
Article https://doi.org/10.1038/s41467-022-34537-6

Metabolite annotation from knowns to
unknowns through knowledge-guided
multi-layer metabolic networking

Zhiwei Zhou 1,4, Mingdu Luo1,2,4, Haosong Zhang1,2, Yandong Yin1, Yuping Cai1 &
Zheng-Jiang Zhu 1,3

Liquid chromatography - mass spectrometry (LC-MS) based untargeted
metabolomics allows tomeasure both known and unknownmetabolites in the
metabolome. However, unknown metabolite annotation is a major challenge
in untargeted metabolomics. Here, we develop an approach, namely,
knowledge-guided multi-layer network (KGMN), to enable global metabolite
annotation from knowns to unknowns in untargeted metabolomics. The
KGMN approach integrates three-layer networks, including knowledge-based
metabolic reaction network, knowledge-guided MS/MS similarity network,
and global peak correlation network. To demonstrate the principle, we apply
KGMN in an in vitro enzymatic reaction system and different biological sam-
ples, with ~100–300 putative unknowns annotated in each data set. Among
them, >80%unknownmetabolites are corroboratedwith in silicoMS/MS tools.
Finally, we validate 5 metabolites that are absent in common MS/MS libraries
through repository mining and synthesis of chemical standards. Together, the
KGMN approach enables efficient unknown annotations, and substantially
advances the discovery of recurrent unknown metabolites for common bio-
logical samples from model organisms, towards deciphering dark matter in
untargeted metabolomics.

The metabolome refers to the complete collection of small molecules
in living organisms1–4. It includes not only endogenously produced
known metabolites from cellular metabolism, but also unknown
metabolites generated from microbiota, plants, foods, and
xenobiotics3,5,6. Liquid chromatography–mass spectrometry (LC–MS)
based untargeted metabolomics allows to measure thousands of
metabolic features from biological samples7,8. These metabolic fea-
tures come from known and unknownmetabolites, as well as different
ion forms generated during ionization, such as adducts, isotopes,
neutral losses, and other in-source fragmentation products9,10. Meta-
bolite identification remains the central bottleneck in LC–MS-based
untargetedmetabolomics4,11. For annotationof knownmetabolites, the
most commonly used approach is to search the exact mass of

precursor ion (MS1 m/z) and tandem mass spectrum (MS2 spectrum)
against standard spectral libraries12,13. In the past decade, significant
efforts have been made to expand the coverage of spectral libraries.
For annotation of unknownmetabolites, due to a lack of knowledge of
chemical structures, additional experiments or in silico tools were
usually required5,11. For example, Tsugawa and colleagues employed
stable-isotope labeling to determine formulas of unknownmetabolites
by identifying the labeled and non-labeled pair ofmetabolic peaks14. In
addition, bioinformatic tools, such as MetFrag15, CFM-ID16, MS-
FINDER17, and SIRIUS18, have been developed to predict in silico MS/
MS or molecular fingerprinting to elucidate unknowns. These tools
largely rely on existing structural databases (e.g., HMDB19 and
PubChem20) to retrieve putative chemical structures. Therefore, it is
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not feasible to identify unknown metabolites absent in the databases.
Instead, in silico approaches for generating newmetabolite structures
(e.g. MINE21, BioTransformer22) are developed to complement the
metabolite coverage. For example, COSMICwas recently developed to
annotate unknowns from in silico-generated metabolites23. More
recently, MSNovelist provided a de novo structure generation
approach from mass spectra for unknown metabolite annotation
without a requirement of structural databases24.

