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a b s t r a c t

Worldwide COVID-19 is a highly infectious and rapidly spreading disease in almost all age groups.
The Computed Tomography (CT) scans of lungs are found to be accurate for the timely diagnosis of
COVID-19 infection. In the proposed work, a deep learning-based P-shot N-ways Siamese network
along with prototypical nearest neighbor classifiers is implemented for the classification of COVID-19
infection from lung CT scan slices. For this, a Siamese network with an identical sub-network (weight
sharing) is used for image classification with a limited dataset for each class. The feature vectors are
obtained from the pre-trained sub-networks having weight sharing. The performance of the proposed
methodology is evaluated on the benchmark MosMed dataset having categories zero (healthy control)
and numerous COVID-19 infections. The proposed methodology is evaluated on (a) chest CT scans
provided by medical hospitals in Moscow, Russia for 1110 patients, and (b) case study of low-dose CT
scans of 42 patients provided by Avtaran healthcare in India. The deep learning-based Siamese network
(15-shot 5-ways) obtained an accuracy of 98.07%, the sensitivity of 95.66%, specificity of 98.83%, and
F1-score of 95.10%. The proposed work outperforms the COVID-19 infection severity classification with
limited scans availability for numerous infection categories.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

In late 2019, the novel Corona Virus Infection Disease (COVID-
9) is detected in humans and declared a pandemic by World
ealth Organization (WHO) on 11 March 2020 [1]. The COVID-19
elongs to the virus family of Severe Acute Respiratory Syndrome-
orona Virus 2 (SARS-CoV2) and Middle East Respiratory
yndrome-Corona Virus (MERS-CoV). In the end of July 2021,
lobally there were 1,94,080,019 active cases of coronavirus,
,162,304 deaths reported, and 3, 696,135,440 people were vacci-
ated [2]. In the year 2021, researchers have claimed the presence
f numerous mutants of COVID-19 such as B.1.1.7, B.1.351, and
.1, etc. [3,4]. The mutation of coronavirus is having a huge
mpact on the transmission scale of infection in humans, the
fficacy of testing kits, vaccination, and treatment procedures [5].
In the year 2021, the highest number of coronavirus cases

re found in India with an average of 0.35 million cases per
ay in April [6,7]. The number of cases rapidly increased due to
ommunity transmission and the average time duration of the
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E-mail address: Ahuja@ee.iitd.ac.in (S. Ahuja).
ttps://doi.org/10.1016/j.asoc.2022.109683
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RT-PCR test result took 4–5 days with a very high false-negative
rate. The coronavirus majorly affected the respiratory system,
i.e., breathing issues, and severe lung infection. Thus, chest CT
scans are used to evaluate the severity level of coronavirus in-
fection in suspected patients. The COVID-19 infection spreads
through saliva or cough droplets of an infected person through
the air. Thus, with the increment in COVID-19 cases, researchers
are focusing on faster and accurate techniques for severity of
COVID-19 infection measurements in lungs.

In clinical practice, COVID is detected using swab tests, namely,
RT-PCR, Rapid Antigen Test (RAT), and radiographic images of
lungs (X-rays, CT-scans). The COVID-19 antigen tests identify
the antibodies of coronavirus. However, it suffers from various
disadvantages such as the complex procedure of taking samples
from the nose/throat, time consumption in the generation of the
diagnosis result, and a high false-negative rate [8]. The antigen
kits are customized for only COVID-19 infection detection and are
unable to evaluate the impact of infection levels in the respiratory
system or various organs. To overcome these issues, clinicians
prefer a chest Computed Tomography (CT) scan/X-ray scan of
COVID-19 infected patients.

https://doi.org/10.1016/j.asoc.2022.109683
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2022.109683&domain=pdf
mailto:Ahuja@ee.iitd.ac.in
https://doi.org/10.1016/j.asoc.2022.109683
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Fig. 1. Biomarkers are identified by the experts in the chest CT scan slice of the
COVID-19 infected patient.

