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Background: Our aim was to establish a deep learning radiomics method to
preoperatively evaluate regional lymph node (LN) staging for hilar cholangiocarcinoma
(HC) patients.

Methods and Materials: Of the 179 enrolled HC patients, 90 were pathologically
diagnosed with lymph node metastasis. Quantitative radiomic features and deep
learning features were extracted. An LN metastasis status classifier was developed
through integrating support vector machine, high-performance deep learning radiomics
signature, and three clinical characteristics. An LN metastasis stratification classifier (N1
vs. N2) was also proposed with subgroup analysis.

Results: The average areas under the receiver operating characteristic curve (AUCs) of
the LN metastasis status classifier reached 0.866 in the training cohort and 0.870 in the
external test cohorts. Meanwhile, the LN metastasis stratification classifier performed well
in predicting the risk of LN metastasis, with an average AUC of 0.946.

Conclusions: Two classifiers derived from computed tomography images performed
well in predicting LN staging in HC and will be reliable evaluation tools to improve decision-
making.

Keywords: radiomics, hilar cholangiocarcinoma, computed tomography, lymph node, deep learning
1 INTRODUCTION

Hilar cholangiocarcinoma (HC) is one of the malignant tumors with poor prognosis, accounting for
approximately two-thirds of all biliary tract tumors (1, 2). As far as we know, radical surgical
resection is the most potential cure for HC patients to achieve long-term survival (3, 4). Studies
confirm that lymph node (LN) status is an important biomarker for HC prognosis (5). Meanwhile,
the stage of metastatic LNs (N1: one to three; N2: four or more) as a factor of poor prognosis was
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incorporated into the tumor node metastasis staging system (6).
In clinical practice, LN dissection is a critical surgical step for
suspicious LN-positive HC (7). However, routine LN dissection
does not provide significant therapeutic benefits for LN-negative
HC patients because of the increasing incidence of postoperative
complications (8). Therefore, precise evaluation of regional LN
staging in HC is critical to formulating individualized clinical
treatment strategies.

Traditional imaging characteristics are poorly predictive of
the accurate evaluation of LN staging in HC (9). Depending on
assessment using the naked eye, LN metastasis cannot be well
distinguished from benign swollen nodes (10). Although several
advanced imaging technologies have certain values for the
prediction of LN status, further study is urgently needed to
obtain stable indicators. Hence, there is still a lack of reliable
tools for evaluating LN staging in HC.

In recent years, the LN status has been proven to be an
important indicator in different tumors and has a marked impact
on the prognosis of patients (11, 12). Meanwhile, radiomics models
have achieved significant efficiency in predicting the LN status of
various malignant tumors (13, 14). Two radiomics studies
demonstrated that the radiomics signature (RS) was a potential
imaging biomarker of LN status prediction for biliary tract cancer
and intrahepatic cholangiocarcinoma (15, 16). Therefore, the
radiomics method may also be a valuable tool for LN staging in
HC. Nevertheless, there are only a few studies on LN evaluation in
HC through machine learning or deep learning.

Thus, our study focuses on developing deep learning
radiomics models for predicting the LN status and stratifying
LN metastasis in HC based on preoperative computed
tomography (CT) data. Our radiomics models integrating deep
learning features and clinical characteristics will be beneficial for
an individualized evaluation of LN staging.
2 METHODS

