

Review



# Intravenous versus Epidural Routes of Patient-Controlled Analgesia in Abdominal Surgery: Systematic Review with Meta-Analysis

Dmitriy Viderman<sup>1,2,\*</sup>, Karina Tapinova<sup>1</sup>, Fatima Nabidollayeva<sup>3</sup>, Ramil Tankacheev<sup>4</sup> and Yerkin G. Abdildin<sup>3</sup>

- <sup>1</sup> Department of Biomedical Sciences, Nazarbayev University School of Medicine (NUSOM), Kerei, Zhanibek khandar Str. 5/1, Nur-Sultan 020000, Kazakhstan; karina.tapinova@nu.edu.kz
- <sup>2</sup> Department of Anesthesiology and Intensive Care, National Research Oncology Center, Kerei, Zhanibek khandar Str. 3, Nur-Sultan 020000, Kazakhstan
- <sup>3</sup> Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Ave., Nur-Sultan 010000, Kazakhstan;
- fatima.nabidollaeyeva@nu.edu.kz (F.N.); yerkin.abdildin@nu.edu.kz (Y.G.A.)
   Pain Management Department, National Neurosurgery Center, 34/1 Turan Ave.,
  - Nur-Sultan 010000, Kazakhstan; ramil.tankacheev@nmh.kz
- \* Correspondence: dmitriy.viderman@nu.edu.kz

Abstract: Objective: To compare the intravenous and epidural routes of patient-controlled anesthesia in abdominal surgery. Methods: We searched for randomized clinical trials that compared the intravenous and epidural modes of patient-controlled anesthesia in intra-abdominal surgery in adults. Data analysis was performed in RevMan 5.4. Heterogeneity was measured using I<sup>2</sup> statistic. Risk of bias was assessed using the Jadad/Oxford quality scoring system. Results: Seven studies reporting 529 patients were included into the meta-analysis. For pain at rest, the mean difference with 95% confidence interval (CI) was -0.00 [-0.79, 0.78], *p*-value 0.99, while for pain on coughing, it was 0.43 [-0.02, 0.88], p-value 0.06, indicating that patient-controlled epidural analgesia (PCEA) was superior. For the sedation score, the mean difference with 95% CI was 0.26 [-0.37, 0.89], p-value 0.42, slightly favoring PCEA. For the length of hospital stay, the mean difference with 95% CI was 1.13 [0.29, 1.98], p-value 0.009, favoring PCEA. For postoperative complications, the risk ratio with 95% CI was 0.8 [0.62, 1.03], p-value 0.08, slightly favoring patient-controlled intravenous analgesia (PCIVA). A significant effect was observed for hypotension, favoring PCIVA. Conclusions: Patient-controlled intravenous analgesia compared with patient-controlled epidural analgesia was associated with fewer episodes of hypotension. PCEA, on other hand, was associated with a shorter length of hospital stay. Pain control and other side effects did not differ significantly. Only three studies out of seven had an acceptable methodological quality. Thus, these conclusions should be taken with caution.

**Keywords:** patient-controlled analgesia; epidural analgesia; intravenous analgesia; pain control; abdominal surgery; postoperative pain

## 1. Introduction

Abdominal surgery is a frequent and definitive management option for a wide variety of abdominal diseases. Postoperative pain is one of the major issues that are frequently not appropriately controlled. Inadequate perioperative pain management is associated with nausea, vomiting, ileus, delayed ambulation, prolonged hospital stays, and increased total cost of hospitalization [1]. Patient-controlled analgesia (PCA) is considered the gold standard in postoperative pain management after major abdominal surgery, providing better results compared to standard intravenous opioid analgesia [2,3]. Existing patient-controlled analgesia techniques allow patients to titrate analgesics in small doses to optimize pain control and minimize the side effects [2–4]. Delivery of opioids via patient-controlled



Citation: Viderman, D.; Tapinova, K.; Nabidollayeva, F.; Tankacheev, R.; Abdildin, Y.G. Intravenous versus Epidural Routes of Patient-Controlled Analgesia in Abdominal Surgery: Systematic Review with Meta-Analysis. J. Clin. Med. 2022, 11, 2579. https://doi.org/ 10.3390/jcm11092579

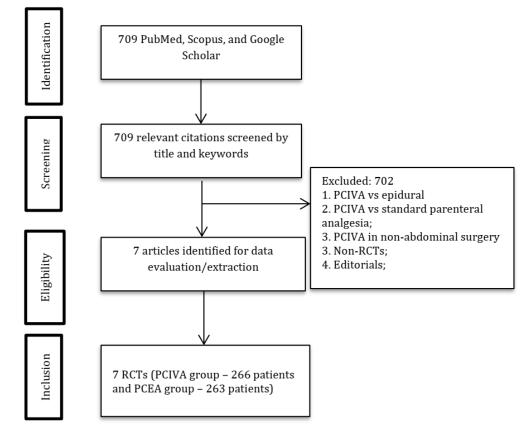
Academic Editor: Won Ho Kim

Received: 19 March 2022 Accepted: 20 April 2022 Published: 5 May 2022

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



**Copyright:** © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). intravenous analgesia (PCIVA) improves pain relief compared to nurse administration and requires less nursing, while the risks of opioid-related side effects, such as respiratory depression, sedation, nausea, and vomiting, are similar [4-6]. Previous studies have confirmed that PCIVA is preferred over nurse-administered opioids [4]. Continuous intravenous infusion of opioids compared with PCIVA results in a postoperative period associated with a significant increase in the incidence of respiratory depression [7]. Patient-controlled epidural anesthesia (PCEA) is another option of analgesic administration controlled by the patient. PCEA can employ opioids, local anesthetics, or both [8]. PCEA is believed to reduce the surgery-related sympathetic activity via a reduction of stimulation of the central nervous system. Other benefits of epidural patient-controlled analgesia include early gastrointestinal recovery after surgery [8]. These benefits are believed to be more visible in patients with a high risk of postoperative pulmonary and cardiac complications [9]. The benefit of these "patient-controlled" methods is that patients can control their own analgesia through an electronic controller. Whenever more analgesia is needed, patients can administer a predetermined dose of analgesic solution and titrate opioids depending on the individual pain intensity. Several previous randomized controlled trials demonstrated that thoracic epidural analgesia with opioids and local anesthetics resulted in a reduction of pain intensity compared with PCA at rest and on coughing [10–12]. Furthermore, multiple studies showed benefits of epidural use, such as a reduction in the rates of systemic side effects attributed to opioids delivered through PCIVA, e.g., sedation and respiratory depression and bowel dysfunction. Epidural PCA contributes to early ambulation and early return to normal activities [10–12]. Conversely, epidural analgesia is invasive, time-consuming, requires technical skills, is more expensive [13], and carries risks of serious complications, such as infection, nerve injury, and paralysis [8]. Moreover, the rates of analgesic failure or malfunctioning of epidural catheters can be high [4].


The purpose of this meta-analysis was to compare PCIVA and PCEA in intraabdominal surgery.

#### 2. Materials and Methods

This meta-analysis was conducted and is reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.

One author (DV) searched for relevant articles in PubMed, Google Scholar, and the Cochrane Library published before October 2021 (Figure 1).

The following search terms or their combination "patient-controlled analgesia", "patientcontrolled intravenous analgesia", "intravenous patient-controlled analgesia", "patientcontrolled epidural analgesia", "epidural patient-controlled analgesia", "abdominal surgery" were used during the search. The following keyword combinations were used for PubMed: (((((patient-controlled analgesia)) OR (patient-controlled intravenous analgesia)) OR (intravenous patient-controlled analgesia)) OR (patient-controlled epidural analgesia)) OR (epidural patient-controlled analgesia)) AND (abdominal surgery).



**Figure 1.** PRISMA diagram. Abbreviations: PCIVA, patient-controlled intravenous analgesia; PCEA, patient-controlled epidural analgesia.

## 2.1. Criteria for Including Studies

Types of studies: we considered only randomized controlled trials (RCTs).

Age of participants: 18 years and older.

Types of surgical procedures: open surgeries, liver, gastric, intestinal, urologic, and gynecologic surgeries.

Timing of outcomes: the outcomes were evaluated at any time during the period of the individual studies.

#### 2.2. Exclusion Criteria

Types of studies: non-RCTs, Editorials.

Types of participants: pediatric, under 18.

Types of surgical procedures: non-abdominal surgeries, laparoscopic surgeries.

The studies were checked for the correctness of the groups. Studies not reporting PCIVA vs. PCEA in abdominal surgery were excluded.

## 2.3. Primary Outcomes

Pain intensity score at rest and on movement (or when coughing) measured 24 h after surgery and assessed using a visual analogue scale (VAS) or a numeric rating scale (NRS), from 0 to 10 or from 0 to 100.