Alternatively, network-based approaches are increasingly adop-
ted in untargeted metabolomics for metabolite annotation, especially
for unknown metabolites without available standard MS/MS
spectra25–28. The most prominent network approach is molecular net-
working (MN) inGNPS, which is anMS/MS similarity network that links
mass spectra of metabolites based on spectral similarity28,29. Various in
silico approaches, such as NAP30, MS2LDA31, MolNetEnhancer32, and
others33, were further developed and combined with in silico MS/MS
fragmentation tools to infer metabolite structures in GNPS molecular
networking. In addition, mass difference annotation34,35, taxonomic36,
and chemical class37 information could be added to propagate anno-
tation or re-rank in silico annotated candidates. Recently, ion identity
information (e.g., adducts, in-source fragments) can be integrated into
molecular networking to cluster different ion species of the same
metabolite and remove redundant network connections38,39. Unlike
molecular networking, peak correlation network approaches employ
peak intensity, chromatographic peak shape, mass difference and
other information to construct the network, wherein the linked
metabolic features are regarded as potential biological associations
and beneficial to metabolite annotation40–46. For example, NetID used
an integer linear programming approach to optimize a peak correla-
tion network41. NetID improved the accuracy of peak assignments and
provided apossible formula transformation betweenpeaks. In general,
these data-driven network approaches build networks from experi-
mental metabolomics data to aid metabolite annotations.

Compared to data-driven network approaches, knowledge-based
network approaches provide valuable complements from biochemical
knowledge25,47–49. For example, iMet combined reactant pairs from
KEGG and MS/MS spectral similarity to train a classifier model for
metabolite annotation47. MetDNA is a typical computational tool to
combine knowledge-based networks andMS/MS spectral similarity for
metabolite annotation49. It used a metabolic reaction network (MRN)
to connect metabolic peaks with MS/MS spectral similarity in a
recursive manner, achieving high coverage and efficient metabolite
annotation49. Such a knowledge-guided approach enables to pre-
ferentially link metabolic peaks with definitive chemical reaction
relationships. However, this approach cannot annotate unknown
metabolites which are not covered in the knowledge network. Despite
accumulative progress in developing network-based methods for
metabolite annotation, most of these studies are primarily limited to
one major network embedded with different chemical information.
Integration ofmultiple data-driven and knowledge-based networks for
metabolite annotation has been increasingly appreciated but remains
unrealized due to the lack of appropriate technologies25.

In this work, we developed an approach, namely, a knowledge-
guided multilayer network (KGMN), to enable global metabolite
annotation from knowns to unknowns in untargeted metabolomics
(Fig. 1). The KGMN approach integrated three layers of networks,
including a knowledge-based metabolic reaction network (KMRN), a
knowledge-guided MS2 similarity network, and a global peak correla-
tion network. We first demonstrated that this multilayer network
strategy significantly improved the identification accuracy of known
metabolites to >95%. Furthermore, we demonstrated the principle of
metabolite annotation from knowns to unknowns using KGMN in an
in vitro enzymatic reaction system and different biological samples,
with ~100–300 putative unknowns being annotated in each data set.
Most importantly, more than 80% of unknown metabolites were

corroborated with other in silico MS/MS tools. Finally, we evaluated
putative unknown metabolites whether are recurrent in similar sam-
ples in the metabolomics repository50. We successfully discovered five
unknown metabolites that are absent in common MS/MS libraries by
integrating KGMN and repository-mining. Altogether, the KGMN
approach allows efficient annotations of unknown metabolites and
substantially advances the discovery of recurrent unknowns toward
deciphering dark matter in untargeted metabolomics.