2.1 Patients
The Institutional Review Boards of both The First Affiliated
Hospital, School of Medicine, Zhejiang University (institution I)
and JinHua Center Hospital (institution II) accepted our study
and renounced the requirement of patients’ informed consent.
The imaging dataset contained 179 contrast-enhanced CT
images of 179 HC patients (institution I: 158 patients;
institution II: 21 patients) continuously collected from January
2011 to October 2019. Each patient in the dataset was imaged
once. For institution I, 81 patients were pathologically diagnosed
with LN metastasis, while the others were non-metastatic. There
were nine metastatic patients in institution II. There were 70 and
20 patients who were confirmed to be stage N1 (one to three
metastatic LNs) and N2 (more than three metastatic LNs) in
institutions I and II, respectively. The imaging data from
institution I were used as the training cohort to train the
structure. To improve the confidence of the results, the
imaging data from institution II were also used in the study as
an external test cohort.
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The inclusion criteria were as follows: 1) patients undergoing
radical operation, LN dissection, and pathological confirmation;
2) contrast-enhanced CT scans performed within 1 month
before surgery; and 3) availability of CT images and
pathological specimens. The exclusion criteria were as follows:
1) palliative surgery; 2) poor quality images that cannot be used
for delineation; 3) recurrent or metastatic lesions; and 4)
antitumor therapy before CT scans. The recruitment pathway
for patients is illustrated in Supplementary Figure S1.

2.2 Clinical Characteristics
Clinical characteristics such as age, sex, maximum tumor
diameter, preoperative plasma carcinoembryonic antigen
(CEA) level (positive or negative), carbohydrate antigen 19-9
(CA 19-9) level (positive or negative), and clinical stage were
derived from electronic medical records. The specific thresholds
distinguishing the levels (positive or negative) of two indicators
mentioned above were 5.0 ng/ml (CEA) and 37.0 U/ml (CA
19-9).

2.3 Image Acquisition
An Aquilion CT scanner (16-slice; Toshiba Medical Systems,
Tokyo, Japan) and a Brilliance iCT CT scanner (256-slice; Philips
Healthcare, Cleveland, OH, USA) were used to perform the CT
scans in our study. Furthermore, the acquisition parameters were
listed as follows: tube voltage, 100–120 kVp; matrix, 512 × 512;
tube current, 200–320 mAs; and slice thickness, 0.625–5.000
mm. Arterial phase (25–38 s), portal vein phase (55–85 s), and
delay phase (120–180 s) CT scans were performed after the
injection of a contrast agent (80–100 ml) into the vein of the
forearm (3.0 ml/s).

2.4 Process
The workflow of this study is shown in Figure 1. Firstly, imaging
data from the two institutions were preprocessed and the radiomic
features (RadFs) were extracted. Then, a convolutional neural
network (CNN) structure was trained with homologous breast
cancer data and the method of transfer learning. Secondly, deep
learning features (DLFs) were obtained from the fully connected
layer of the fine-tuned CNN structure. Thirdly, a deep learning
radiomics signature (DLRS) was built with a support vector
machine (SVM). An LN metastasis status classifier was proposed
by integrating the clinical factors and DLRS. An LN metastasis
stratification classifier was also built according to the results of
subgroup analysis.
3 THEORY AND CALCULATION

3.1 Tumor Region Segmentation
ITK-SNAP was used to segment the regions of interest (ROIs)
according to the maximum cross-section layer of the arterial
phase images of lesions. Segmentation was firstly obtained by an
experienced radiologist. Then, the result was reviewed by other
radiologists to guarantee the reliability of the ROIs. The usage of
ITK-SNAP is briefly introduced in Method S1.
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3.2 Feature Extraction
3.2.1 RadF Extraction
Several preprocesses were implemented before feature extraction
to improve the stability of the extracted features (17, 18) (see
Method S2). Four types of RadFs were extracted and used,
namely, intensity-based histogram features, texture features,
wavelet features, and local binary pattern (LBP) features (see
Method S3). Then, the imaging data of 38 patients randomly
selected from the dataset were re-segmented by radiologists and
the intraclass correlation efficient (ICC) calculated and used as
an indicator verifying the robustness of all extracted RadFs.
RadFs with an ICC > 0.75 were filtered out and used for
model construction.