## 2.4. Secondary Outcomes

- 1. Side effects
  - 1. Respiratory depression (respiratory rate <10 per minute, hypoxemia (SpO<sub>2</sub> < 90% by pulse oximetry), administration of opioid antagonists).
  - 2. Nausea and vomiting
  - 3. Pruritus

- 4. Sedation
- 5. Respiratory complications such as respiratory depression (respiratory rate less than 10 breaths per minute or requirement for an opioid antagonist), hypoxemia (defined as  $SpO_2 < 90\%$  by pulse oximetry).
- 6. Hypotension leading to worsening conditions or requiring fluid or vasopressor administration.
- 2. Length of hospital stay (LoS) and length of stay in post-anesthesia care unit or intensive care unit (if reported).

#### 2.5. Assessment of Methodological Quality and Critical Appraisal of Individual Studies

Two reviewers, DV and YA, appraised the quality of each study, independently. Any discrepancies were resolved by DV and YA by discussion until reaching a consensus or, if this was not possible, by inviting a third reviewer (KT). The methodological quality of the included studies was assessed using the Oxford quality scoring system (Jadad Scale) [14]. The quality of the studies was graded from 1 (min) to 5 (max) as low (<3), acceptable (3), good (4), and excellent (5).

#### 2.6. Data Extraction and Statistical Methods

KT and FN independently collected data from published original articles. The data were rechecked by DV and YA. We entered the data into a data table. The following rubrics were included: reference, 1st author, year of publication, country, design and goals of the study, age of the participants, type of surgery, sample size, American Society of Anesthesiologists (ASA) physical status, pharmacological agents and adjuvants, and side effects.

The risk of bias due to missing results was addressed as follows. If studies had missing data values (e.g., sample standard deviations), we tried to estimate them by known estimation techniques using other statistics (e.g., 1st, 2nd, 3rd quartiles, 95% CIs). We calculated the sample mean and the sample standard deviation from data presented in the 1st quartile, median, 3rd quartile, and sample size using the methods developed by Luo et al. [15] for sample mean and by Wan et al. [16] for sample standard deviation. If such statistics were not reported, the study was not included into our meta-analysis.

Data analysis was conducted using the "Review Manager software (RevMan, version 5.4)". It applies the Inverse Variance method for continuous data and the Mantel–Haenszel statistical method of analysis for dichotomous data by default and provides 95% CIs for each outcome. Pooled continuous outcomes were reported as mean difference with 95% confidence intervals, and pooled dichotomous outcomes were reported as risk ratio with 95% confidence intervals. Heterogeneity was assessed using I<sup>2</sup> statistic. The sensitivity analysis was conducted by eliminating one study at a time to analyze the possible change of the results. Due to different populations examined in the studies, we used a random-effects meta-analysis in our study.

## 3. Results

The systematic search yielded 709 articles, of which 702 articles were excluded after screening. Seven articles reporting 529 patients (PCIVA group, 266 and PCEA group, 263) were selected for the meta-analysis [10,17–22] (Figure 1, Table 1).

| Author,<br>Citation    | Country | Study<br>Design | Study Goals                                                                                                                                                           | Age                                                   | N of Patients:<br>Total<br>(Interven-<br>tion/Control) | Group                    | Diagnosis                                      | Surgery                       | General<br>Anesthesia | ASA   | Dose of<br>Opioids and<br>Local<br>Anesthetics                                                                                                                                                      | Postoperative Analgesia                                                                                                                                                                                                                                                                                                                                                                                    | Conclusions                                                                                                                   |
|------------------------|---------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------|------------------------------------------------|-------------------------------|-----------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Ferguson,<br>2009 [21] | USA     | RCT             | Primary—pain at<br>rest and cough (VAS,<br>0-10).<br>Secondary—GI and<br>GU function, time<br>to discharge                                                            | PCEA: 57<br>C: 55                                     | 135 (67/68)                                            | PCEA<br>C: IV PCA        | Gynecologic<br>cancer                          | Open GYN<br>cancer<br>surgery | Yes                   | -     | PCEA:<br>morphine<br>100 μg/mL,<br>0.05%<br>bupivacaine,<br>4 mL/h.<br>Rescue: 4 mL<br>every 0.5 h                                                                                                  | All: 15–30 mg IV ketorolac<br>every 8 h, 2 post-op days<br>PCEA: morphine<br>100 µg/mL, 0.05%<br>bupivacaine, 4 mL/h,<br>continuous<br>Rescue: 4 mL every 0.5 h<br>C: morphine, 1 mg/h,<br>continuous<br>Rescue PCA: 1 mg every<br>10 min                                                                                                                                                                  | PCEA<br>provides<br>better<br>analgesia<br>after open<br>GYN cancer<br>resections                                             |
| Zhu,<br>2013 [19]      | China   | RCT             | Pain (VAS, 0–10),<br>blood sugar, time to<br>flatus, safety,<br>duration of<br>hospital stay                                                                          | 20-75<br>PCEA: 61.1<br>(12.6)<br>PCIA: 59.6<br>(13.0) | 60 (30/30)                                             | PCEA: T8-T9<br>PCIA      | Gastric<br>cancer                              | Gastrectomy                   | Yes                   | -     | PCEA: 0.05%<br>bupivacaine,<br>100 μg/mL<br>morphine,<br>4 mL/h,<br>2 days.<br>Rescue: 4 mL,<br>0.5 h lockout                                                                                       | All: pethidine.<br>PCEA: 0.05 % bupivacaine,<br>100 μg/mL morphine,<br>4 mL/h continuous, 2 days.<br>Rescue: 4 mL, 0.5 h lockout<br>PCIA: morphine, 1 mg/h,<br>continuous.<br>Rescue: 1 mg every 10 min                                                                                                                                                                                                    | After<br>gastrectomy,<br>PCEA<br>provided<br>safer and<br>better pain<br>control and<br>faster<br>recovery of<br>GI function. |
| Moawad,<br>2014 [17]   | Egypt   | RCT             | Pain (NPRS, 0–10),<br>rescue analgesia use,<br>sedation, and<br>patient satisfaction.<br>Complications<br>(PONV, shivering,<br>pruritus, or<br>pulmonary<br>problems) | 20-60<br>PCEA: 44.45<br>(10.56)PCIA:<br>45.20 (10.61) | 99 (49/50)                                             | PCEA: T10-12<br>PCIA: IV | -                                              | Abdominal<br>surgery          | Yes                   | I, II | PCEA:<br>bupivacaine<br>0.125%,<br>fentanyl                                                                                                                                                         | All: Rescue 0.5 μg/kg IV<br>fentanyl<br>PCEA: fentanyl 5 μg/mL,<br>bupivacaine 0.125%<br>(1.25 mg/mL), bolus<br>PCIA: fentanyl<br>20 μg/mL, bolus                                                                                                                                                                                                                                                          | PCEA<br>demonstrated<br>superior<br>analgesia,<br>less sedation,<br>and higher<br>patient<br>satisfaction.                    |
| Moslemi,<br>2015 [18]  | Iran    | RCT             | Primary—pain (VAS,<br>1–10).<br>Secondary—rescue<br>analgesia use, side<br>effects (nausea,<br>vomiting, ileus,<br>pruritis, sedation,<br>pulmonary<br>problems)      | 40-60<br>IVPCA: 53.8<br>(11.4)<br>PCEA: 49.9<br>(8.8) | 90 (45/45)                                             | PCEA:<br>L2-L3IVPCA      | Ovarian,<br>endometrial,<br>cervical<br>cancer | GYN cancer<br>surgeries       | Yes                   | І, П  | PCEA: 0.5%<br>bupivacaine<br>120 mg<br>(24 mL)<br>(bupivacaine<br>hydrochlo-<br>ride<br>50 mg/20 mL),<br>fentanyl<br>150 μg (3 mL)<br>in saline.<br>6–8 mL/h,<br>2 mL every<br>15 min on<br>demand. | All: rescue—pethidine<br>(0.5 mg/kg IV)<br>PCEA: 0.5% bupivacaine<br>120 mg (24 mL)<br>(bupivacaine hydrochloride<br>50 mg/20 mL), fentanyl<br>150 µg (3 mL) in saline.<br>6-8 mL/h, 2 mL bolus<br>every 15 min on demand<br>IVPCA: 300 µg (6 mL)<br>fentanyl, 200 mg (4 mL)<br>pethidine, 8 mg (2 mL)<br>ondansetron in 0.9% saline,<br>total 100 mL. 6-8 mL/h,<br>2 mL bolus every 15 min,<br>on demand. | Epidural<br>analgesia<br>provided<br>lower<br>sedation and<br>less<br>respiratory<br>depression                               |

 Table 1. Characteristics of the studies included in the meta-analysis.