The chest X-ray of COVID-19 suspected patients provides a
reliminary diagnosis of the dense tissues and the impact of in-
ection in the lungs in a 2-D view [9]. However, in chest CT scans,
atches due to infection are visible in 3-D views (axial, coronal,
agittal). Therefore, to speed up the COVID-19 infection detection
rocess, radiologists prefer chest CT scans over X-rays. Doctors
ifferentiate the healthy control CT scan from the coronavirus
nfection patient’s CT scan measurements based on consolidation,
leural effusion, and Ground Glass Opacity’s (GGOs) in the lungs
s shown in Fig. 1. Further, the measurements of these patches
n the left and right lung predict the severity of coronavirus
nfection. However, manual annotation of the patches due to
OVID-19 infection is an error-prone and tedious task.
In recent times, researchers focused on the development of

future prediction model for COVID-19 cases variants, and im-
rovements in the available COVID-19 measurement equipment
s well [10,11]. In [12], low dose CT scan measurements are
uggested for the severity of COVID-19 infection detection in
ild COVID-19 infected patients along with children and preg-
ant women CT scans. The COVID-19 cases are predicted using
ime series models such as Eigenvalue Decomposition of Hankel
atrix (EVDHM) along with the Auto-regressive Integrated Mov-

ng Average (ARIMA) model [13], Composite Monte Carlo (CMC)
imulation [14]. To monitor the lung condition of critical covid
atients on ventilators, a data acquisition system, i.e., Electrical
mpedance Tomography (EIT) system is proposed [15].

The major challenges associated with COVID-19 infection sever
ty measurement using CT scan-based modality are (a) limited
ataset is available with expert annotation, (b) multi-class clas-
ification of the level of COVID-19 infection is not given, etc.
hus few-shot learning frame-work is introduced for classifica-
ion on a small sample dataset or no labeled dataset [16]. The
ew-shot learning approach include metric-learning and meta-
earning-based techniques. In the computer vision field, a meta
earning-based approach is introduced for face identification [17],
ignature verification [18], and a variety of plant leaves classifica-
ion tasks, etc. [19]. In medical field, numerous disease detection
ask with limited dataset availability is resolved used few-shot
earning based Siamese networks [20–22]. The Meta-COVID net-
orks (2-ways, 10-shot) are implemented for binary classification
f COVID-19 and healthy X-ray images with an accuracy of 96.5%,
pecificity of 98.4%, and precision of 98% [23].
The main contributions of the proposed work are as follows:
1. The deep learning encoder-based Siamese network is pro-

osed for the multi-class classification of COVID-19 infection from
ung CT scan slices.

2. The P-shot N-ways (N denotes the number of classes, and
denotes the images per class) based meta-learning framework

valuated using contrastive loss.

2

3. The Gradient-weighted Class Activation Mapping (Grad-
CAM) is used to visualize the multi-class infection features learned
by the proposed McS-Net.

4. The proposed methodology is implemented on the Indian
dataset of suspected COVID-19 patients with numerous infection
levels.

5. Performance evaluation parameters such as sensitivity, speci
ficity, accuracy, F1-score, precision, etc. are obtained for the
considered datasets with numerous variations in the encoder
network and some samples per class prove the superiority of the
proposed framework.

The rest of the article is organized as follows: Section 2
presents the related work; Section 3 puts forth the brief details
of the COVID-19 based CT scan dataset. Section 4 illustrates the
materials and methods; Section 5 presents the experimentation
and discussion. Section 6 concludes the proposed work along with
the future scope.

2. Related work

Various Artificial Intelligence (AI) based techniques are im-
plemented by researchers to auto-mate the COVID-19 infection
detection, classification, segmentation, and future prediction task.
In [24], X-ray modality is used for multi-class classification of
COVID-19 infection with an accuracy of 97.72 ± 0.95% for severe
infection, 86.90 ± 3.20% for moderate level, and 61.80 ± 5.49%
for mild COVID-19 infection. The Internet of Things (IoT) based
pre-trained deep learning model detected the COVID-19 with
a sensitivity of 96.73% [25]. The IoT-based approach using a
blood sample, X-ray images, body temperature of the covid sus-
pected patient obtained the specificity of 97.95%. Gen-ProtoPNet
based deep learning model obtained the classification accuracy of
87.27% on chest X-rays for three classes (normal, COVID-19, and
Pneumonia) [26]. The ResNet-SVM obtained a classification accu-
racy of 93% and sensitivity of 88% on X-ray images of COVID-19
patients [27]. The Genetic Algorithm (GA) with specific hyperpa-
rameter optimization technique is used for binary classification
of COVID-19 infection [28]. However, the technique takes more
than 25 h to get the best results due to the specific optimiza-
tion parameters requirement. Table 1 put forth the brief details
of state-of-the-art techniques available for COVID-19 diagnosis
using radiographic images.