3.2.2 Deep Learning Feature Extraction
DLFs were also examined. Due to the limitation of patient
population, transfer learning was considered as the optimal
method to train the CNN structure for our own dataset.
Firstly, the CNN structure was pre-trained with an open breast
cancer dataset from Kaggle (19). Then, for weight transfer, the
pre-trained CNN structure was further fine-tuned with our own
dataset. The data from institution I were randomly divided at a
ratio of 80%:20% for training and internal validation. Model
performance was evaluated with the classification accuracy on
the internal validation set. The optimal structure from five CNN
structures was selected according to the classification accuracy.
Finally, DLFs were extracted from the fully connected layer of the
optimal structure. More details on DLF extraction are described
in Process. The flowchart of feature extraction is shown
in Figure 2.
Frontiers in Oncology | www.frontiersin.org 3
3.3 Feature Selection and
Feature Combination
Before the training of classifiers, features were selected and
combined to reduce the information redundancy in the feature
set and to add additional valuable information by combining the
existing features. Firstly, radiomic features with low variance
were gradually removed to get rid of features with small value
changes. Then, correlation-based feature selection was applied to
both RadFs and DLFs in order to discard redundant features. To
simplify the learning procedure of the classifier and add valuable
information to the feature set, a symbolic regression (SR) based
on the genetic algorithm was implemented to reasonably
combine the original features into new features (20). The
outputs of SR were joined together as composite features (CFs)
in the feature set. More details on building the composite features
are available in Method S5. Finally, fivefold cross-validation was
used to screen out the beneficial features for model construction.

3.4 Construction of LN Metastasis
Status Classifier
With the features screened out, the DLRS was built using a
fivefold validation-based SVM algorithm. The performance of
the DLRS was evaluated via receiver operating characteristic
curve (ROC) and area under the ROC curve (AUC). Then, a
fusion model integrating DLRS and the clinical characteristics
through multivariate logistic regression was proposed. Integrated
discrimination improvement (IDI) was used to assess the
significance of improvement on the classification efficiency
between DLRS and RS. Decision curve analysis was conducted
and considered as an important indicator showing the net benefit
FIGURE 1 | Flowchart of this two-center study.
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of each proposed classifier under different thresholds. Finally, the
fusion model was selected as the LN metastasis status classifier
and a diagnostic nomogram was plotted. Also, the radiologist-
reported prediction and the fusion model outcomes were
compared to determine whether the fusion model can help
radiologists in clinical practice.

3.5 Construction of LN Metastasis
Stratification Classifier
We think that by fine-tuning the parameters of the LNmetastasis
status classifier, a new classifier can be made to stratify the risk of
patients with LN metastasis (N1 vs. N2), which is a potential
biomarker in predicting patients’ overall survival (OS). Before
training, the data from institutions I and II were merged because
there was no N2 patient from institution II. Patients without LN
metastasis were removed from the dataset. Then, the optimal
Frontiers in Oncology | www.frontiersin.org 4
CNN structure selected when constructing the LN metastasis
status classifier was re-trained with the remaining patients (80%
of 90 patients for training and 20% for validation). With the new
DLFs extracted from the fine-tuned CNN structure and the
RadFs, a new DLRS was obtained by SVM. Furthermore, the
LN metastasis stratification classifier was constructed with
fivefold cross-validation conducted for model evaluation.
Considering there was imbalance between the population of
cases and controls, area under the precision-recall curve
(AUPRC) was also implemented to offer more confidence in
the performance of the stratification classifier.

3.6 Statistical Analysis
Statistical results were obtained with R 3.6 and Python 3.7.
Moreover, IDI and decision curve analysis (DCA) were
performed with the packages PredictABEL and decisionCurve
FIGURE 2 | Workflow of feature extraction in hilar cholangiocarcinoma (HC) patients.
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in R, respectively. The ROC and AUC results were acquired with
the package pROC in R. Composite features were generated with
the package gplearn in Python. All CNN structures were trained
with TensorFlow.
4 RESULTS

4.1 Clinical Characteristics of Patients
Seven clinical characteristics were collected, namely, sex, CEA
level, CA 19-9 level, age, maximum tumor diameter, clinical
stage, and CT-reported LN status. Except for the CEA level, there
was no significant difference in the characteristics between the
two groups. The statistical results of the seven characteristics in
different datasets and different metastatic groups are shown in
Table 1 and Supplementary Table S1, respectively.