Table 1. Cont.

| Author,<br>Citation     | Country | Study<br>Design | Study Goals                                                                                                                                                                                                      | Age                                          | N of Patients:<br>Total<br>(Interven-<br>tion/Control) | Group                               | Diagnosis          | Surgery                                                   | General<br>Anesthesia | ASA   | Dose of<br>Opioids and<br>Local<br>Anesthetics                                                                                                                                                   | Postoperative Analgesia                                                                                                                                                                                                                                                                                                                                                                                                                             | Conclusions                                                                                                                                                                                    |
|-------------------------|---------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------|-------------------------------------|--------------------|-----------------------------------------------------------|-----------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fayed,<br>2014 [20]     | Egypt   | RCT             | Primary—pain.<br>Secondary—side<br>effects (sedation,<br>PONV, urinary<br>retention,<br>pulmonary and<br>neurological<br>complications),<br>recovery of GI<br>function, duration of<br>ICU and<br>hospital stay. | P: 50.1 (9.7)<br>E: 50.8 (11.5)              | 34 (17/17)                                             | E: epidural<br>T11-T12 P:<br>IV PCA | Liver<br>cirrhosis | Hepatic<br>resection                                      | Yes                   | I, II | E:<br>bupivacaine<br>0.125%,<br>2 μg/mL<br>fentanyl                                                                                                                                              | All: IV pethidine,<br>paracetamol<br>E: bupivacaine 0.125%,<br>2 μg/mL fentanyl.<br>6 mL/h, continuous, 3 mL<br>bolus every 15 min.<br>P: IV fentanyl 15 μg, 10 min<br>lockout, 90 μg/h<br>maximum.                                                                                                                                                                                                                                                 | IV PCA and<br>epidural<br>analgesia are<br>similarly<br>efficient.<br>Higher risk of<br>coagulopathy<br>in cirrhotic<br>patients<br>favors<br>IVPCA.                                           |
| Steinberg,<br>2002 [22] | USA     | RCT             | Primary—duration<br>of hospital stay.<br>Secondary—<br>recovery,<br>safety                                                                                                                                       | 18-80<br>PCEA: 62 (10)<br>IV PCA: 61<br>(15) | 41 (20/21)                                             | PCEA<br>IV PCA                      | -                  | Open colon<br>surgery                                     | Yes                   | I-III | PCEA:<br>ropivacaine<br>0.2%,<br>fentanyl<br>(2 g/mL),<br>8 mL/h intra-<br>operatively                                                                                                           | All: ketorolac 15 mg. After<br>3 days, ibuprofen 400 mg<br>PO 4/day until<br>discharge or post-op day 6<br>PCEA: ropivacaine 0.2%,<br>fentanyl (2 g/mL), 4 mL/h<br>2 mL ropivacaine/fentanyl<br>bolus, 15 min lockout.<br>Rescue—5 mL ropivacaine<br>2 mg/mL, fentanyl 2 g/mL,<br>in 15 min. If needed,<br>another bolus in 0.5 h. If<br>inadequate<br>analgesia—4-6 mL<br>ropivacaine 7.5 mg/mL.<br>IV PCA: morphine<br>0.1 mg/kg intraoperatively | PCEA offers<br>better pain<br>management,<br>lowers opioid<br>use, and<br>enables faster<br>recovery.                                                                                          |
| Mann,<br>2000 [10]      | France  | RCT             | Primary—pain and<br>side effects.<br>Secondary—mental<br>status and<br>complications (GI,<br>pulmonary, and<br>hemodynamic)                                                                                      | PCA: 76.8<br>(4.7)<br>PCEA: 76.1<br>(5.6)    | 70 (35/35)                                             | IVPCA<br>PCEA: T7-T9<br>or T9-T11   | -                  | Colectomy,<br>gastrectomy,<br>cephalic pan-<br>reatectomy | Yes                   | Ι, Π  | PCEA: intra-<br>operative<br>0.25%<br>bupivacaine,<br>1 pg/mL<br>sufentanil,<br>postoperative<br>0.125%<br>bupivacaine,<br>0.5-pg/mL<br>sufentanil,<br>2-3 mL,<br>12 min<br>lockout,<br>3-5 mL/h | IV PCA: 1.5 mg morphine<br>bolus, 8 min lockout.<br>PCEA: 2–3 mL, 12 min<br>lockout,<br>3–5 mL/h, continuous.                                                                                                                                                                                                                                                                                                                                       | Epidural<br>analgesia<br>provides<br>superior pain<br>control and<br>better mental<br>and GI<br>activity but<br>did not<br>improve<br>postoperative<br>delirium or<br>complica-<br>tions rate. |

Abbreviations: RCT—randomized controlled trials, PCEA—patient-controlled epidural analgesia, PCA—patient-controlled analgesia, GYN—gynecology, PCIA—patient-controlled intravenous analgesia, NPRS—Numeric Pain Rating Scale, PONV—postoperative nausea and vomiting, VAS—visual analogue scale, GI—gastrointestinal.

#### 3.1. Postoperative Pain Scores at Rest (at 24 h)

Three studies reported the postoperative pain scores at rest [17–19]. The forest plot in Figure 2 shows no difference between PCEA and PCIVA: the mean difference with 95% CI was -0.00 [-0.79, 0.78]. The model showed high heterogeneity (I<sup>2</sup> = 91%), which was significant (*p*-value = 0.0001). We utilized the mean difference since all studies used the same 0-10 scale. The total number of patients in the two groups was very close, i.e., 124 for PCEA, and 125 for PCIVA.

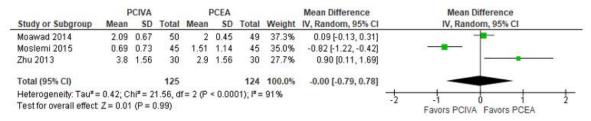



Figure 2. Postoperative pain scores at rest (at 24 h) [17–19].

#### 3.2. Postoperative Pain Scores on Coughing (at 24 h)

The model (Figure 3) showed no significant difference between PCEA and PCIVA [19–21]: the mean difference with 95% confidence interval (CI) was 0.43 [-0.02, 0.88]. The total number of patients in the PCIVA group was 114, and that in the PCEA group was 115. One study [21] did not provide the sample standard deviation, but the sample mean for the PCEA group was lower than the one for the PCIVA group, which supported the model's overall result. The mean pain scores were higher for the PCIVA groups (6.61; 6.7; 5.9) than for the PCEA groups (6.29; 5.5; 5); therefore, the mean difference (PCIVA–PCEA) was positive, favoring PCEA, since a lower pain score is preferred.

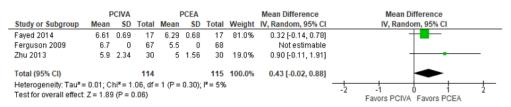



Figure 3. Postoperative pain scores on coughing (at 24 h) [19–21].

#### *3.3. Postoperative Sedation Score (at 24 h)*

Only two studies [17,20] reported the postoperative sedation score. The model (Figure 4) did not show a clear advantage of PCEA over PCIVA: the mean difference with 95% CI was 0.26 [-0.37, 0.89]. The model showed high heterogeneity (I<sup>2</sup> = 78%), which was significant (*p*-value = 0.03). The total number of patients in the two groups was very close, i.e., 66 in the PCEA group, and 67 in the PCIVA group.

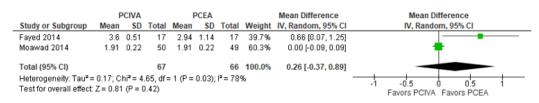



Figure 4. Postoperative sedation score (at 24 h) [17,20].

#### 3.4. Postoperative Complications

Considering its overall effect, the model (Figure 5) did not favor PCIVA over PCEA; the risk ratio with 95% CI was 0.80 [0.62, 1.03], *p*-value = 0.08.