In [34], combination of transfer learning and shallow learning-
based approach is used to detect the severity of the COVID-19
infection. The proposed method implemented on cloud-based
server detects the binary class of COVID-19 infection severity.
Hybrid system of the Sugeno fuzzy integral with ensemble of four
pre-trained deep learning model (Squeeze Net v1.1, wide ResNet-
50-2, VGG-11, and Google Net) is used for binary classification of
COVID-19 [35]. In [36], customized DenseNet201-based models
are used for COVID-19 diagnosis with an accuracy of 98.18%, a
precision of 97.76%, and the specificity of 98.17%. Further, joint
classification and regression method is used for binary classifica-
tion of severity of COVID-19 infection [37]. In [38], fully automatic
approach obtained a global accuracy value of 97.06%. In [39],
ResNet50 with majority voting-based model is implemented for
COVID-19 classification. The fine-tuning based ResNet50 model
obtained Area Under the Curve of 0.90 and 3D-ResNet50 model
obtained 0.67 of AUC.

In [40], two-stage deep learning based framework is proposed
to discriminate between COVID-19 infection from normal pneu-
monia using chest CT scans. Transfer learning-based approach
is implemented on chest X-ray images to detect COVID-19 [41].
For dataset-1, MobileNet+ support vector machine (SVM) classi-
fier obtained a F1-score of 98.5% and DenseNet201+multi-layer
perceptron (MLP) obtained a F1-score of 95.6% for dataset-2. The
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Table 1
Performance evaluation of AI-based techniques available in the literature for COVID-19 diagnosis using chest CT scan.
Sr. No. Techniques Augmentation Dataset Accuracy Sensitivity Specificity

1 7-layer CNN+stochastic
pooling [29]

14-ways Normal = 320
COVID-19 = 320

94.03% 94.44% 93.63%

2 Joint Classification
Segmentation (JCS)
system [30]

Image mixing, random
horizontal flip, and crop

Normal = 350
COVID-19 = 400

– 95.0% 93.0%

3 Few-shot COVID-19 (2-
ways, 6-shot) [31]

Stochastic augmentation with
random cropping (with
resizing and color distortion)

Normal = 397
COVID-19 = 349

88.5% 88.6% 89.9%

4 Attention-based
VGG-style network for
COVID-19 (AVNC) [20]

15-ways multiple ways on
original and Mirror image

Normal = 284
COVID-19 = 306

– 97.38% 97.06%

5 Truncated VGG-16 [32] Rotation, shearing, zooming,
and brightness

Normal = 358
COVID = 344

95.7% 96.3% 94.8%

6 ResNet+DWT (Discrete
Wavelet Transform) [33]

Scaling (0.85, 1.2), rotation
(−20, 20), flipping, shearing (0,
50) and translation (−35, 35)
in the x and y directions

OMNIAHCOV*
Normal = 5152
COVID-19 = 6012
SARS-COV-2**
Normal = 1230
COVID-19 = 1252

99.23%*
99.62%**

99.27%*
99.54%**

99.19%*
99.69%**
one shot [42] technique with augmentations of the classification
branch in the RoI layer obtained sensitivity of 93.55% for COVID
and 99.37% of F1-score. In [43], 5656 X-ray images of each healthy
and covid patient is classified using VGG network. The proposed
model obtains an accuracy of 96.41%, sensitivity of 96.6%, and the
specificity of 96.2%. The explainable classification module (ECM)
is proposed for COVID-19 classification using chest CT scan with
an accuracy of 84.83% [44].

The hybrid (SpaSA and CNN) approach is implemented on
hest CT scans of COVID 19 dataset [45]. The SpaSA algorithm is
sed to optimize the different Convolution Neural Network (CNN)
nd transfer learning hyperparameters. The proposed work ob-
ained an accuracy of 99.74% on binary class (14,486 images) and
8% accuracy on three class (17,104 images) classification frame-
ork. The 2D-Empirical wavelet transform (EWT) along-with pre-
rained transfer learning-based approach (DenseNet121) is used
or binary classification of chest CT scans [46]. The
L+DenseNet121 approach obtained an accuracy of 85.50%, F1-
core of 85.28%, and AUC of 96.60%. In [47], a Parallel Quantum-
nspired Self-supervised Network (PQIS-Net) for automatic seg-
entation of lung CT images from hybrid dataset. The CNN
ased model is proposed for multi-class classification of chest CT
cans into normal, COVID-19, and pneumonia. The proposed work
btained an average accuracy of 98% [48].
From the state-of-the-art, it can be inferred that chest CT scan-

ased COVID-19 diagnosis can identify the coronavirus infection
ith an accuracy of > 90% in comparison to X-rays or antigen-
ased tests [49]. The COVID-19 infection diagnosis using deep
earning-based approach requires a large set of samples for each
lass and the model needs to be retrained for variation in the
ample in a class. Also, the training on a small dataset may lead
o overfitting. Further, the disadvantages of the state-of-the- art
eep learning-based techniques for COVID-19 infection diagnosis
sing chest CT scan include (a) multiple levels of severity of the
OVID-19 infection are not clear, (b) the COVID-19 infection is
ifficult to discriminate from certain pneumonia and lung in-
ections, and (c) numerous techniques failed to differentiate the
utations of coronavirus.