4.2 Features
In total, 1,067 quantitative RadFs were obtained from the ROIs of
the CT data, including 7 first-order histogram features, 848
wavelet features, 159 LBP features, and 53 texture features.
Five of the 53 texture features from neighborhood gray-tone
difference matrix (NGTDM), 13 from gray-level size zone matrix
(GLSZM), 13 from gray-level run length matrix (GLRLM), and
22 from gray-level co-occurrence matrix (GLCM) were
extracted. The specific extraction of RadFs is listed in
Supplementary Table S2.

For DLF extraction, five CNN structures (CancerNet,
ResNet50, VGG16, IncerptionV3, and DenseNet121) were
considered. According to the performance of the five CNN
structures, CancerNet was selected as the optimal network
structure for feature extraction, with accuracies of 0.719 (status
Frontiers in Oncology | www.frontiersin.org 5
classification) and 0.722 (stratification classification) in the
internal validation set (Figure 3A). This procedure was
conjectured from the result that the high performance of
CancerNet should be ascribed to its lower complexity
compared with the other structures, such as VGG16 and
ResNet50. A CNN structure with suitable complexity is easier
to train and against overfitting when the population of images
is limited.

The structure of CancerNet, a lightweight CNN network
specifically designed for breast cancer classification, is well
described in Supplementary Table S3. Layer Dense_2, the first
fully connected layer before the output layers, was used as the
DLF generator considering the structure of CancerNet. The CT
images awaiting identification were sent to the fine-tuned
CancerNet, while the 256 features inside layer Dense_2 were
extracted and saved as the DLF features. The procedure for DLF
extraction was conducted twice since there were two
classification tasks in our research: one is the LN metastasis
status classification and the other is the LN metastasis
stratification. Visualization of the CNN intermediate layer is
presented as an example in Supplementary Figure S2.

4.3 Feature Selection and Combination
Firstly, according to the ICC results, 510 RadFs passed the
examination and were included in the feature set. Then, these
510 RadFs along with 256 DLFs were further filtered to obtain
the feature sets that were useful for classifier training. For the LN
metastasis status classifier, 527 features were removed because of
low variance or high correlation. Fifty composite features were
generated in accordance with the 239 remaining features.
Recursive feature elimination and cross-validation (RFECV)
selected a subset that included 30 features to train and test the
TABLE 1 | Clinical characteristics of patients with hilar cholangiocarcinoma (HC) in different datasets.

Clinical characteristic All patients (n = 179) Training cohort (n = 158) External test cohort (n = 21) p-value (training vs. external)

Sex 0.475
Male 110 99 (63%) 11 (52%)
Female 69 59 (37%) 10 (48%)

Age (years), range 61.7 ± 8.9 61.3 ± 9.0 64.6 ± 7.2 0.566
Maximum tumor diameter (cm), range 2.4 ± 0.9 2.4 ± 1.0 1.9 ± 0.6 0.055
CEA level <0.001
Positive 69 49 (31%) 20 (95%)
Negative 110 109 (69%) 1 (5%)

CA 19-9 level 0.428
Positive 133 119 (75%) 14 (67%)
Negative 46 39 (25%) 7 (33%)

Clinical stage 0.815
I/II 103 90 (57%) 13 (62%)
III/IV 76 68 (43%) 8 (38%)

CT-reported LN status 0.593
Positive 43 37 (23%) 6 (29%)
Negative 136 121 (77%) 15 (71%)

