongly enhances memory and slows down
gene activation (red and purple dots in Figure 9D). This be-
havior can only be reproduced (red and purple lines in Fig-
ure 9D) by a reader–writer mode with � = 0.004 (Supple-
mentary Figure S6C,D). Interestingly, for strain (iv) where
memory is maximal, the model predicts that the biological
system is in a parameter range just below the critical regime
of the reader–writer mode (like the blue line in Figure 6A).
In this regime, the epigenetic state is long-lastly maintained
until rapid removal of the marks (� = 0.2 in Figure 6C),
leading to a stochastic switch in transcriptional activity and
bimodal distributions for protein levels (Figure 9C, purple
at t = 100h), as observed experimentally (10).

DISCUSSION AND CONCLUSION

In this work, we developed a unified mathematical two-
state model of epigenomic regulation, integrating key mech-
anisms like reader–writer processes. Our simple framework
states that the establishment and maintenance of an epige-
netic state result from the recruitment and spreading activ-
ity of histone modifying enzymes (HMEs). Recruitment of
HMEs can be mediated by specific genomic sequences or
by the local epigenomic state. Spreading encompasses an
on-site action of the HMEs and a long-range, trans activity
modulated by the local chromatin state.

In particular, we systematically studied three generic
modes of regulation that recapitulate most of the
experimentally-known epigenetic systems: (i) a simple
painter mode (Figure 2) in which HMEs are targeted to
specific genomic regions and spread via their trans-activity
around these binding sites; this mode may be representative
of the regulation of small, local epigenomic domains like
acetylation marks (e.g. H3K27ac or H3K9ac) around
promoters and enhancers; (ii) a boosted-painter mode
(Figure 3) in which recruited HMEs have an enhanced
activity if bound to specifically-modified regions; this mode
may account for the allosteric boost observed for PRC2
in presence of H3K27me3 (17); (iii) a reader–writer mode
(Figure 4) in which HMEs may also be recruited by specific
epigenetic signals; this mode may capture the regulation of
extended chromatin domains like heterochromatic regions
(e.g. H3K9me2/3).

In the simple and boosted-painter modes, we found that
there is a direct, simple relationship between the binding
profiles of HMEs, the chromatin organization and the pro-
file of epigenomic state (Eq. (3)). Verification of this rela-
tion using experimental measurements of these three infor-
mation (e.g. bulk Chip-seq and Hi-C data) in wild-type-like
conditions may be a strong evidence for one of these two
spreading modes (29). A perfect illustration of this is our ap-
plication to �H2AX around DSBs in which the experimen-
tal profile is well fitted by the model (Figure 9A) suggest-
ing a simple or boosted-painter mode with a spreading-by-
3D-contact scenario rather than a more complex cohesin-
mediated mechanism (70).

Distinguishing the boosted- from the simple-painter
mode would then require additional information like for
example to estimate the spatial correlations between chro-

matin state that have very different signatures between the
two modes (Figures 2C versus 3C). However, this informa-
tion is currently very difficult to access experimentally as it
would require a single-cell assay to estimate covariations of
chromatin states; but recent progresses in single-cell Chip-
seq experiments (105,106) may open new venues. Another
promising application of Eq. (3) in the simple/boosted-
painter modes is that it can be employed to address the in-
verse problem of inferring the HME binding sites know-
ing the 3D chromosome organization (e.g. via Hi-C) and
the Chip-seq profile of epigenetic states, or of estimating
the chromatin folding properties from HME and histone
mark Chip-seq profiles. Actually, the latter strategy was re-
cently used by Redolfi et al. (82), in the so-called Dam-C
technique, to extract 4C-like contact probability informa-
tion based on the spreading of Dam-mediated DNA methy-
lation from a painter region.