. Dataset

The important rationale of the proposed methodology is the
ataset used for COVID-19 infection severity classification. This
ection discusses the details of the dataset used based on joint
nalysis of expert radiologist. In the proposed work, the multi-
lass classification framework for COVID-19 infection is inspired
3

by the Coronavirus disease 2019 (COVID-19) Reporting and Data
System (CO-RADS) [50] and CT severity scores. The CO-RADS
score range is based on the patches available in the left lung and
right lung [51,52]. The CO-RADS annotation are as follows: (a)
Healthy Control (HC) = CO-RADS-1, (b) less infection = CO-RADS-
2, (c) Intermediate infection = CO-RADS-3, (d) High abnormalities
suspicious of COVID-19 = CO-RADS-4, (e) Very high abnormality
of COVID-19 = CO-RADS-5 and (f) PCR+ = CO-RADS-6. The CT
severity scores for COVID-19 infection analysis is having global
range of 0–5 and global score of 0–25. In the considered MosMed
dataset the CT scores are based on affected lung percentage lobes
such as (a) 0% = 0 points (CT score 0: CT-0), (b) > 5% = 1 point
(CT-1), (c) 5%–25% = 2 points (CT-2), (d) 25%–50% = 3 points (CT-
3), (e) 50%–75% = 4 points (CT-4), and (f) > 75% = 5 points
(CT-5).

The proposed deep learning-based Siamese networks are eval-
uated on a chest CT dataset with annotations provided by joint
analysis of Expert-1 (E1) and Expert-2 (E2). Fig. 2 put forth the
annotation details suggested by the experts for the considered
dataset. The considered chest CT scans are provided by medical
hospitals in Moscow, Russia for 1110 patients within the age
of 18–97 years (duration: 1st of March to the 25th of April
2020) [53]. The chest CT scans with no lung infection are named
as zero or healthy control. The chest CT scans are provided in
NIFTI format [54]. The SMOTE based slice selection method is
used to address the class imbalance issue with a considered
dataset [55]. For class zero (healthy control), the first 15 axial
CT scan slices are considered. Further for the suspected COVID-
19 infected patients, the 15 slices with infection patches are
considered by the joint decision of experts, i.e., E1∩E2. However,
only 2 patients’ CT scans are available for class CT-4, thus all the
slices are considered.

4. Methodology

This section discusses the detailed hierarchy of the proposed
methodology, i.e., pre-processing of the dataset, brief architecture
of pre-trained sub-network, contrastive loss function, and nearest
neighbor classifier. The schematic architecture of the proposed
methodology is shown in Fig. 3.

4.1. Pre-processing

In the considered dataset, chest CT scans are available in NIFTI
format with a size of 512 × 512 and an average of 36 slices
per patient. The input image dataset pre-processing is required
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Fig. 2. Brief details of the chest CT scan from MosMed datasets used in the proposed work.
Fig. 3. The schematic representation of the multi-class classification framework for COVID-19 infection severity level diagnosis using chest CT scans.
h
t
t

o make the input dataset compatible with the proposed train-
ng network. The pre-processing pipeline includes the following
teps: selection of axial slices, resizing operation, normalization,
nd contrast enhancement. To reduce the storage space issue and
omputational capacity, the input images are adjusted to the size
f 256 × 256. Consider the input image dataset is Xk = [(I1, H1),(I2,
2), . . . , (In, Hn)], here, Ik is input images and Hk is respective labels
or k = (1, 2, . . . , n). The input images with pixels ‘i’ and ‘j’ are
ormalized to the range of [0, 1] and represented as Inorm(i, j) in
1).

norm(i,j) =
Ik(i, j) − min(Ik( : )) (1)
max(Ik( : )) − min(Ik( : ))
4

The contrast of the CT scan slices is enhanced using a his-
togram equalization approach. For histogram equalization for the
normalized input image, i.e., Inorm(k), consider ‘t0’ as its cumula-
tive histogram, ‘tc ’ is the cumulative sum of the histogram. The
istogram equalization is based on the transformation to map
he grayscale to their new values. The monotonic transforma-
ion ‘Mt ’ is minimized using tc (Mt (r)) — t0 for all intensities r .
Thus, Ic1, Ic2, . . . , Icn are the pre-processed CT scan images with
corresponding labels.