| tudu or Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PCIV                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PCE/                                                                                                               |                                                                                                                                                   | Mainter 11                                                                                                                                                                | Risk Ratio                                                                                                                                                                                                                           | Risk Ratio          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Events                                                                                                                                            | otal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Events                                                                                                             | rotal                                                                                                                                             | weight M                                                                                                                                                                  | -H, Random, 95% Cl                                                                                                                                                                                                                   | M-H, Random, 95% Cl |
| .4.1 Hypotension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                   | ~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                  |                                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                                                                                                      |                     |
| 1ann 2000<br>Naimhean 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                 | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                  | 31                                                                                                                                                | 0.8%                                                                                                                                                                      | 0.09 [0.00, 1.49]                                                                                                                                                                                                                    |                     |
| steinberg 2002<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                 | 21<br><b>54</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                 | 20<br>51                                                                                                                                          | 0.8%<br>1.5%                                                                                                                                                              | 0.05 [0.00, 0.73]<br>0.06 [0.01, 0.45]                                                                                                                                                                                               |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                   | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15                                                                                                                 | 51                                                                                                                                                | 1.370                                                                                                                                                                     | 0.00 [0.01, 0.45]                                                                                                                                                                                                                    |                     |
| 'otal events<br>leterogeneity: Tau² =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>0.00: Chi                                                                                                                                    | z = 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15<br>df = 1 /0                                                                                                    | 0 - 0 7                                                                                                                                           | 5)· IZ = 0.00                                                                                                                                                             |                                                                                                                                                                                                                                      |                     |
| est for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    | - 0.7                                                                                                                                             | 3),1 = 0.%                                                                                                                                                                |                                                                                                                                                                                                                                      |                     |
| .4.2 Pruritus<br>erguson 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24                                                                                                                                                | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35                                                                                                                 | 62                                                                                                                                                | 23.4%                                                                                                                                                                     | 0.60.10.47.1.001                                                                                                                                                                                                                     |                     |
| loslemi 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24                                                                                                                                                | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35                                                                                                                 | 45                                                                                                                                                | 23.4%                                                                                                                                                                     | 0.69 [0.47, 1.00]<br>5.00 [0.25, 101.31]                                                                                                                                                                                             |                     |
| iteinberg 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                 | 40<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                  | 40                                                                                                                                                | 2.8%                                                                                                                                                                      | 0.27 [0.06, 1.16]                                                                                                                                                                                                                    |                     |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                 | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                    | 127                                                                                                                                               | 26.9%                                                                                                                                                                     | 0.63 [0.26, 1.58]                                                                                                                                                                                                                    | -                   |
| otal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42                                                                                                                 |                                                                                                                                                   | 201070                                                                                                                                                                    | 0100 [0120, 1100]                                                                                                                                                                                                                    | -                   |
| leterogeneity: Tau² =<br>'est for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.29; Chi                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | df = 2 (F                                                                                                          | ° = 0.2                                                                                                                                           | 0); I² = 38%                                                                                                                                                              |                                                                                                                                                                                                                                      |                     |
| .4.3 Postoperative i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | leus                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    |                                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                                                                                                      |                     |
| erguson 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                 | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                  | 67                                                                                                                                                | 4.1%                                                                                                                                                                      | 0.56 [0.17, 1.83]                                                                                                                                                                                                                    |                     |
| loslemi 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                 | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                  | 45                                                                                                                                                | 0.7%                                                                                                                                                                      | 9.00 [0.50, 162.43]                                                                                                                                                                                                                  |                     |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                   | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                    | 112                                                                                                                                               | 4.8%                                                                                                                                                                      | 1.67 [0.10, 26.62]                                                                                                                                                                                                                   |                     |
| 'otal events<br>leterogeneity: Tau² =<br>'est for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    | P = 0.0                                                                                                                                           | 7); I² = 70%                                                                                                                                                              |                                                                                                                                                                                                                                      |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                   | F = 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -)                                                                                                                 |                                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                                                                                                      |                     |
| .4.4 Anastomosis le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    |                                                                                                                                                   | 4.00                                                                                                                                                                      | 0.00 /0.04                                                                                                                                                                                                                           |                     |
| 1ann 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                 | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                  | 31                                                                                                                                                | 1.2%                                                                                                                                                                      | 2.82 [0.31, 25.68]                                                                                                                                                                                                                   |                     |
| Thu 2013<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                 | 30<br>63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                  | 30<br>61                                                                                                                                          | 0.7%<br><b>1.9%</b>                                                                                                                                                       | 5.00 [0.25, 99.95]<br>3.45 [0.58, 20.41]                                                                                                                                                                                             |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                 | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                  | 01                                                                                                                                                | 1.970                                                                                                                                                                     | 5.45 [0.38, <b>2</b> 0.41]                                                                                                                                                                                                           |                     |