In the booster-painter and reader–writer modes that
both involve a ‘reader’ capacity of HME, we observed
phase-transitions and critical behaviors via respectively the
strengths of boosting activity (r) and of state-dependent re-
cruitment (�) (Figures 3B and 4B). These behaviors are
driven by the effective positive feedback loops and coop-
erative effects (18) that emerge from the enhanced spread-
ing efficiency of some HMEs (more activity or more re-
cruitment) if the histone modification they catalyze is al-
ready present locally. These effects are more important in
the reader–writer mode and lead to qualitatively differ-
ent epigenomic profiles, with extended domains around the
binding peaks of HME (Figure 4A), and distal spatial corre-
lations (Figure 4C). In particular, we found that these pro-
files are very sensitive to the underlying spreading capac-
ity of HMEs (101), longer-range mechanisms facilitating
the percolation of the system into large contact domains
at low state-dependent recruitment (Figure 5C) (27). Even-
tually, these domains may be maintained in the absence
of genomic bookmarking (Figure 6A) for strong enough
state-dependent recruitment. However, our analysis of het-
erochromatin memory in fission yeast (Figure 9C, D) sug-
gests that such self-sustainable memory may not be occur-
ring for H3K9me2/3 chromatin domains in wild-type con-
ditions and that (weak) nucleation, sequence-dependent sig-
naling might still be needed for maintaining a stable epi-
genetic landscape (37,39); even if a reduction in the ef-
fective histone turnover rate (e.g. by a lower demethylase
activity as in the epe1� mutants in (10) or by longer cell-
cycles (22,30)) might trigger the system near to the critical
point and may lead to long-term memory (27), but poten-
tially also to high sensitivity to external cues (32). As shown
by previous modeling works (24,27), we also confirmed that
purely local spreading mechanisms (as the NN scenario)
would require too strong feedback and state-dependent re-
cruitment to stabilize extended, coherent epigenomic do-
mains during a long time period, even if being able to main-
tain them over few cell cycles (103).

One theoretical issue however with standard reader–
writer models with long-range spreading is the difficulty
to stabilize finite-size epigenomic domain without genomic
bookmarking and to avoid unconfined spreading at long-
time scale, as already pointed out by Erdel and Greene (24)
and Dodd and Sneppen (19). While strong insulators or
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barriers preventing local spreading (19,37) or/and the for-
mation of compact 3D domains (37) may slow down but
not prevent uncontrollable spreading, we showed here that
the combination of 3D compartmentalization with enzyme
titration may lead to ultra-stable confined memory of small
domains even under strong perturbations like replication
(Figure 7D), as also previously observed by Sandholtz et al.
using an explicit polymer model of epigenetic regulation
with controlled HMEs concentrations (102). This may be
particularly relevant for the Polycomb regulatory system
as it involves HMEs (PRC2) in limited numbers, as mea-
sured recently during fly embryogenesis (85) and evidenced
also in mammals (107), and is associated with PRC1, a
protein complex promoting the compaction of H3K27me3-
tagged regions (31,86). Similarly, maintenance of confined
silenced domains in yeast may rely on the combination of
their spatial compartmentalisation via Sir3-mediated self-
attraction (108) and Sir4-driven tethering to the nuclear
envelop (109)) and of the titration of the Sir2 deacety-
lase (110,111). Note that, in our model, 3D compartmental-
ization was accounted via an attractive interaction between
M states, mimicking PRC1, HP1 or Sir3 modus operandi.
However, additional architectural mechanisms such as the
spatial co-association of boundary elements are likely to
be at work: in mammals, the stability of Polycomb do-
mains may be reinforced by contacts between CTCF insula-
tor sites (112) possibly via the cohesin-SA2-mediated loop-
extrusion process (113); in yeasts, colocalization of TFIIIC-
binding boundary elements participate to chromatin do-
main integrity (43,48). Additionally, the presence of an-
tagonistic chromatin states domains may act as competi-
tive barriers to epigenomic spreading (6) but also may fa-
vor 3D compartmentalisation by strengthening phase sep-
aration (114). Actually, all kind of processes that reinforce
intra- versus inter-contact domains is expected to promote
confined memory by limiting long-range ‘contamination’:
in a condition of limited number of HMEs, increasing com-
partmentalization will further increase their local concen-
tration (by sequestration), leading to a stronger stability
and weaker pervasive long-range spreading (Figure 7D),
in agreement with recent experimental observations in fis-
sion yeast suggesting that a ‘critical density’ of H3K9me3 is
required for the stable inheritance of confined heterochro-
matin (104).

To go beyond the mere description of epigenomic regu-
lation, we also proposed a simple mathematical model de-
scribing the impact of chromatin state dynamics on gene
expression (22). Using this generic and modular frame-
work, we quantified the role of epigenetic fluctuations in
transcriptional noise. It allowed us to investigate positional
variegation as well as epigenomic memory in terms of gene
expression in addition to histone marks. In particular, this
makes possible to analyze and interpret the transcriptional
outputs of epigenetic-related experiments. For example, us-
ing this framework, we quantitatively described heterochro-
matin assays by fitting gene reporter expression distribu-
tion versus time and strains. Introducing a feedback of tran-
scription on the epigenomic dynamics via the recruitment of
HMEs (26,28) or changes in turnover rates (115) may allow
a finer description of the interplay between epigenomics and
transcription.