Results
The workflow
Knowledge-guided multilayer network enables global unknown
metabolite annotation by propagating annotations from knowns to
unknowns along themetabolic reaction network. The KGMNapproach
integrated three layers of networks: (1) knowledge-based metabolic
reaction network (KMRN), (2) knowledge-guided MS2 similarity net-
work, and (3) global peak correlation network. The seed metabolites
werefirst annotatedbymatching their properties (MS1, retention time,
and MS2 spectrum) to metabolite standard libraries (Fig. 1a), and
mapped into the metabolic reaction network to retrieve reaction-
paired neighbor metabolites (network 1 in Fig. 1b). This network is a
knowledge-based metabolic reaction network, where known or
unknownmetabolites are linked by either known or in silico reactions.
Specifically, known metabolites and reactions were retrieved from
KEGG, while unknown metabolites and reactions were curated via
performing in silico enzymatic reactions using known metabolites in
the KEGG database as substrates (see Methods and Supplementary
Fig. 1). For example, oxaloacetate (C00036) can be reduced to malate
(C00149) with a reductase. Such a reduction reaction could be applied
to other structurally similar metabolites and generate possible
unknowns with novel structures (Supplementary Fig. 1a). These
unknown products are linked with their precursors to expand the
metabolic network from known chemical space to unknown space. In
sum, a total of 34,858 unknown metabolites were generated from
known metabolites, and further linked together through 52,137 edges
and 1504biotransformation types in KMRN (Supplementary Fig. 1b–d).
These unknown metabolites included 405 known-unknowns and
34,453 unknown-unknowns, depending on whether they were inclu-
ded by HMDB (version 4.0, released on 2018-12-18).

In KGMN, network 1 provides the known-to-unknown metabolic
reaction knowledge to guide the construction of the MS2 similarity
network from the LC–MS/MS data (network 2 in Fig. 1b). Specifically,
reaction-paired neighbor metabolites (knowns or unknowns) from
seeds were retrieved from network 1. Their calculated MS1 m/z and
predictedRTswerematched to the experimental values in the datafile.
Meanwhile, the surrogated MS2 spectra from seed metabolites were
also used for MS/MS spectral match. The matched peaks were anno-
tated as putative neighbor metabolites and linked to seeds in network
2. Thereby, seeds are linked to other annotated metabolites with four
constrains, including MS1 m/z, RT, MS/MS similarity, and metabolic
biotransformation (e.g., reduction, +2H; decarboxylation, -CO2).
Althoughwenamednetwork2 as the knowledge-guidedMS2 similarity
network, in fact, the connections between nodes in the network had
four constrains (see Methods). Compared to GNPS and other tools
which solely use the MS/MS similarity to construct the network, our
knowledge-guided MS2 similarity network has explicable structural
relationships between two nodes (i.e., metabolic reaction bio-
transformation) and a more succinct network topology (Supplemen-
tary Fig. 2). In addition, similar to MetDNA, the annotated metabolites
could be used as new seeds to annotate more metabolites and extend
the network. Such annotation is performed in a recursivemanner until
there is no new metabolites annotated in LC–MS/MS data.

The global peak correlation network aims to annotate different
ion forms in LC–MS data (network 3 in Fig. 1b). This network utilizes
chromatography co-elution correlation to recognize different ion
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forms, including adducts, isotopes, neutral losses, and in-source
fragments (ISF). Briefly, all annotated peaks from the knowledge-
guidedMS2 similarity network were considered as base peaks. Next,
different ion forms derived from each base peak were extracted
from the peak list in LC–MS data. More specifically, common
adducts (e.g., Na+, K+) and neutral losses (e.g., -H2O, -NH3) were
searched within co-eluted peaks, while in-source fragments were
retrieved from the MS2 spectra of the base peaks (See Methods and
Supplementary Fig. 3). Then, a peak correlation subnetwork is
constructed for each annotated metabolite through connecting
base peak and different ion form peaks. The subnetwork describes
the comprehensive peak profiles of the metabolite during ioniza-
tion in mass spectrometry measurements. As a result, a global peak
correlation network (network 3) is constructed by combining sub-
networks. Similar to NetID, the global peak correlation network
provides a valuable basis to optimize and filter metabolite annota-
tion from the first two-layer network and improve the accuracy of
peak assignment (Supplementary Fig. 4). Peak annotations are
compared and scored within and across subnetworks, while con-
flicts are further resolved by maximizing the self-consistency in
each subnetwork. The subnetworks with the most linked edges are
reserved, while unsatisfactory and conflict subnetworks and their
putative annotations are removed. Most importantly, unlike other
peak correlation network approaches such as CAMERA44 and IIMN38,
our global peak correlation network can effectively filter putative
metabolite annotations from the first two-layer networks.