| 'otal events<br>leterogeneity: Tau² =<br>'est for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00; Chi                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | df = 1 (F                                                                                                          | P = 0.7                                                                                                                                           | 6); I² = 0%                                                                                                                                                               |                                                                                                                                                                                                                                      |                     |
| .4.5 Surgical site inf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | fection                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    |                                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                                                                                                      |                     |
| erguson 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                 | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                  | 67                                                                                                                                                | 5.0%                                                                                                                                                                      | 0.62 [0.21, 1.79]                                                                                                                                                                                                                    |                     |
| .hu 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                 | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                  | 30                                                                                                                                                | 0.7%                                                                                                                                                                      | 0.20 [0.01, 4.00]                                                                                                                                                                                                                    |                     |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                   | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                    | 97                                                                                                                                                | 5.6%                                                                                                                                                                      | 0.54 [0.20, 1.48]                                                                                                                                                                                                                    | -                   |
| 'otal events<br>leterogeneity: Tau² =<br>'est for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    | P = 0.4                                                                                                                                           | 8); I² = 0%                                                                                                                                                               |                                                                                                                                                                                                                                      |                     |
| .4.6 Urinary tract inf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                   | 1 - 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>''</i>                                                                                                          |                                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                                                                                                      |                     |
| erguson 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                 | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                  | 67                                                                                                                                                | 1.6%                                                                                                                                                                      | 0.99 [0.14, 6.79]                                                                                                                                                                                                                    |                     |
| hu 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                 | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                  | 30                                                                                                                                                | 0.7%                                                                                                                                                                      | 0.20 [0.01, 4.00]                                                                                                                                                                                                                    |                     |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                   | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                  | 97                                                                                                                                                | 2.3%                                                                                                                                                                      | 0.62 [0.12, 3.13]                                                                                                                                                                                                                    |                     |
| otal events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                  |                                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                                                                                                      | -                   |
| leterogeneity: Tau² =<br>'est for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    | ° = 0.3                                                                                                                                           | 7); I² = 0%                                                                                                                                                               |                                                                                                                                                                                                                                      |                     |
| .4.7 Pulmonary infe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    |                                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                                                                                                      |                     |
| 1000 JU00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                   | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                  | 31                                                                                                                                                | 0.8%                                                                                                                                                                      | 0.94 [0.06, 14.38]                                                                                                                                                                                                                   |                     |
| 1ann 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                 | ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                    | 30                                                                                                                                                |                                                                                                                                                                           |                                                                                                                                                                                                                                      |                     |
| hu 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>2                                                                                                                                            | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                  |                                                                                                                                                   | 1.1%                                                                                                                                                                      | 2.00 [0.19, 20.90]                                                                                                                                                                                                                   |                     |
| hu 2013<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   | 30<br>63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                  | <mark>61</mark>                                                                                                                                   | 1.9%                                                                                                                                                                      | 2.00 [0.19, 20.90]<br>1.45 [0.24, 8.59]                                                                                                                                                                                              |                     |
| hu 2013<br><b>ubtotal (95% CI)</b><br>otal events<br>leterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2<br>3<br>0.00; Chi                                                                                                                               | 63<br><sup>2</sup> = 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2<br>, df = 1 (F                                                                                                   | 61                                                                                                                                                | 1.9%                                                                                                                                                                      |                                                                                                                                                                                                                                      | -                   |
| hu 2013<br><b>ubtotal (95% CI)</b><br>otal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2<br>3<br>0.00; Chi                                                                                                                               | 63<br><sup>2</sup> = 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2<br>, df = 1 (F                                                                                                   | 61                                                                                                                                                | 1.9%                                                                                                                                                                      |                                                                                                                                                                                                                                      |                     |
| hu 2013<br>ubtotal (95% Cl)<br>otal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>.4.8 Nausea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2<br>3<br>0.00; Chi                                                                                                                               | 63<br><sup>2</sup> = 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2<br>, df = 1 (F                                                                                                   | 61                                                                                                                                                | 1.9%                                                                                                                                                                      |                                                                                                                                                                                                                                      |                     |
| hu 2013<br>ubtotal (95% CI)<br>otal events<br>ieterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>.4.8 Nausea<br>erguson 2009<br>ioawad 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2<br>3<br>0.00; Chř<br>Z = 0.41 (<br>35<br>5                                                                                                      | <b>63</b><br><sup>2</sup> = 0.17<br>P = 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2<br>, df = 1 (F<br>3)                                                                                             | 61<br>P = 0.6                                                                                                                                     | <b>1.9%</b><br>8); I <sup>2</sup> = 0%                                                                                                                                    | 1.45 [0.24, 8.59]<br>0.85 [0.64, 1.13]<br>1.23 [0.35, 4.29]                                                                                                                                                                          |                     |
| hu 2013<br>ubtotal (95% Cl)<br>otal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>.4.8 Nausea<br>erguson 2009<br>loawad 2014<br>loslemi 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2<br>3<br>0.00; Chi<br>Z= 0.41 (<br>35                                                                                                            | <b>63</b><br><sup>2</sup> = 0.17<br>P = 0.68<br>62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2<br>, df = 1 (F<br>3)<br>41                                                                                       | 61<br>P = 0.6<br>62                                                                                                                               | <b>1.9%</b><br>8); I <sup>2</sup> = 0%<br>31.2%                                                                                                                           | 1.45 [0.24, 8.59]<br>0.85 [0.64, 1.13]<br>1.23 [0.35, 4.29]<br>1.30 [0.64, 2.65]                                                                                                                                                     |                     |
| hu 2013<br>ubtotal (95% CI)<br>otal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>.4.8 Nausea<br>erguson 2009<br>loawad 2014<br>loslemi 2015<br>teinberg 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2<br>3<br>0.00; Chř<br>Z = 0.41 (<br>35<br>5                                                                                                      | 63<br><sup>2</sup> = 0.17<br>P = 0.68<br>62<br>50<br>45<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2<br>, df = 1 (F<br>3)<br>41<br>4                                                                                  | 61<br>9 = 0.6<br>62<br>49<br>45<br>20                                                                                                             | 1.9%<br>8); I² = 0%<br>31.2%<br>3.7%<br>9.9%<br>3.1%                                                                                                                      | 1.45 [0.24, 8.59]<br>0.85 [0.64, 1.13]<br>1.23 [0.35, 4.29]<br>1.30 [0.64, 2.65]<br>0.71 [0.18, 2.80]                                                                                                                                |                     |