Previous mathematical models have also addressed vari-
ous aspects of the establishment and maintenance of epige-
nomic information. Several works (18,20,26,32,118) have
focused on bivalent regions, regulated by reader–writer and
long-range spreading mechanisms, that can alternate be-
tween different bistable, coherent states (active or inactive).
While our framework can be easily generalized to account
for such multistability, the scope of our study was to specif-
ically investigate the interplay between reader–writer pro-
cesses, spreading capacity and nucleation mechanisms. In
that context, our approach generalizes or complements pre-
vious two-state descriptions of epigenome regulation, like
the 3D looping models of Erdel and Greene (24) and Katava
et al. (39) and the stochastic model by Ancona et al. (27).
3D looping models with sequence-dependent recruitment
and a long-range spreading mechanism based on 3D con-
tacts are by essence very similar to our simple painter and
reader–writer modes. In (24), authors discussed the role of
looping (versus NN scenario) in epigenomic profiles and
of reader–writer feedback in memory and proposed that
non-homogeneous state-specific recruitment may lead to
stable confined domains. In (39), they investigated the in-
terplay between spreading dynamics and chromatin mo-
tion, highlighting the role of nucleation in the maintenance
of stable domains in a regime of fast epigenetic spread-
ing. In their stochastic model, Ancona et al. (27) studied
a reader–writer-mode like model in absence of nucleation
and showed that local mark turnover coupled to long-range
spreading mechanisms may lead to percolation transition
and bistability.

In our work, we focused on a single painter site but, to
go further, the painter model may provide a very interesting
framework to specifically address the pivotal role of the re-
cruitment painter sites in globally shaping the epigenome.
In particular to investigate how their sizes, strengths or ge-
nomic distributions influence epigenomic regulation (101).
Interestingly, within some epigenomic domains, some se-
quences can recruit HMEs while being unable to nucleate
chromatin states on their own (7). These elements may ac-
tually act as secondary recruitment sites after the initial nu-
cleation events at the strong, autonomous sites (116) and,
in the presence of numerous weak sites, a stable domain can
be formed even in the absence of strong sites (117). Based
on our results, an appealing hypothesis would be that, the
numerous dispersed sites along the genomic domain might
compensate their ‘individual’ weakness by maintaining ‘col-
lectively and cooperatively’ a high local concentration of
HMEs via long-range 3D ‘communication’.

One strong hypothesis that we made in order to focus
on the painter and reader–writer processes and their con-
sequences on epigenetic memory, was to neglect the inter-
play between several chromatin modifications (118,119). In-
deed, the regulation of one silencing epigenomic mark of-
ten results from the competition with antagonistic activa-
tion marks. Such tug-of-war is driven by reader–writer pro-
cesses complemented with reader-eraser mechanisms that
actively remove opposite marks (118,120). This may lead to
bistability between active and inactive chromatin states and
participate in reinforcing epigenetic memory (18,26,121).
As for writers, recruitment of eraser enzymes may be
sequence- or state-specific. For example, the UTX/JMJD3
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demethylase is recruited by Trithorax-group proteins at ac-
tive developmental genes to remove the repressive Poly-
comb H3K27me3 mark (14,122). In addition, the regula-
tion of histone turnover may also participate in the eras-
ing mechanisms. Indeed, genomic regions tagged with in-
active modifications like H3K9me2/3 are known to display
low histone turnover rate, while transcribed regions tends
to exhibit higher rates (54,115,123). All this may be respon-
sible of complementary feedback loops in the epigenomic
regulatory dynamics that finely tune the different levels of
epigenomic modifications. For example, transcription may
mediate such a loop not only by depending on the current
epigenomic state, as we tentatively modeled in Figure 8, but
also, in return, by impacting epigenomic stability via an in-
crease in histone turnover rate (26,28).