LN metastasis 0.496
Positive 90 81 (51%) 9 (43%)
Negative 89 77 (49%) 12 (57%)
October 202
Six patients were not included because of incomplete clinical data. The threshold values for distinguishing the levels (positive or negative) of CEA and CA 19-9 were 5.0 ng/ml and 37.0 U/
ml, respectively. The statistical results of continuous variables were obtained based on a two-sidedMann–Whitney U test. The statistical results of categorical variables were acquired using
a two-sided chi-squared test.
CEA, preoperative plasma carcinoembryonic antigen; CA 19-9, carbohydrate antigen 19-9; LN, lymph node; CT, computed tomography.
1 | Volume 11 | Article 721460

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Access LN Staging via Deep-Learning Radiomics
LN metastasis status classifier. For LN metastasis stratification
classification, 273 features were removed because of low variance
or high correlation. After the composite features were generated,
26 features were selected by RFECV. The features finally
included for status classifier modeling and stratification
classification are available in Supplementary Tables S4 and
pS5. Two different methods were realized to visualize the
difference of the selected features between the case group and
the control group (Supplementary Figures S3, S4). According to
the results, the difference was significant between the two groups
and a nonlinear relationship between the features and prediction
target was found.

4.3 Construction of the LN Metastasis
Status Classifier
The SVM-based DLRS performed well with average AUCs of
0.835 in the training cohort and 0.833 (95% CI = 0.641–1.000) in
the external test cohort. The result of the fivefold cross-validation
showed no significant gap on the AUC of each fold, which
indicated no significant overfitting. The ROCs of the SVM-based
DLRS are shown in Figure 3B. The DLRS-predicted outcomes
coordinated well with the real LN status in both the training and
external test cohorts (Figure 3C).

A combination of the DLRS and clinical characteristics was
determined according to Akaike information criterion (AIC).
Finally, three clinical characteristics, i.e., the CEA level, CA 19-9
level, and CT-reported LN status, were selected for the
construction of the fusion model (AIC = −289.23). Details are
shown in Formula S1. The assembly obtained excellent AUCs of
0.866 in the training cohort and 0.870 in the external test cohort
(Figure 3D). More assessment criteria are available in Table 2.
Correlation analysis of the DLRS and clinical characteristics is
shown in Supplementary Figure S5.

To prove the value of the DLFs, a radiomics signature was
constructed with the same method and RadFs. For the training
cohort, the comparison of the DLRS and RS showed that the
average AUC was improved by 15.8% (0.835 vs. 0.721) after
consideration of the DLFs. IDI revealed that DLRS outperformed
RS in distinguishing the present and absent cases (IDI = 0.1529,
95% CI = 0.0864–0.2194, p < 1e−5). For the external test cohort,
the AUC was improved by 16.8% (0.833 vs. 0.713), while the
confidence of improvement was insignificant, which was due to
the small population of patients in the external test cohort (IDI =
0.1758, 95% CI = −0.0621 to 0.4137, p = 0.1476). It is assured that
the DLFs contained additional information that helped improve
the accuracy of classification. A clinical model was also
constructed to confirm the special contribution of DLRS to the
fusion model (Supplementary Figure S6). The fusion model
outperformed both RS and DLRS in terms of net benefit and,
thus, should be the optimal one among the three models
(Figure 3E). The nomogram for LN metastasis status
(Figure 3F) is beneficial for clinical application of the
status classifier.

To validate the performance of the LN metastasis status
classifier in clinical practice, we compared its outcomes with
assessment using the naked eye (Supplementary Figure S7). The
Frontiers in Oncology | www.frontiersin.org 6
accuracy of the status classifier was significantly higher than that
of the prediction given by radiologists in both the training cohort
(14.6% higher) and the external test cohort (14.3% higher). The
status classifier did much better than did the radiologists when
checking the LN metastasis cases, which indicated the potential
value of the status classifier in clinical application.