| hu 2013<br>ubtotal (95% Cl)<br>otal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br><b>4.8 Nausea</b><br>erguson 2009<br>loawad 2014<br>looslemi 2015<br>teinberg 2002<br>ubtotal (95% Cl)                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2<br>0.00; Chi <sup>*</sup><br>Z = 0.41 (<br>35<br>5<br>13<br>3                                                                                   | 63<br><sup>2</sup> = 0.17<br>P = 0.68<br>62<br>50<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2<br>, df = 1 (F<br>3)<br>41<br>4<br>10<br>4                                                                       | 61<br>9 = 0.6<br>62<br>49<br>45                                                                                                                   | <b>1.9%</b><br>8); I <sup>2</sup> = 0%<br>31.2%<br>3.7%<br>9.9%                                                                                                           | 1.45 [0.24, 8.59]<br>0.85 [0.64, 1.13]<br>1.23 [0.35, 4.29]<br>1.30 [0.64, 2.65]                                                                                                                                                     |                     |
| hu 2013<br>ubtotal (95% Cl)<br>otal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>.4.8 Nausea<br>erguson 2009<br>loawad 2014<br>loslemi 2015<br>teinberg 2002<br>ubtotal (95% Cl)<br>otal events<br>leterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                            | 2<br>3<br>0.00; Chiř<br>Z = 0.41 (<br>35<br>5<br>13<br>3<br>5<br>6<br>0.00; Chiř                                                                  | 63<br>*= 0.17<br>P = 0.68<br>62<br>50<br>45<br>21<br>178<br>*= 1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2<br>, df = 1 (F<br>3)<br>41<br>4<br>10<br>4<br>59<br>, df = 3 (F                                                  | 61<br>9 = 0.6<br>62<br>49<br>45<br>20<br>176                                                                                                      | 1.9%<br>8); I <sup>2</sup> = 0%<br>31.2%<br>3.7%<br>9.9%<br>3.1%<br>47.9%                                                                                                 | 1.45 [0.24, 8.59]<br>0.85 [0.64, 1.13]<br>1.23 [0.35, 4.29]<br>1.30 [0.64, 2.65]<br>0.71 [0.18, 2.80]                                                                                                                                |                     |
| hu 2013<br>ubtotal (95% CI)<br>otal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>.4.8 Nausea<br>erguson 2009<br>loawad 2014<br>loasemi 2015<br>teinberg 2002<br>ubtotal (95% CI)<br>otal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:                                                                                                                                                                                                                                                                                                                                                                 | 2<br>3<br>0.00; Chiř<br>Z = 0.41 (<br>35<br>5<br>13<br>3<br>5<br>6<br>0.00; Chiř                                                                  | 63<br>*= 0.17<br>P = 0.68<br>62<br>50<br>45<br>21<br>178<br>*= 1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2<br>, df = 1 (F<br>3)<br>41<br>4<br>10<br>4<br>59<br>, df = 3 (F                                                  | 61<br>9 = 0.6<br>62<br>49<br>45<br>20<br>176                                                                                                      | 1.9%<br>8); I <sup>2</sup> = 0%<br>31.2%<br>3.7%<br>9.9%<br>3.1%<br>47.9%                                                                                                 | 1.45 [0.24, 8.59]<br>0.85 [0.64, 1.13]<br>1.23 [0.35, 4.29]<br>1.30 [0.64, 2.65]<br>0.71 [0.18, 2.80]                                                                                                                                |                     |
| hu 2013<br>ubtotal (95% CI)<br>iotal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>.4.8 Nausea<br>erguson 2009<br>loawad 2014<br>toslemi 2015<br>teinberg 2002<br>ubtotal (95% CI)<br>iotal events<br>leterogeneity: Tau <sup>2</sup> =<br>jest for overall effect:<br>.4.9 Vomiting                                                                                                                                                                                                                                                                                                                                             | 2<br>3<br>0.00; Chi<br>Z = 0.41 (<br>35<br>5<br>13<br>3<br>5<br>6<br>0.00; Chi<br>Z = 0.75 (                                                      | 63<br><sup>2</sup> = 0.17<br>P = 0.68<br>62<br>50<br>45<br>21<br><b>178</b><br><sup>2</sup> = 1.59<br>P = 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2<br>, df = 1 (F<br>3)<br>41<br>4<br>10<br>4<br>59<br>, df = 3 (F<br>5)                                            | 61<br>P = 0.6<br>62<br>49<br>45<br>20<br>176<br>P = 0.6                                                                                           | 1.9%<br>8); I <sup>#</sup> = 0%<br>31.2%<br>3.7%<br>9.9%<br>3.1%<br>47.9%<br>6); I <sup>#</sup> = 0%                                                                      | 1.45 [0.24, 8.59]<br>0.85 [0.64, 1.13]<br>1.23 [0.35, 4.29]<br>1.30 [0.64, 2.65]<br>0.71 [0.18, 2.80]<br>0.91 [0.71, 1.17]                                                                                                           |                     |
| hu 2013<br>ubtotal (95% Cl)<br>iotal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>.4.8 Nausea<br>erguson 2009<br>loawad 2014<br>loslemi 2015<br>teinberg 2002<br>ubtotal (95% Cl)<br>otal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>.4.9 Vomiting<br>loawad 2014                                                                                                                                                                                                                                                                                                                                | 2<br>3<br>0.00; Chiř<br>Z = 0.41 (<br>35<br>5<br>13<br>3<br>5<br>6<br>0.00; Chiř                                                                  | 63<br>* = 0.17<br>P = 0.68<br>62<br>50<br>45<br>21<br><b>178</b><br>* = 1.59<br>P = 0.45<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2<br>, df = 1 (F<br>3)<br>41<br>4<br>10<br>4<br>59<br>, df = 3 (F                                                  | 61<br>P = 0.6<br>62<br>49<br>45<br>20<br>176<br>P = 0.6<br>49                                                                                     | 1.9%<br>8); I <sup>#</sup> = 0%<br>31.2%<br>3.7%<br>9.9%<br>3.1%<br>47.9%<br>6); I <sup>#</sup> = 0%<br>2.0%                                                              | 1.45 [0.24, 8.59]<br>0.85 [0.64, 1.13]<br>1.23 [0.36, 4.29]<br>1.30 [0.64, 2.65]<br>0.71 [0.18, 2.80]<br>0.91 [0.71, 1.17]<br>1.47 [0.26, 8.42]                                                                                      |                     |
| hu 2013<br><b>ubtotal (95% CI)</b><br>iotal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br><b>.4.8 Nausea</b><br>erguson 2009<br>toawad 2014<br>toslemi 2015<br>teinberg 2002<br><b>ubtotal (95% CI)</b><br>otal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br><b>.4.9 Vomiting</b><br>toawad 2014<br>toslemi 2015                                                                                                                                                                                                                                                                                    | 2<br>3<br>0.00; Chiř<br>Z = 0.41 (<br>35<br>5<br>13<br>3<br>56<br>0.00; Chiř<br>Z = 0.75 (<br>3                                                   | 63<br><sup>2</sup> = 0.17<br>P = 0.68<br>62<br>50<br>45<br>21<br><b>178</b><br><sup>2</sup> = 1.59<br>P = 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2<br>, df = 1 (f<br>3)<br>41<br>4<br>10<br>4<br>59<br>, df = 3 (f<br>5)<br>2                                       | 61<br>P = 0.6<br>62<br>49<br>45<br>20<br>176<br>P = 0.6                                                                                           | 1.9%<br>8); I <sup>#</sup> = 0%<br>31.2%<br>3.7%<br>9.9%<br>3.1%<br>47.9%<br>6); I <sup>#</sup> = 0%                                                                      | 1.45 [0.24, 8.59]<br>0.85 [0.64, 1.13]<br>1.23 [0.35, 4.29]<br>1.30 [0.64, 2.65]<br>0.71 [0.18, 2.80]<br>0.91 [0.71, 1.17]<br>1.47 [0.26, 8.42]<br>0.50 [0.16, 1.54]                                                                 |                     |
| hu 2013<br>ubtotal (95% CI)<br>otal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>.4.8 Nausea<br>erguson 2009<br>loawad 2014<br>loasemi 2015<br>teinberg 2002<br>ubtotal (95% CI)<br>otal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>.4.9 Vomiting<br>loawad 2014<br>loslemi 2015<br>teinberg 2002                                                                                                                                                                                                                                                                                                | 2<br>3<br>0.00; Chiř<br>Z = 0.41 (<br>35<br>5<br>13<br>3<br>56<br>0.00; Chiř<br>Z = 0.75 (<br>3<br>4                                              | 63<br>*= 0.17<br>P = 0.68<br>62<br>50<br>45<br>21<br>178<br>*= 1.59<br>P = 0.45<br>50<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2<br>, df = 1 (F<br>3)<br>41<br>4<br>10<br>4<br>59<br>, df = 3 (F<br>5)<br>2<br>8                                  | 61<br>P = 0.6<br>62<br>49<br>45<br>20<br>176<br>P = 0.6<br>49<br>45<br>49<br>45                                                                   | 1.9%<br>8); I <sup>#</sup> = 0%<br>31.2%<br>3.7%<br>9.9%<br>3.1%<br>47.9%<br>6); I <sup>#</sup> = 0%<br>2.0%<br>4.5%                                                      | 1.45 [0.24, 8.59]<br>0.85 [0.64, 1.13]<br>1.23 [0.36, 4.29]<br>1.30 [0.64, 2.65]<br>0.71 [0.18, 2.80]<br>0.91 [0.71, 1.17]<br>1.47 [0.26, 8.42]                                                                                      |                     |
| hu 2013<br>ubtotal (95% CI)<br>otal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>.4.8 Nausea<br>erguson 2009<br>loawad 2014<br>loslemi 2015<br>teinberg 2002<br>ubtotal (95% CI)<br>otal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>.4.9 Vomiting<br>loawad 2014<br>loslemi 2015<br>teinberg 2002<br>ubtotal (95% CI)                                                                                                                                                                                                                                                                            | 2<br>3<br>0.00; Chiř<br>Z = 0.41 (<br>35<br>5<br>13<br>3<br>56<br>0.00; Chiř<br>Z = 0.75 (<br>3<br>4                                              | 63<br>= 0.17<br>P = 0.68<br>62<br>50<br>45<br>21<br><b>178</b><br>= 1.59<br>P = 0.45<br>50<br>45<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2<br>, df = 1 (F<br>3)<br>41<br>4<br>10<br>4<br>59<br>, df = 3 (F<br>5)<br>2<br>8                                  | 61<br>P = 0.6<br>62<br>49<br>45<br>20<br>176<br>P = 0.6<br>49<br>45<br>20<br>49<br>45<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 1.9%<br>8);  * = 0%<br>31.2%<br>3.7%<br>9.9%<br>3.1%<br>47.9%<br>6);  * = 0%<br>2.0%<br>4.5%<br>0.6%                                                                      | 1.45 [0.24, 8.59]<br>0.85 [0.64, 1.13]<br>1.23 [0.35, 4.29]<br>1.30 [0.64, 2.65]<br>0.71 [0.18, 2.80]<br>0.91 [0.71, 1.17]<br>1.47 [0.26, 8.42]<br>0.50 [0.16, 1.54]<br>2.86 [0.12, 66.44]                                           |                     |
| All 2000<br>All 2000<br>Subtotal (95% CI)<br>Total events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>.4.8 Nausea<br>erguson 2009<br>foawad 2014<br>foslemi 2015<br>Steinberg 2002<br>Subtotal (95% CI)<br>Total events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>.4.9 Vomiting<br>foawad 2014<br>foslemi 2015<br>Steinberg 2002<br>Subtotal (95% CI)<br>Total events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>.4.9 Vomiting<br>foawad 2014<br>foslemi 2015<br>Steinberg 2002<br>Subtotal (95% CI)<br>Total events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect: | 2<br>3<br>0.00; Chiř<br>Z = 0.41 (<br>35<br>5<br>13<br>3<br>56<br>0.00; Chiř<br>Z = 0.75 (<br>3<br>4<br>1<br>8<br>0.00; Chiř                      | 63<br>= 0.17<br>P = 0.68<br>62<br>50<br>45<br>21<br>178<br>= 1.59<br>P = 0.45<br>21<br>116<br>* = 1.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2<br>df = 1 (F<br>3)<br>41<br>4<br>10<br>4<br>59<br>df = 3 (F<br>5)<br>2<br>8<br>0<br>10<br>df = 2 (F              | 61<br>62 = 0.6<br>62<br>49<br>45<br>20<br>176<br>9 = 0.6<br>49<br>45<br>20<br>114                                                                 | 1.9%<br>8); I <sup>=</sup> = 0%<br>31.2%<br>3.7%<br>9.9%<br>3.1%<br>47.9%<br>6); I <sup>=</sup> = 0%<br>2.0%<br>4.5%<br>0.6%<br>7.1%                                      | 1.45 [0.24, 8.59]<br>0.85 [0.64, 1.13]<br>1.23 [0.35, 4.29]<br>1.30 [0.64, 2.65]<br>0.71 [0.18, 2.80]<br>0.91 [0.71, 1.17]<br>1.47 [0.26, 8.42]<br>0.50 [0.16, 1.54]<br>2.86 [0.12, 66.44]                                           |                     |
| hu 2013<br>ubtotal (95% CI)<br>iotal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>.4.8 Nausea<br>erguson 2009<br>loawad 2014<br>loslemi 2015<br>teinberg 2002<br>ubtotal (95% CI)<br>otal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>.4.9 Vomiting<br>loawad 2014<br>loslemi 2015<br>teinberg 2002<br>ubtotal (95% CI)<br>otal events<br>leterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                       | 2<br>3<br>0.00; Chiř<br>Z = 0.41 (<br>35<br>5<br>13<br>3<br>56<br>0.00; Chiř<br>Z = 0.75 (<br>3<br>4<br>1<br>8<br>0.00; Chiř                      | 63<br>= 0.17<br>P = 0.68<br>62<br>50<br>45<br>21<br>178<br>= 1.59<br>P = 0.45<br>21<br>116<br>* = 1.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2<br>df = 1 (F<br>3)<br>41<br>4<br>10<br>4<br>59<br>df = 3 (F<br>5)<br>2<br>8<br>0<br>10<br>df = 2 (F              | 61<br>62<br>49<br>45<br>20<br>176<br>9 = 0.6<br>49<br>45<br>20<br>114<br>9 = 0.4                                                                  | 1.9%<br>8); I <sup>=</sup> = 0%<br>31.2%<br>3.7%<br>9.9%<br>3.1%<br>47.9%<br>6); I <sup>=</sup> = 0%<br>2.0%<br>4.5%<br>0.6%<br>7.1%                                      | 1.45 [0.24, 8.59]<br>0.85 [0.64, 1.13]<br>1.23 [0.35, 4.29]<br>1.30 [0.64, 2.65]<br>0.71 [0.18, 2.80]<br>0.91 [0.71, 1.17]<br>1.47 [0.26, 8.42]<br>0.50 [0.16, 1.54]<br>2.86 [0.12, 66.44]                                           |                     |
| hu 2013<br>ubtotal (95% CI)<br>otal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>.4.8 Nausea<br>erguson 2009<br>loawad 2014<br>loslemi 2015<br>teinberg 2002<br>ubtotal (95% CI)<br>otal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>.4.9 Vomiting<br>loawad 2014<br>loslemi 2015<br>teinberg 2002<br>ubtotal (95% CI)<br>otal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:                                                                                                                                                                                             | 2<br>3<br>0.00; Chiř<br>Z = 0.41 (<br>35<br>5<br>13<br>3<br>56<br>0.00; Chiř<br>Z = 0.75 (<br>3<br>4<br>1<br>8<br>0.00; Chiř                      | 63<br>== 0.17 P = 0.68<br>62<br>50<br>45<br>21<br>178<br>== 1.59<br>P = 0.45<br>50<br>45<br>21<br>178<br>50<br>45<br>21<br>178<br>== 1.59<br>P = 0.45<br>== 1.59<br>P = 0.45<br>== 0.17 P = 0.68<br>== 0.17 P = 0.45<br>== 0.17 P = 0.55<br>== 0.17 P = 0.45<br>== 0.17 P = 0.17 P = 0.55<br>== 0.17 P = 0.17 P = 0.55<br>== 0.17 P = 0.17 P = 0.55<br>== 0.17 P = 0 | 2<br>df = 1 (F<br>3)<br>41<br>4<br>10<br>4<br>59<br>df = 3 (F<br>5)<br>2<br>8<br>0<br>10<br>df = 2 (F              | 61<br>62<br>49<br>45<br>20<br>176<br>9 = 0.6<br>49<br>45<br>20<br>114<br>9 = 0.4                                                                  | 1.9%<br>8); I <sup>2</sup> = 0%<br>31.2%<br>3.7%<br>9.9%<br>3.1%<br>47.9%<br>6); I <sup>2</sup> = 0%<br>2.0%<br>4.5%<br>0.6%<br>7.1%<br>1); I <sup>2</sup> = 0%           | 1.45 [0.24, 8.59]<br>0.85 [0.64, 1.13]<br>1.23 [0.35, 4.29]<br>1.30 [0.64, 2.65]<br>0.71 [0.18, 2.80]<br>0.91 [0.71, 1.17]<br>1.47 [0.26, 8.42]<br>0.50 [0.16, 1.54]<br>2.86 [0.12, 66.44]<br>0.77 [0.31, 1.91]                      |                     |
| hu 2013<br>ubtotal (95% CI)<br>otal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>.4.8 Nausea<br>erguson 2009<br>loawad 2014<br>loslemi 2015<br>teinberg 2002<br>ubtotal (95% CI)<br>otal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>.4.9 Vomiting<br>loawad 2014<br>loslemi 2015<br>teinberg 2002<br>ubtotal (95% CI)<br>otal events<br>leterogeneity: Tau <sup>2</sup> =<br>est for overall effect:<br>otal (95% CI)                                                                                                                                                                            | 2<br>3<br>0.00; Chiř<br>Z = 0.41 (<br>35<br>5<br>13<br>3<br>56<br>0.00; Chiř<br>Z = 0.75 (<br>3<br>4<br>1<br>8<br>0.00; Chiř<br>Z = 0.56 (<br>115 | 63<br>== 0.17<br>P = 0.68<br>62<br>50<br>45<br>21<br>178<br>= 1.59<br>P = 0.48<br>50<br>45<br>21<br>116<br>= 1.77<br>P = 0.58<br>911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2<br>df = 1 (F<br>3)<br>41<br>4<br>10<br>4<br>59<br>df = 3 (F<br>5)<br>2<br>8<br>0<br>10<br>df = 2 (F<br>3)<br>150 | 61<br>62<br>49<br>45<br>176<br>62<br>62<br>49<br>50<br>176<br>6<br>9 = 0.6<br>49<br>45<br>50<br>114<br>896                                        | 1.9%<br>8); I <sup>P</sup> = 0%<br>31.2%<br>3.7%<br>9.9%<br>3.1%<br>47.9%<br>6); I <sup>P</sup> = 0%<br>2.0%<br>4.5%<br>0.6%<br>7.1%<br>1); I <sup>P</sup> = 0%<br>100.0% | 1.45 [0.24, 8.59]<br>0.85 [0.64, 1.13]<br>1.23 [0.35, 4.29]<br>1.30 [0.64, 2.65]<br>0.71 [0.18, 2.80]<br>0.91 [0.71, 1.17]<br>1.47 [0.26, 8.42]<br>0.50 [0.16, 1.54]<br>2.86 [0.12, 66.44]<br>0.77 [0.31, 1.91]<br>0.80 [0.62, 1.03] |                     |