Finally, the annotation results from KGMN are given with defini-
tive confidence levels according to the MSI guidelines51 (Fig. 1c). The
KGMN approach is implemented and freely available in the MetDNA2
webserver (http://metdna.zhulab.cn/). It supports multiple metabo-
lomics workflows (Supplementary Table 1), and accepts various data
imports from common data processing tools, including XCMS52, MS-
DIAL53, and MZmine54. The network visualization and interactive
investigation is performed via Cytoscape.We have provided a series of
tutorials to visualize the network and connect KGMN result with in
silico MS/MS workflow and repository search in Supplementary
Notes 1–3.

KGMN improves peak annotation accuracy
The KGMN approach enables to optimize and filter metabolite anno-
tation and improves the accuracy of peak assignment through a global
peak correlation network (see Methods and Supplementary Figs. 3, 4).
Here, we demonstrated the principle with an example in an NIST urine
sample (Fig. 2a). Metabolic features M285T555 and M153T555 were
putatively annotated as xanthosine and 5-ureido-4-imidazole carbox-
ylate, respectively. Basepeaksofbothmetabolites and their related ion
formswere extracted to construct subnetworks. Two subnetworks had
14 and seven recognized peaks, respectively. One conflict peak
assignment was observed in these subnetworks. The base feature of
M153T555 was assigned as an in-source fragment ion of xanthosine. To
resolve this conflict and maximize the self-consistency of peak anno-
tations in two subnetworks, the subnetwork of M153T555 and its
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annotation of 5-ureido-4-imidazole were removed. As a result, all peak
annotations in two subnetworks could bemerged and confirmed to be
associatedwith xanthosine.We further validated thatM153T555was an
in-source fragment of xanthosine using the chemical stan-
dard (Fig. 2b).

Then, we systemically evaluated the improved accuracy of peak
annotations with a manually curated data set which contains a total of
242metabolites, 3451metabolic features from five different biological
samples, and two ionization modes (Supplementary Table 2 and Sup-
plementary Data 1). These metabolites were first identified in each
biological sample by MS1 match, RT match, and MS/MS match with
standard libraries. Then, metabolite identifications and related ion
form annotations were manually checked and labeled for accuracy
evaluation (see Methods and Supplementary Fig. 5). Among these
metabolic features, our previously developed MetDNA (denoted as
MetDNA1) reported a total of 2449 annotations, including 1767 correct
(72.2%) and 682 error (27.8%) annotations. The remaining 1002 peaks
were not annotated (Fig. 2c). As a comparison, with the optimization
and filtering of the global peak correlation network, the KGMN
approach significantly increased the correct peak annotations to 3325
(98.5%) and decreased error annotations to 49 (1.5%; Fig. 2c). As shown
in Fig. 2d, when only the annotated peaks were considered, annotation
coverage increased from 71.0 to 97.8%, and correct peak annotations
increased from 72.2 to 98.5%. Considering different metabolite anno-
tations for one peak, correct annotation rates were also consistently
improved (Fig. 2e). Similar results were also obtained for individual
data sets in both positive and negative ionization modes

(Supplementary Fig. 6). We also compared the global peak correlation
network in KGMN with CAMERA44. Compared to CAMERA, KGMN
annotatedmore ion forms (3374 vs 2297, KGMN vs CAMERA), and had
a higher correct rate (97.5 vs 81.7%, KGMN vs CAMERA) (Supplemen-
tary Fig. 7). In particular, KGMN has excellent performances in recog-
nizing inexplicable in-source fragmentation ions and neutral losses
(Supplementary Fig. 7b). Overall, these results demonstrated that the
KGMN approach effectively extended annotation coverage and
increased annotation accuracy for untargeted metabolomics.