Another simplification made in our work was to as-
sume that the 3D chromatin organization (that mediates the
long-range spreading) was fast compared to epigenomic-
associated rates and was independent of the current chro-
matin state. While the former hypothesis may be satisfied
for short genomic distances, for large, Mbp-wide, chromatin
domains like pericentromeric, H3K9me2/3-tagged regions
in higher eucaryotes, the dynamics of contact may be
slow (58,124) leading to less efficient spreading (37,60). As
discussed above, heterochromatin domains (e.g. H3K9me3,
H3K27me3) are often associated with architectural pro-
teins (e.g. HP1, PRC1) that may impact on their com-
paction. Therefore, it introduces again a dynamical feed-
back loop between long-range epigenomic spreading and
3D chromatin organization: nucleation of a chromatin state
drives its compaction that, in turn, facilitates spreading
and maintenance (35,87). Recently, we and other groups
investigated more carefully this coupling by developing a
model that explicitly account for both 3D and 1D dy-
namics of chromatin (37–39,102), highlighting the key role
played by genome folding on epigenomic regulation. Com-
bining the formalism developed here with such more de-
tailed framework would allow to better characterize the
structure-function relationship of chromatin including the
formation and maintenance of confined chromatin domain.

To conclude, the formalism developed here is generic and
modular, as it provides a simple description of epigenomic
regulation in terms of HMEs recruitment and enzymatic ac-
tivity. It can be easily upgraded to include more chromatin
modifications and cross-talks and feedback loops and can
thus be contextualized to a variety of specific chromatin reg-
ulatory systems (29).

A very promising application of our painter model might
be to explore how epigenomic (and corresponding tran-
scriptional) dynamics might influence genome evolution-
ary processes. Of particular interest is the challenging ques-
tion of the role of epigenome in the control of the integra-
tion and selection of transposable elements (TEs). TEs are
mobile genomic elements that can be inserted at new ge-
nomic positions or can modify their location either via a
‘copy and paste’ or in a ‘cut and paste’ mechanism (75).
They comprise as much as 40–46% of mammalian genomes.
For active retrotransposons, a specific class of TEs, host
cells have developed defense strategies in order to limit
their invasion and expansion and to maintain genome in-
tegrity. Most of these elements are targeted by epigenomic

silencing mechanisms (e.g. H3K9me2/3) (125–127) that
limit their expression and thus, in fine, restrict their capac-
ity of ‘parasitic’ transposition (128). This silencing is usu-
ally achieved by site specific recruitment of HMEs such as
Setdb1 and Su(var)3-9s that nucleate and further spread the
H3K9me2/3 marks (125,129,130) within TE elements and
beyond into the flanking region, as shown in Figure 9B with
the simple painter mode in mESC. Very similar spreading
patterns have also been observed around several other TE
families in two Drosophila species, D. melanogaster and D.
simulans (131). As expected and confirmed by our theoret-
ical approach that couples epigenomic and transcriptional
dynamics (Figure 8C), such long-range spreading of repres-
sive chromatin state from TE elements has been shown to
mediate long-range silencing of flanking genes (132). This
is actually reminiscent of the well-known phenomenon of
position effect variegation (PEV) observed in various or-
ganisms, where the incidental repositioning of a normally
expressed/repressed genes, by translocation or transposi-
tion, next to a hetero/euchromatin fuzzy domain boundary
induces its stochastic repression/expression depending on
the genomic distance between the insertion and the bound-
ary (95,133,134). On one hand, there is a generic selec-
tion against TE transposition into euchromatin due to their
deleterious effects for host cells that might be not only re-
lated to potential genetic alterations but also to epigenomic
alteration via PEV. As shown in (131), the species-specific
spreading ability of TEs is likely to be a driving force of their
counter-selection. On the other hand, TEs are main con-
tributors of genome evolution, by promoting genomic di-
versity and allowing regulatory innovations. Co-opted TEs
play a crucial regulatory role in various nuclear processes, in
particular in gene regulation during development (135,136)
as well as in 3D genome organisation (137). TEs are con-
stitutively silenced in most cell types and this silencing is
required not only to limit their transposition but also to
maintain proper cell-type 3D organisation and gene expres-
sion pattern. Hence, deregulation of TE has been associated
to pathologies and is a clear hallmark of cancer (138,139).
Overall, this clearly indicates the need to develop a quanti-
tative model based on the painter framework that would de-
scribe the epigenomic control of TEs and how they affect in
turn the epigenome dynamics of flanking genomic regions.
This will pave the way for a better understanding of the role
of epigenome dynamics in TE-based genome plasticity dur-
ing evolution as well as in pathologies.
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Code can be downloaded at https://github.com/physical-
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