4.4 Construction of the LN Metastasis
Stratification Classifier
Firstly, the SVM-based DLRS constructed for stratification
classification performed well, with an average AUC of 0.946
(Figure 3G). Then, a fusion model was developed based on a
clinical characteristic (CT-reported LN status) and the
probability score obtained from DLRS. However, the accuracy
was not significantly improved after the clinical characteristic
was added in. Therefore, DLRS was selected as the ideal LN
metastasis stratification classifier. The precision-recall (PR) curve
was made and the AUPRC of the proposed classifier reached
0.801 (Supplementary Figure S8).
5 DISCUSSION

We utilized two deep learning models to preoperatively predict
the LN stage of HC patients. For evaluation of the LN status, the
DLRS established by SVM had excellent performance, with
AUCs of 0.835 and 0.833 for the training cohort and the
external test cohort, respectively. Meanwhile, the LN metastasis
status classifier incorporating DLRS and clinical characteristics
showed AUCs of 0.866 for the training cohort and 0.870 for the
external test cohort. For evaluation of the LN metastasis risk, an
SVM-based DLRS was proposed, which performed well in
predicting the risk stratification of LN metastasis, with an
average AUC of 0.946. The results above confirmed that the
LN staging prediction classifier will be effective for preoperative
regional LN staging of HC patients.

Deep learning has received remarkable attention in recent
years and achieved state-of-the-art performance in specific
clinical applications (21). In particular, CNN can exceed visual
evaluation to recognize complex image structural patterns in a
data-driven manner, and it has been used in automatic detection,
classification, staging, and volume segmentation (22). In
previous studies, the learning of CNN structures based on a
tremendous number of clinical images of skin lesions, optical
coherence tomography images of retinal diseases, or endoscopic
images of ulcerative colitis has achieved high-accuracy
classification prediction (23–26). CNN has also been applied to
ultrasound, X-ray film, and CT for the classification of child
pneumonia and liver fibrosis staging (25, 27, 28). Different from
the above deep learning research with adequate training data, a
single-CNN research on liver lesions based on hundreds of
imaging data was not outstanding (21). In our study,
CancerNet can predict the status of LN metastasis with an
accuracy of 0.719, which is a significant improvement
compared with assessment using the naked eye (0.614). This
result indicates that CNN is one of the potential solutions to
October 2021 | Volume 11 | Article 721460
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improving the efficiency and accuracy of preoperative LN
stage assessment.

Previous studies have proven that incorporating deep
learning feature sets with traditional radiomic feature sets is a
promising method for tumor phenotype evaluation. To predict
the LN metastasis risk in gastric cancer, DLFs based on transfer
Frontiers in Oncology | www.frontiersin.org 7
learning were applied to construct a deep learning radiomics
nomogram and showed high predictive value for individual
evaluation, with C-indexes of 0.821 (primary cohort), 0.797
(external validation cohort), and 0.822 (international validation
cohort) (29). Similarly, the RadFs and DLFs acquired by CNN
transferred from ImageNet were combined to predict the axillary
A B

D E

F G

C

FIGURE 3 | Deep learning radiomics nomograms and evaluation of the proposed classifiers. (A) Evaluation of five convolutional neural network (CNN) structures in
the internal validation cohort, in which CancerNet showed optimal performance. (B) Receiver operating characteristics (ROCs) of the support vector machine (SVM)-
based deep learning radiomics signature (DLRS) in the construction of the lymph node (LN) metastasis status classifier. Areas under the ROC curve (AUCs) are listed
in the lower right corner. (C) Calibration curves of DLRS indicating that the predicted outcomes coordinated well with the real LN status. (D) ROCs of the fusion
model integrating DLRS, the carbohydrate antigen 19-9 (CA 19-9) level, the carcinoembryonic antigen (CEA) level, and the computed tomography (CT)-reported LN
status. (E) Decision curve analysis (DCA) showing that the fusion model is optimal for LN metastasis status assessment. (F) Deep learning radiomics nomogram
based on the DLRS score, CEA level, CA 19-9 level, and the CT-reported LN status. (G) ROCs of the LN metastasis stratification classifier.
October 2021 | Volume 11 | Article 721460
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LN status of early-stage breast cancer, with an AUC of 0.902 (30).
Although the predictive ability of deep learning has been proven,
almost no relevant research has been conducted to predict the
LN stage of HC patients since a considerable proportion of
patients with advanced HC cannot receive surgical treatment.
We gathered imaging data from two centers. Transfer learning
was used on a lightweight CNN structure against the risk of
overfitting. Then, the fine-tuned CNN structure was used as a
feature generator to extract DLFs. Along with the traditional
RadFs, deep learning radiomics-based classifiers were built and
were proven to be effective in LN staging assessment, with
average AUCs of 0.870 and 0.946. Meanwhile, we further dug
the values of the proposed classifiers in clinical application. It was
confirmed that the LN status classifier greatly outperformed the
radiologists in terms of checking the LN metastasis cases and will
offer suggestions on decision-making.