A salient feature of KGMN is that peak assignment evaluation and
optimization are performed for all peaks in automated and unsu-
pervisedmanners. In addition, we found that this approachwas highly
effective to recognize false positive annotations caused by in-source
fragments. For example, in-source fragment M112T282 was annotated
as metabolite cytosine in MetDNA1 because of its high MS/MS match
score (0.9817) (Supplementary Fig. 8). This feature was successfully
recognized as an in-source fragment feature of metabolite
N4-acetylcytidine by KGMN approach. More examples are provided in
Supplementary Fig. 9. Taken together, these results validate that our
KGMN approach provides substantial improvements of peak assign-
ment accuracy, which facilitates accurate annotations of unknown
metabolites in complex biological samples.

Metabolite annotation from knowns to unknowns
To demonstrate the principle of metabolite annotation from
knowns to unknowns in KGMN, we experimentally incubated a
mixture of 46 common metabolites (46std_mix) with a human liver
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S9 fraction for 24 h (Fig. 3a). The liver S9 fraction contains most
phase I and phase II metabolic enzymes and has been widely used to
investigate in vitrometabolism. Here, we treat the 46 compounds as
known seed metabolites, while their in vitro metabolic products are
defined as unknowns. Unknown metabolites in the incubation
solution were analyzed by LC–MS/MS. To identify unknowns, we
constructed the knowledge-basedmetabolic reaction network from
46 metabolites, including 531 possible unknown structures and 642
reaction pairs (Supplementary Fig. 10 and Supplementary Data 2).
This knowledge-based metabolic reaction network was used to

annotate unknown metabolites in LC–MS/MS data. In positive
ionization mode, the KGMN approach annotated 39 known and 69
unknown peaks, and a total of 700 MS1 peaks associated with
known and unknown metabolites were discovered in the global
peak correlation network (Fig. 3b, Supplementary Fig. 10 and Sup-
plementary Data 3). Unknown metabolites were generated from
eight types of biotransformation (Supplementary Table 3). Similar
results were obtained in negative ionization mode (Fig. 3c). KGMN
approach annotated 41 known and 106 unknown peaks, and a total
of 741 peaks in the global peak correlation network. Unknown

SO3

H2O

SO3

C6H8O6

C6H8O6

HPO3

SO3
C6H8O6

Exd006675

Exd006669

Exd006674

Exd006670

Exd006671

L0019

Exd006673

Exd006672

Exd000182

d

HPO3

Inosine

Inosine 5’-sulfate

Inosine 
5’-monophosphate

SO3

[M+1][M+1]
[M+2]

[3M+Na-2H]-

[3M-H]-

[2M+Na-2H]-

[2M-H]-

[M+Cl]-

[M+Na-2H]-

[M+3]

[M+2]

ISF

ISF

[M+1]

[M+1][M+1]

[M+1]
ISF

[M+1]

[M-H]-

[M-H]-

[M+1]
[M-H]-

[M+K-2H]-

[3M-H]-

[M+2][M+3]

[M+2] [2M-H]-

a b

Reaction pair
MS/MS similarity

Peak correlation

Biotransformation

Annotated peaks (in positive mode)
c

Seed Unknown

Knowledge-based metabolic 
reaction network

Knowledge-guided MS2 
similarity network

Global peak correlation 
network

1 known 8 unknowns( )

Node:

(3 metabolites) (29 different ion forms)

Edege:

Different ion forms

g

e f

h i

0
10

0

5 6 7 8

0
10

0
−1

.0
0.

0
1.