Figure 5. Postoperative complications [10,17–19,21,22].

The subgroup analysis showed that the model favored PCIVA over PCEA only for hypotension; no patient suffered from hypotension in the PCIVA groups. The model did not show a significant difference of PCIVA over PCEA for other side effects, i.e., pruritus, postoperative ileus, anastomosis leak, surgical site infection, urinary tract infection, pulmonary infection, nausea, and vomiting.

### 3.5. Length of Stay (Days)

Regarding the length of hospital stay, the overall results of the model (Figure 6) indicated that PCEA was better than PCVIA; the mean difference with 95% CI was 1.13 [0.29, 1.98], p-value = 0.009.

|                                                                                                                                                                           | PCIVA       |           |       | P           | PCEA Mean Difference |       |        | Mean Difference    | Mean Difference    |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|-------|-------------|----------------------|-------|--------|--------------------|--------------------|--|
| Study or Subgroup                                                                                                                                                         | Mean [days] | SD [days] | Total | Mean [days] | SD [days]            | Total | Weight | IV, Random, 95% CI | IV, Random, 95% Cl |  |
| Mann 2000                                                                                                                                                                 | 11.86       | 6.2       | 33    | 11.39       | 5.05                 | 31    | 9.3%   | 0.47 [-2.29, 3.23] | •                  |  |
| Zhu 2013                                                                                                                                                                  | 11.9        | 1.8       | 30    | 10.7        | 1.7                  | 30    | 90.7%  | 1.20 [0.31, 2.09]  |                    |  |
| Total (95% CI)                                                                                                                                                            |             |           | 63    |             |                      | 61    | 100.0% | 1.13 [0.29, 1.98]  |                    |  |
| Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.24, df = 1 (P = 0.62); P = 0%           Test for overall effect: Z = 2.63 (P = 0.009)           Favors PCIVA |             |           |       |             |                      |       |        |                    |                    |  |

Figure 6. Length of hospital stay [10,19].

## 3.6. Assessment of the Methodological Quality (Jadad/Oxford Quality Scoring System)

The methodological quality of four studies was graded as low, and that of three studies as acceptable. The grading of the included studies is presented in Table 2.

#### Table 2. Jadad scale.

| Study or Subgroup    | Was This Study<br>Described as<br>Randomized? | Was the Method Used to<br>Generate the Sequence of<br>Randomization Appropriate<br>and Described? | Was the Study<br>Described as<br>Double-Blind? | Was the Method of<br>Double-Blind<br>Appropriate and<br>Described? | Was There<br>a Description of<br>Withdraw and<br>Dropouts? | Total Score |
|----------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|-------------|
| Fayed, 2014 [20]     | 1                                             | 0                                                                                                 | 0                                              | 0                                                                  | 0                                                          | 1           |
| Ferguson, 2009 [21]  | 1                                             | 0                                                                                                 | 0                                              | 0                                                                  | 1                                                          | 2           |
| Mann, 2000 [10]      | 1                                             | 1                                                                                                 | 0                                              | 0                                                                  | 1                                                          | 3           |
| Moawad, 2014 [17]    | 1                                             | 1                                                                                                 | 0                                              | 0                                                                  | 1                                                          | 3           |
| Moslemi, 2015 [18]   | 1                                             | 1                                                                                                 | 0                                              | 0                                                                  | 1                                                          | 3           |
| Steinberg, 2002 [22] | 1                                             | 0                                                                                                 | 0                                              | 0                                                                  | 1                                                          | 2           |
| Zhu, 2013 [19]       | 1                                             | 0                                                                                                 | 0                                              | 0                                                                  | 1                                                          | 2           |

#### 4. Discussion

This meta-analysis evaluated the effect of PCIVA and PCEA in intra-abdominal surgery. There was a small number of patients after the pooling the selected studies—no more than 125 and 124 participants in the PCIVA and PCEA groups, respectively. Three studies out of seven had an acceptable methodological quality, while four studies were graded as of low methodological quality. All the studies did not succeed in blinding, due to the different nature of the PCIVA and PCEA procedures. The selected trials included major open gynecologic cancer surgery, laparoscopic radical major gastric cancer surgery, hepatic resection, open colon surgery, and cephalic pancreatectomy.

For our primary objective, we compared pain at rest and on coughing within 24 h. Selected RCTs used 10-grade scales (VAS or NPRS). After pooling the results of all RCTs, there was no significant reduction in total pain intensity at rest. The model of pain on coughing favored PCEA but did not reach statistical significance. Rescue analgesia could affect these values. However, the trials did not provide comparable total opioid consumption for these patients. The mode of analgesia delivery was also different across the studies, which could cause high heterogeneity of the model of pain at rest (Table 1).

The implementation of PCEA was mainly based on establishing a more targeted (regional) drug delivery (mainly of opioids and local anesthetics) in the epidural space, limiting the systemic side effects of analgesics, achieving protection against surgical stimulation, and achieving additional beneficial effects through parasympathetic activation (early return of intestinal motility). Many of these effects have been well established by previous preclinical and clinical studies [4–12,23]. However, not all these positive effects of epidural

anesthesia/analgesia are supported by the results of this MA. Some studies included in this MA reported that PCEA was superior in pain score reduction [16,19]; however, we failed to find statistical support for these findings. Moreover, it appears that some conclusions in the original articles were not sufficiently based on statistical analysis.

To date, there is insufficient evidence to conclude that PCEA is significantly better than PCIVA in postoperative pain control. In terms of safety, there is insufficient evidence supporting the effect of PCEA in the reduction of respiratory depression; the level of sedation was lower in the PCEA group, and the PCIVA group presented fewer episodes of hypotension.

Although the comparison of their analgesic efficacy is important, the decision whether to use PCIVA or PCEA should also be based on the individual characteristics of a particular patient, the risk of side effects, and contraindications.

One of the most significant limitations of this MA is the heterogeneity in terms of the association of PCIVA with fewer episodes of hypotension, the structure and reporting style of the published articles, and the types and anatomical location of the performed surgeries (e.g., major open gynecologic cancer surgery, major gastric cancer, prostatectomy, hepatic resection, open colon surgery, colectomy, and cephalic pancreatectomy). Some articles reported data in such a way that they could not be used in a meta-analysis (e.g., missing confidence intervals). Another limitation is a low number of matched clinical trials. The lack of statistical significance may be due to the insufficient number of articles included in the analysis. Finally, our literature search may not have been able to find all publications related to the review objectives.

To improve the quality of future RCTs, we might recommend the consistent use of standard outcomes, e.g., pain intensity at rest, pain intensity on movement or coughing, side effects, that is, systemic side effects of the drugs used for PCA, either IV or epidural—such as respiratory depression, sedation, nausea, vomiting, intestinal hypomotility/recovery of the gastrointestinal tract, itching, local anesthetic systemic toxicity—and side effects and complications of PCEA (mechanical complications, paralysis, hypotension). In the era of evidence synthesis, it becomes important that the number of original articles on such a research topic increases; unfortunately, some studies could not be included in the quantitative synthesis due to inconsistencies in the analysis and presentation of the results.