4.2. Pre-trained sub-networks

In the P-shot, M-ways, based learning framework, for each
infection class, a maximum of 15 images are used for training.
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Fig. 4. The proposed schematic architecture of the deep learning-based sub-network.
Fig. 5. Flowchart of the multi-class classification framework for COVID-19 infection severity level diagnosis using chest CT scans.
n

S

hus, pre-trained deep learning networks trained for 1000 classes
lassification on ImageNet dataset are considered as the base
ncoder for the considered dataset [56,57]. As the depth of layer
ncreases, the number of trainable parameters increases and that
eads to complexity for metric-based learning space. Thus, to
educe the time complexity and metric space parameters ResNet-
8 based pre-trained deep learning model is used as a base
ncoder. Fig. 4 put the architecture details of the base encoder
etwork, i.e, ResNet18 for the proposed work. The ResNet18
ith skip connection residual network is inspired by the VGG-19
rchitecture. The customized weight initializer function ‘He’ for
NN layers with ReLU layer is calculated with mean value zero
nd standard deviation, i.e., Sd is defined using 2. The scale of
eLU layer is represented by ‘b’ and ‘Fs’ is the filter size and ‘C ’ is
5

umber of channels.

d =

√
2

(1 + b2)(Fs (1) ∗ Fs (2) ∗ C)
(2)

The sub-networks in Siamese networks are having two dif-

ferent inputs and prediction scores are obtained based on the

similarity of the encoded features as shown in Fig. 5. The Siamese

batch pairs are obtained using Algorithm 1. The Euclidean dis-

tance is obtained between the obtained embedded vectors and

the loss function is used to update the training model.
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.3. Contrastive loss function

The generalized loss function is used to evaluate the prediction
erformance of the trained model. The loss value increases if
he predicted value ‘yp’ is different from the true label ‘yt ’. The
contrastive loss functions are based on similar and dissimilar
pair images. More similar feature embeddings are obtained for
the same classes. The Euclidean Distance (ED) metric for the
embedded feature values, i.e, F1 and F2, is obtained using (3). The
0 is an optimum value used to eliminate the undefined Euclidean
distance measurement variables and set them to 1e-6.

ED =

√
((sum(F1 − F2)2) + Θ) (3)

Further, the loss function for similar ‘Ls’ and dissimilar pairs
‘Ld’ is calculated using (4), (5).

Ls = YP ∗ (ED)2 (4)

Ld = (1 − YP ) ∗ (max(m − ED,0)2) (5)

The YP (m) = 1 if F1(:, i) and F2(:, i) are similar images, else YP (m)
0. The overall contrastive loss, i.e., CL is calculated using (6).

L = 0.5 ∗ sum(Ls + Ld) (6)

.4. Prototypical nearest neighbor classification

The prototypical classification framework is based on em-
edded query points and finding the nearest class prototype as
hown in Fig. 4. In the proposed P-shot M-ways classification
ramework, consider the support set with labeled sample Sn =
(x1, y1), . . . , (xk, yk)}, k = {1, 2, . . . , n}. The prototype of each
lass is computed in S dimensional space such that Jp ∈ Rs and
mbedding function is f ϕ :RD

−→ Rs as defined in (7).

p =
1

|Sn|

∑
(xk,yk)∈Sn

f ϕ(xk) (7)

The distribution over classes for a query point β with learn-
ble parameters ε using (8). The prototype learning is based on

minimizing the probability given in (9).

dε(y = p|β) =
exp(−d(f ϕ(β), ck))∑
p′ exp(−d(f ϕ(β), ck′))

(8)

V (ε) = − log(dε(y = p|β)) (9)

. Experimentation and discussion

.1. System requirements

The deep learning-based Siamese networks used ‘Adam’ opti-
izer, the initial learning rate is 1e−4, gradient learning factor
et to 0.9, mini-batch size is 4, the activation function is ReLU,
utput feature vector size is 1024D, and weight initializer is ‘He’.
or the pre-trained deep learning-based encoder networks, the
ias factor is set to 10. The maximum epoch is set to 50 with an
arly stopping criterion. The experiment is conducted on MAT-
AB R2021b software installed on Intel core i7 10th Generation
rocessor (64 bit) with NVIDIA GeForce RTX2700 having 8 GB
apacity and 16 GB RAM capacity.