0

100 150 200 250
m/z

R
el

at
iv

e 
in

te
ns

ity

Experiment
Standard

Retention time (min)

R
el

at
iv

e 
in

te
ns

ity

N

O

N
H

N

N

O
O

P
O

OH
OH

HO

HO

N

N

N

N

OH

O
HO

HO
OH

Exd000182L0019

-HPO3

−1
.0

0.
0

1.
0

100 200 300
m/z

R
el

at
iv

e 
in

te
ns

ity

5 6 7 8
Retention time (min)

0
10

0
0

10
0

R
el

at
iv

e 
in

te
ns

ity

N

N

N

N

OH

O
HO

HO
OH

+SO3
N

N

N

N

OH

O
HO

HO
O

S
O

O

OH

Exd000182 Exd006673

S9 fraction

In-silico reactions

Enzymic biotransformations

46STD

46STD

8

Annotated peaks (in negative mode)

Experiment
Standard

In−silico
tools

(n = 165)

Seed
MS/MS network
Correlation network

Seed
MS/MS network
Correlation network

14

Biotransformation

39

69

700

41

106

741

0 50 100 150
Number

(n = 53)

Spectral DBs

(n = 28)
Chemical standards

Validation of unknowns

Fig. 3 | Metabolite annotation from knowns to unknowns. a Generation of
unknown metabolites from a mixture of 46 metabolites (46std_mix) with in silico
reactions or enzymatic biotransformation via human liver S9 fraction incubation.
b, c Annotated peaks in positive (b) and negative ionization modes (c); the left
cyclic bars represent the annotated peaks in different networks. The right bar
represents the involved biotransformation in an unknown annotation.
d–f Unknown annotations from seed metabolite inosine 5′-monophosphate (IMP,
L0019): d IMP generates eight unknowns through four transformations in the

knowledge-based metabolic reaction network; e knowledge-guided MS2 similarity
network annotates two unknowns from the seed; f 29 different ion forms were
annotated from three metabolites in global peak correlation network.
g, h Validation of two annotated unknowns using chemical standards: inosine
(g, labeled as Exd000182) and inosine 5′-sulfate (h, labeled as Exd006673).
i Validation of annotated unknowns with different strategies. Source data are
provided as a Source Data file.

Article https://doi.org/10.1038/s41467-022-34537-6

Nature Communications |         (2022) 13:6656 5



metabolites were generated from 14 types of biotransformation
(Supplementary Table 3).

We further demonstrated the known-to-unknown annotation with
an example of inosine 5′-monophosphate (IMP, denoted as L0019 in
Fig. 3d–f). As one of the seed metabolites, IMP was identified by
matching the standard MS/MS spectral library. Then, the IMP-related-
subnetwork was retrieved from the knowledge-based metabolic reac-
tion network (Fig. 3d). Specifically, 8 metabolites were in silico gener-
ated from IMP through one- or two-step reactions with four different
types of biotransformation, including dephosphorylation (-HPO3), sul-
fation (+SO3), glucuronidation (+C6H8O6) and hydrolysis (-H2O). With
the guidance of the IMP-reaction network, the knowledge-guided
MS2 similarity network was constructed (Fig. 3e). In this network, three
metabolites were connected via reaction pair (black line) and MS/MS
similarity (orange line), including one seed metabolite (IMP) and two
unknowns (inosine and inosine 5′-sulfate). To clarify, inosine and ino-
sine 5′-sulfate were specifically defined as unknowns only in this in vitro
experiment because they were not included in 46std_mix and were
generated through enzymatic reactions. Furthermore, a peak correla-
tion network was constructed with 29 different ion form peaks from
three annotated metabolites (Fig. 3f). In this example, inosine was the
product of dephosphorylation of IMP, and further was converted to
inosine 5′-sulfate through sulfation. We further confirmed identifica-
tions of inosine and inosine 5′-sulfate with chemical standards
(Fig. 3g, h).

Finally, we validated the accuracy of annotated unknown meta-
bolites with multiple strategies, including chemical standards, public
spectral libraries, and in silicoMS/MS tools (Fig. 3i and Supplementary
Data 3). For all 175 annotated unknowns in positive and negative
ionization modes (Fig. 3b, c), 28 (16%), 53 (30%), and 165 (94%) were

validated by chemical standards, public spectral libraries, and in silico
MS/MS tools, respectively. Examples in detail are provided in Supple-
mentary Fig. 11. Taken together, these results demonstrated that the
KGMN strategy effectively annotates unknown metabolites from
knowns and provides reliable putative structures for unknown peaks
on a large scale.