#### 5. Conclusions

This meta-analysis demonstrated that PCIVA was associated with fewer episodes of hypotension compared to PCEA. Pain scores at rest or on coughing, postoperative sedation scores, shivering, delirium, respiratory depression, urinary tract infections, pulmonary infections, surgical site infections, nausea and vomiting did not differ significantly. All studies could not properly blind observers and participants due to the nature of the analgesia mode, and this significantly decreased the methodological quality of most of the studies. Three studies out of seven had an acceptable methodological quality, while the others had a low methodological quality. Overall, the pooled sample was small. Additional randomized controlled trials comparing these two patient-controlled methods are required to answer the question about their benefits and risks. Future randomized controlled trials should be of sufficient power to demonstrate the most clinically important outcomes, such as pain scores, side effects, recovery rate, and use a more standardized assessment and reporting format that would be more suitable for a quantitative synthesis.

**Author Contributions:** D.V.: methodology, supervision, writing—original draft, writing—review & editing, funding acquisition; K.T.: data collection; writing—review & editing; F.N.: statistical analysis; R.T.: data extraction, writing—review & editing; Y.G.A.: methodology, supervision, statistical analysis; writing—review & editing. All authors have read and agreed to the published version of the manuscript.

**Funding:** This project was supported in part by the Nazarbayev University Faculty Development Competitive Research Grants. Funder project references: 021220FD2851 and 11022021FD2906.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

**Conflicts of Interest:** The authors declare no conflict of interest.

## References

- 1. Gottschalk, A.; Durieux, M.E.; Nemergut, E.C. Intraoperative Methadone Improves Postoperative Pain Control in Patients Undergoing Complex Spine Surgery. *Anesth. Analg.* **2011**, *112*, 218–223. [CrossRef]
- Egbert, A.M.; Parks, L.H.; Short, L.M.; Burnett, M.L. Randomized Trial of Postoperative Patient-Controlled Analgesia vs. Intramuscular Narcotics in Frail Elderly Men. Arch. Intern. Med. 1990, 150, 1897–1903. [CrossRef] [PubMed]
- Hudcova, J.; McNicol, E.; Quah, C.; Lau, J.; Carr, D.B. Patient Controlled Opioid Analgesia versus Conventional Opioid Analgesia for Postoperative Pain. *Cochrane Database Syst. Rev.* 2006. [CrossRef]
- McNicol, E.D.; Ferguson, M.C.; Hudcova, J. Patient controlled opioid analgesia versus non-patient controlled opioid analgesia for postoperative pain. *Cochrane Database Syst. Rev.* 2015. [CrossRef]
- Walder, B.; Schafer, M.; Henzi, I.; Tramèr, M.R. Efficacy and Safety of Patient-Controlled Opioid Analgesia for Acute Postoperative Pain. Acta Anaesthesiol. Scand. 2001, 45, 795–804. [CrossRef] [PubMed]
- Chang, A.M.; Ip, W.Y.; Cheung, T.H. Patient-Controlled Analgesia versus Conventional Intramuscular Injection: A Cost Effectiveness Analysis. J. Adv. Nurs. 2004, 46, 531–541. [CrossRef]
- Schug, S.A.; Torrie, J.J. Safety Assessment of Postoperative Pain Management by an Acute Pain Service. *Pain* 1993, 55, 387–391. [CrossRef]
- 8. Salicath, J.H.; Yeoh, E.C.Y.; Bennett, M.H. Epidural Analgesia versus Patient-Controlled Intravenous Analgesia for Pain Following Intra-Abdominal Surgery in Adults. *Cochrane Database Syst. Rev.* **2018**, 2018. [CrossRef]
- 9. Hanna, M.N.; Murphy, J.D.; Kumar, K.; Wu, C.L. Regional Techniques and Outcome: What Is the Evidence? *Curr. Opin. Anaesthesiol.* **2009**, *22*, 672–677. [CrossRef]
- Mann, C.; Pouzeratte, Y.; Boccara, G.; Peccoux, C.; Vergne, C.; Brunat, G.; Domergue, J.; Millat, B.; Colson, P. Comparison of Intravenous or Epidural Patient-Controlled Analgesia in the Elderly after Major Abdominal Surgery. *Anesthesiology* 2000, 92, 433. [CrossRef] [PubMed]
- Carli, F.; Trudel, J.L.; Belliveau, P. The Effect of Intraoperative Thoracic Epidural Anesthesia and Postoperative Analgesia on Bowel Function after Colorectal Surgery: A Prospective, Randomized Trial. *Dis. Colon Rectum* 2001, 44, 1083–1089. [CrossRef] [PubMed]
- 12. Rigg, J.R.A.; Jamrozik, K.; Myles, P.S.; Silbert, B.S.; Peyton, P.J.; Parsons, R.W.; Collins, K.S. Epidural Anaesthesia and Analgesia and Outcome of Major Surgery: A Randomised Trial. *Lancet* 2002, *359*, 1276–1282. [CrossRef]
- Tilleul, P.; Aissou, M.; Bocquet, F.; Thiriat, N.; le Grelle, O.; Burke, M.J.; Hutton, J.; Beaussier, M. Cost-Effectiveness Analysis Comparing Epidural, Patient-Controlled Intravenous Morphine, and Continuous Wound Infiltration for Postoperative Pain Management after Open Abdominal Surgery. Br. J. Anaesth. 2012, 108, 998–1005. [CrossRef] [PubMed]
- 14. Jadad, A.R.; Moore, R.A.; Carroll, D.; Jenkinson, C.; Reynolds, D.J.M.; Gavaghan, D.J.; McQuay, H.J. Assessing the Quality of Reports of Randomized Clinical Trials: Is Blinding Necessary? *Control. Clin. Trials* **1996**, *17*, 1–12. [CrossRef]
- 15. Luo, D.; Wan, X.; Liu, J.; Tong, T. Optimally Estimating the Sample Mean from the Sample Size, Median, Mid-Range, and/or Mid-Quartile Range. *Stat. Methods Med. Res.* 2018, 27, 1785–1805. [CrossRef] [PubMed]
- 16. Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the Sample Mean and Standard Deviation from the Sample Size, Median, Range and/or Interquartile Range. *BMC Med. Res. Methodol.* **2014**, *14*, 135. [CrossRef] [PubMed]
- El Sayed Moawad, H.; Mokbel, E.M. Postoperative Analgesia after Major Abdominal Surgery: Fentanyl-Bupivacaine Patient Controlled Epidural Analgesia versus Fentanyl Patient Controlled Intravenous Analgesia. *Egypt. J. Anaesth.* 2014, 30, 393–397. [CrossRef]
- Moslemi, F.; Rasooli, S.; Baybordi, A.; Golzari, S.E.J. A Comparison of Patient Controlled Epidural Analgesia with Intravenous Patient Controlled Analgesia for Postoperative Pain Management after Major Gynecologic Oncologic Surgeries: A Randomized Controlled Clinical Trial. *Anesthesiol. Pain Med.* 2015, *5*, e29540. [CrossRef] [PubMed]
- Zhu, Z.; Wang, C.; Xu, C.; Cai, Q. Influence of Patient-Controlled Epidural Analgesia versus Patient-Controlled Intravenous Analgesia on Postoperative Pain Control and Recovery after Gastrectomy for Gastric Cancer: A Prospective Randomized Trial. *Gastric Cancer* 2013, *16*, 193–200. [CrossRef] [PubMed]
- Fayed, N.A.; Abo El-Wafa, H.B.; Gab-Alla, N.M.; Yassen, K.A.; Lotfy, M.E. Comparison between Intravenous Patient Controlled Analgesia and Patient Controlled Epidural Analgesia in Cirrhotic Patients after Hepatic Resection. *Middle East J. Anesthesiol.* 2014, 22, 467–476.
- Ferguson, S.E.; Malhotra, T.; Seshan, V.E.; Levine, D.A.; Sonoda, Y.; Chi, D.S.; Barakat, R.R.; Abu-Rustum, N.R. A Prospective Randomized Trial Comparing Patient-Controlled Epidural Analgesia to Patient-Controlled Intravenous Analgesia on Postoperative Pain Control and Recovery after Major Open Gynecologic Cancer Surgery. *Gynecol. Oncol.* 2009, 114, 111–116. [CrossRef] [PubMed]

- 22. Steinberg, R.B.; Liu, S.S.; Wu, C.L.; Mackey, D.C.; Grass, J.A.; Ahlén, K.; Jeppsson, L. Comparison of Ropivacaine-Fentanyl Patient-Controlled Epidural Analgesia with Morphine Intravenous Patient-Controlled Analgesia for Perioperative Analgesia and Recovery after Open Colon Surgery. J. Clin. Anesth. 2002, 14, 571–577. [CrossRef]
- 23. Beattie, W.S.; Badner, N.H.; Choi, P. Epidural Analgesia Reduces Postoperative Myocardial Infarction: A Meta-Analysis. *Anesth. Analg.* **2001**, *93*, 853–858. [CrossRef] [PubMed]