.2. Performance evaluation

To evaluate the performance of the proposed work, numerous
erformance evaluation parameters are considered such as Accu-
acy, sensitivity, specificity, AUC, and F1-score. The generalized
6

onfusion matrix A for the multi-class classification framework is
iven 10.

=

⎡⎢⎢⎢⎣
A11 A12 A13 A14 A15
A21 A22 A23 A24 A25
A31 A32 A33 A34 A35
A41 A42 A43 A44 A45
A51 A52 A53 A54 A55

⎤⎥⎥⎥⎦ (10)

Here, the true-positive is ‘αp’, the true-negative is ‘αn’, the false-
negative is ‘βn’, and the false-positive is defined as ‘βp’. Consider
the High-Infection (HI) class label, to evaluate its performance
evaluation parameters are obtained using 10–14. Here, η1 =

A11 + A12 + A13 + A14, η2 = A21 + A22 + A23 + A24, η3
= A31 + A32 + A33 + A34, and η4 = A41 + A42 + A43 + A44.

αp(HI) = A55 (11)

βp(HI) = A51 + A52 + A53 + A54 (12)

βn(HI) = A15 + A25 + A35 + A45 (13)

αn(HI) = η1 + η2 + η3 + η4 (14)

The mathematical expressions for performance parameters
are given in 15–20. The Accuracy parameter for the different
classes such as Extremely High Infection (EHI), High Infection
(HI),
Intermediate-Infection (II), Low-Infection (LI), and Zero (Z) is
represented as (AEHI, AHI, AII, ALI, AZ), respectively. Here, sensi-
tivity is denoted as (SEEHI, SEHI, SEII, SELI, SEZ), specificity is
represented as (SPEHI, SPHI, SPII, SPLI, SPZ), Precision measurement
is denoted as (PrEHI, PrHI, PrII PrLI PrZ), F1-score is represented as
(F1EHI, F1HI, F1II, F1LI, F1Z), and Mathews Correlation Coefficient is
expressed as (MCCEHI, MCCHI, MCCII, MCCLI, MCCZ).

AHI =
(αp + αn)

(αp + αn + βp + βn)
(15)

SEHI =
αp

(αp + βn)
(16)

SPHI =
αn

(αn + βp)
(17)

PrHI =
αp

(αp + βp)
(18)

F1HI =
2.αp

(2.αp + βp + βn)
(19)

CCHI =
(αp ∗ αn) − (βp ∗ βn)√

(βp + αp)(βn + αp)(βp + αn)(βn + αn)
(20)

The global performance evaluation parameters, i.e., macro-
ccuracy (µ1), macro-sensitivity (µ2), macro-specificity (µ3),

macro-Precision (µ4), macro-F1-score (µ5), and macro-MCC (µ6)
re calculated using 21–26. Table 2 put forth the details of
lobal performance evaluation parameters conducted on 5 ran-
om trials conducted on a 15-shot 5-ways multi-class classifica-
ion framework. The global performance evaluation parameters
nsure the stable performance of the deep learning encoder-
nspired encoder-based multi-class classification framework. The
roposed work on MosMed dataset obtained an average accuracy
f 97.48%, specificity of 98.45%, the sensitivity of 94.35%, F1 score
f 93.68%, the precision of 93.44%, and MCC of 92.27%.

1 =
(AEHI + AHI + AII + ALI + AZ)

P
(21)

2 =
(SEEHI + SEHI + SEII + SELI + SEZ)

P
(22)

3 =
(SPEHI + SPHI + SPII + SPLI + SPZ)

P
(23)

4 =
(PrEHI + PrHI + PrII + PrLI +PrZ) (24)
P
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Table 2
Global performance evaluation parameters for five trials conducted with the base
encoder ResNet18 on the MosMed dataset.
Trial Performance parameters (%)

µ1 µ2 µ3 µ4 µ5 µ6

1 97.24 93.86 98.31 92.78 93.05 91.53
2 98.07 95.66 98.83 94.90 95.10 94.03
3 97.99 95.78 98.78 94.86 95.01 93.99
4 97.57 94.18 98.49 93.70 93.88 92.40
5 96.57 92.28 97.88 90.96 91.37 89.40
Average 97.48 94.35 98.45 93.44 93.68 92.27

Table 3
Performance evaluation parameters as per severity levels of COVID-19 infection
in chest CT scans with fine-tuned base encoder ResNet18 encoder on MosMed
dataset.
Classes A Se Sp Pr F1 MCC

Z 100 100 100 100 100 100
LI 99.16 96.20 100 100 98.04 97.54
II 96.23 98.81 95.69 83.00 90.22 88.42
HI 95.82 83.90 99.72 99.00 90.83 88.65
EHI 98.74 100 98.52 92.31 96.00 95.36