The preoperative plasma CA 19-9 level as a clinical predictor
was included in our combination nomograms for LN staging in
HC. In previous studies, the CA 19-9 level as a predictor played an
important role in predicting intrahepatic cholangiocarcinoma
stage (31, 32). Furthermore, the fusion model incorporating the
CA 19-9 level achieved better predictive performance than did the
RS based only on imaging data (16, 33). However, in a group of
unclassified cholangiocarcinomas, the plasma CA 19-9 level was
poorly predictive as an independent predictor in models of LN
status prediction (15). Unfortunately, the effect of the CA 19-9
level was not explored in a recent magnetic resonance imaging-
based radiomics study for LN status prediction of extrahepatic
cholangiocarcinoma (34). In our study, the CA 19-9 level was
included in our nomograms for the LN staging of HC patients and
improved the prediction efficiency of the models.

Our deep learning radiomics nomograms will facilitate
individualized comprehensive treatment strategies for HC. In
current clinical practice, neither the short diameter of LNs nor
heterogeneity enhancement can effectively evaluate the LN status of
HC patients. In contrast to these traditional imaging characteristics,
our models constructed using RadFs and DLFs showed outstanding
performance in predicting the LN stage of HC patients.
Subsequently, patients with LN metastasis will benefit from
individualized LN dissection. Due to the poor therapeutic effect of
surgery alone for HC, traditional chemotherapy and radiation are
needed to improve the prognosis of patients with LN metastasis
(35). A recent meta-analysis has demonstrated that neoadjuvant
chemotherapy has potential benefits for HC patients (36).
Therefore, neoadjuvant chemotherapy should be attempted to
improve the prognosis of HC patients with high-risk LNmetastasis.
Frontiers in Oncology | www.frontiersin.org 8
This deep learning radiomics study has a few limitations.
Firstly, although HC is a common primary malignancy of the
liver, the cases enrolled here were limited because of the difficulty
in image acquisition. Secondly, we used 2D images for deep
learning and extraction of the radiomic features. Thirdly, we did
not include genetic data related to LN metastasis because our
goal was to construct appropriate deep learning radiomics
models for the LN staging of HC patients. Because of these
limitations, a future plan is made to continuously promote the
prediction efficiency and clinical application of the proposed
classifiers. International datasets will be included to expand the
sample size. Then, a 3D automatic segmentation will be
developed to take the burden off radiologists. The construction
of a multi-class CNN structure will also be considered. Finally,
we will incorporate more proven clinical predictors into the
classifiers to further improve the classification accuracy of
preoperative assessment.

In conclusion, noninvasive preoperative prediction models
were developed for regional LN staging of HC patients, which
showed excellent prediction performance. Our predictive models
will be useful for identifying individual regional LN stage in
order to guide personalized therapeutic schedules.
6 CONCLUSION

Two deep learning-based classifiers derived from computed
tomography images performed well in predicting the LN stage
of HC patients. The proposed models are promising and reliable
evaluation tools and will improve the decision-making on
differential diagnosis and the prediction of overall survival in
HC patients.
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