µ5 =
(F1EHI + F1HI + F1II + F1LI + F1Z)

P
(25)

6 =
(MCCEHI + MCCHI + MCCII + MCCLI + MCCZ)

P
(26)

To evaluate the robustness of the proposed work, the perfor-
ance parameters are evaluated for the individual classes as well
nd given in Table 3. It can be inferred that less accuracy and
ensitivity is obtained for ‘LI’ class, less specificity and precision
s obtained for ‘II’ class. Also, F1-score is 90% and MCC is < 90%
or both ‘LI’ and ‘II’ classes.

.3. Grad-CAM based infection visualization

The Grad-CAM technique is used to visualize the strongest
ctivation features map learned by the proposed model. The
rad-CAM is based on the linear combination of weights of chan-
el activation maps with an applied ReLU layer. It evaluates the
etwork prediction using differential outputs (class scores) of the
7

gradients. The activation function ReLU provides the feature map
of the region of interest, i.e., (severity of infection) in the speci-
fied class. In a proposed multi-class infection classification task,
consider the score of class is represented by ‘Sr ’ for output ‘YSr ’,
nd feature maps are denoted by ‘f ’. The obtained score Map (:,
, pc) corresponding to categorical label ‘pc’ is the gradient of the
inal classification score for the particular class, w.r.t. each feature
n the feature layer. The obtained Grad-Map is up-sampled to
he size of 224 × 224 size, i.e., input image size. Fig. 6 shows
he obtained Grad-MAP overlapped on respective input images to
isualize the severity of infection in lungs CT scans of suspected
OVID-19 patients.

.4. Case study on Indian patients

The chest CT scans of 42 COVID suspected patients are col-
ected in April 2021 for the patient (age 21–85 years). The low
ose CT scan measurements are obtained on the multi-detector
6 slice CT Aquilion model from Toshiba. The high voltage circuit
enerates 60 kW power for a 7.5 MHU X-ray tube. The exposure
ime is 0.35 s for partial scans and 0.50 s for each full scan
easurement. The length of the detector along the z-axis is set

to 38 mm with 896 channels or columns across 40 rows. The
slice thickness range varies from 16 × 0.5 mm to 16 × 1 mm.
The average total time taken by the technician for chest CT slices
measurements is 10 min for setup creation.

The CT scans are provided in DICOM 3.0 format having size
dimensions 512 × 512 and an average of 150 frames are given for
each patient. The input images are pre-processed to make them
compatible with the proposed methodology. In the Indian dataset,
for each patient 15 slices are considered. Further, Fig. 7 presents
the performance evaluation details of the proposed work on the
Indian dataset. Based on demographic region, an average recovery
time period for COVID-19 patients was 14 days which is reduced
to 7 days depending on COVID-19 infection severity [58]. In the
proposed work, the chest CT scan of the dataset is collected for
30 days. However, the COVID-19 infection severity is detected for
chest CT scan of an average 10 day period of COVID-19 detection
to quarantine period. The proposed work obtained a precision of
94.0%, specificity of 98.50%, the sensitivity of 94.54%, F1 score of
93.32%, and MCC is 92.08%.
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Fig. 7. Performance evaluation along with infection visualization of the proposed
work on follow-up patients from the Indian dataset.

Table 4
Comparative analysis of global accuracy on the training dataset with 5-ways
2-shot Siamese network with different pre-trained encoder networks (Top-3
classification accuracy values are highlighted in bold).
Encoder Layers Parameters

(in millions)
Size of the
input image

µ1

ResNet18 71 11.7 224 × 224 92.75%
ResNet50 177 25.6 224 × 224 88.10%
ResNet101 347 44.6 224 × 224 89.23%
DarkNet19 64 20.8 256 × 256 91.20%
DarkNet53 184 41.6 256 × 256 95.83%
DenseNet201 708 20 224 × 224 86.40%
VGG19 47 144 224 × 224 94.80%
Inceptionv3 315 23.9 299 × 299 85.20%
SqueezeNet 68 1.24 227 × 227 84.10%
GoogleNet 144 7 224 × 224 87.20%
Xception 170 22.9 299 × 299 77.78%

5.5. Ablation study

The proposed methodology is investigated for the following
ueries: (1) How would different pre-trained CNN models affect
he performance of multi-class classification of Siamese based
etwork? (2) What is the impact of variation in P-shots on per-
ormance evaluation parameters of ResNet18 base encoder.

Table 4 puts forth the brief details of performance comparative
nalysis of the Siamese-based sub-networks on the considered
ataset. It can be inferred that > 90% accuracy is achieved
ith the VGG19, DarkNets, and ResNet18. However, DarkNets and
GG-19 have higher trainable parameters that increase the com-
lexity of parameters in metric space for similarity index. Thus,
esNet-18 based pre-trained model is a suitable encoder for the
roposed work. The proposed ResNet18 encoder performance is
valuated with variation in N-ways and P-shots-based multi-class
lassification framework. Table 5 puts forth the details of global
erformance parameters with 5 classes and a P-shots learning
ramework. It is concluded that 5 class 15 shot training networks
rovide the optimum performance on the considered dataset.
Table 6 put forth the comparative analysis of the proposed

ethodology with other existing techniques available in litera-
ure on the considered MosMed dataset with 5 ways and 15 shots

lassification framework. The proposed methodology detects the

8

Table 5
Comparative analysis of the P-ways M-shot Siamese network ResNet18 based
encoder for multi-class classification of COVID-19 infection severity levels.
Techniques Performance parameters (%)

P M µ1 µ2 µ3 µ4 µ5 µ6

5 15 95.68 91.40 88.64 88.60 89.04 87.06
5 15 97.07 94.58 98.27 92.70 92.75 91.59
5 15 98.07 95.66 98.83 94.90 95.10 94.03

numerous severities of COVID-19 infection with an accuracy of
98.07% in 0.8 seconds per chest CT scan. The few-shot learning
with ResNet50 pre-trained network without augmentation ob-
tained the classification accuracy of 87.23% on MosMed dataset
in 15 seconds duration per scan [20]. The COVID-19 infection
severity is classified with an accuracy of 96.20% in 12 s per scan
using DenseNet [59].

5.6. Limitations and future scope

Earlier we have worked on binary classification of chest CT
scans of COVID19 patients from normal patients using deep
learning-based techniques [63,32]. For this, numerous statistical
data augmentation techniques are implemented. But the earlier
reported work is not able to detect the COVID-19 infection sever-
ity on smaller dataset. The proposed McS-Nets addresses the
issue of COVID-19 infection severity classification with limited
data availability in each class. It provides the accurate prediction
of the disease in mean time with the minimum number of
training samples. However, the proposed work is having certain
limitations associated with it: (a) performance parameters are <
90% for the infection level with less than 25% infection or few
GGO is visible, (b) it is costly as multiple CT scans are required for
follow-up patients (average 2–3 scans during 14 days of tenure
of COVID-19 infection first detected).

In future work, the proposed technique is to be implemented
in a real-time environment for COVID-19 infection diagnosis. The
proposed framework is based on image similarity; thus, tech-
niques need to be explored on various variants of COVID-19 in-
fection. Further, the proposed methodology will be implemented
on the following conditions: (a) different variants of COVID-19
infections, (b) blood samples and other clinical parameters will
also be used for COVID-19 infection identification. To make the
proposed technique more effective, contrastive learning-based
segmentation is to be explored. Also, a cloud computing-based
framework is to be used for wider clinical applications.

6. Conclusions

The proposed work addresses the COVID-19 severity infection
diagnosis using chest CT scans with limited samples available
from each class. The COVID-19 infection in lungs is categorized
as: 1. Zero — 0% infection (CT-0), 2. Low — < 25% infection (CT-1),
3. Intermediate — 25%–50% infection (CT-2), 4. High — 50%–75%
infection (CT-3), 5. Extremely high infection — > 75% infection
(CT-4). The proposed work learned different severity of infection
features in the lung area in comparison to the best performing
deep learning-based encoder network. In the proposed 15-shot
5-ways McS-Net an average of > 95% of accuracy, sensitivity,
and specificity is obtained on testing data. The Grad-CAM-based
functionality is used to investigate the infection map learned by
the proposed networks. Further, the proposed work is evaluated
on the Indian dataset with limited CT scan slices in each class
and obtains average accuracy of 97.06%, a sensitivity of 94.54%.
Thus, the proposed technique is useful in the infection severity
identification on the follow-up low dose chest CT scan of the
patients.
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Table 6
Comparative analysis of the proposed techniques with the exiting state-of-the-art methods on considered MosMed
dataset for multi-class classification (5 ways 15 shot).
Methods ReCOV-101 [60] ResNets+Majority

voting [39]
Deep COVID Detect
(DCD) [61]

RF+GLCM [62] Proposed

Accuracy 94.9% 98% 74.70% 89.23% 98.07%
-
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