Global annotation of unknown metabolites
To determine the performance for real biological samples, we applied
KGMN workflow to the untargeted metabolomics data of NIST human
urine samples. In positive ionization mode, 173 seed metabolites were
first annotated by matching with the standard library (Fig. 4a). Then, a
total of 927 peaks, including 634 knowns and 293 unknowns were
annotated through the knowledge-guided MS/MS similarity network
(Supplementary Fig. 12). Finally, 3301 MS1 peaks associated with
metabolites were annotated in the global peak correlation network
(Supplementary Fig. 13). Confidence levels of putatively annotated
knowns and unknowns through our KGMN approach were assigned as
levels 3.1 and 3.2, respectively (see Methods and Fig. 4a). Similarly, in
negative ionization mode, 161 seed metabolites were first annotated
and 1,283 peaks including 652 knowns and 631 unknowns were further
annotated through the knowledge-guided MS/MS similarity network
(Supplementary Fig. 14). These results demonstrated that the KGMN
approach significantly expanded the metabolite annotation coverage
from seed metabolites in biological samples. In this work, we are
interested in these putatively annotated unknown metabolites. Since
unknowns are not included in spectral databases andwithout available
chemical standards, we employed common in silico MS/MS tools to
corroborate their reliability (Supplementary Data 4). 206, 95, and 196
unknown peaks in positive ionization mode, and 540, 309, 299

Fig. 4 | Global annotation of unknown metabolites in biological samples.
a Annotated known and unknown metabolites in NIST human urine samples
(positive ionization mode). The left panel is the statistics of annotated peaks in the
multilayer networks, and the right panel is the statistics of annotated known and
unknown peaks. b Corroborations of annotated unknown metabolites with differ-
ent in silico MS/MS tools. c A corroboration example of unknown metabolite
4-hydroxyhippuric acid using in silico MS/MS tools. d Global annotations of

metabolites in different biological samples in positive ionization mode. The left
panel is the statistics of annotated peaks in the multilayer network, and the right
panel is the statistics of known and unknown metabolites. e Summary of bio-
transformation types of annotated unknown metabolites. The color represents
different biotransformation types, and the node size represents the frequency
number. Source data are provided as a Source Data file.
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unknown peaks in negative ionization mode were corroborated by
MetFrag15, CFM-ID16, and MS-FINDER17, respectively (Fig. 4b and Sup-
plementary Fig. 14). In sum, 237 (80.9%) and 547 (86.7%) unknown
peakswerecorroboratedby at least one in silicoMS/MS tool in positive
and negative ionizationmodes, respectively. For example, the glycine-
conjugated metabolite, 4-hydroxyhippuric acid was corroborated by
in silico MS/MS tools (Fig. 4c). More examples are provided in Sup-
plementary Fig. 14.

Finally, we applied KGMN to different biological samples,
including human plasma, BV2 cells, fruit fly head tissue, and mouse
liver tissue samples. Consistently, about 100–200 (154 ± 36, Mean ±
S.D.), 300–600 (607 ± 287), and 2000–3000 (2445 ± 758) peaks were
annotated in seed annotation, knowledge-guided MS/MS similarity
network, and global peak correlation network in positive ionization
mode, respectively (Fig. 4d, Supplementary Table 4, and Supplemen-
tary Data 5). Similar results were obtained in negative ionizationmode
(Supplementary Fig. 14). On average, 100–300 unknown metabolites
were annotated in each data set. These metabolites were generated
through 56 types of biotransformation (Fig. 4e and Supplementary
Table 5). The most frequent biotransformation types included glu-
curonidation (C6H8O6), sulfation (SO3), and oxidation/reduction (H2).
Overall, these results demonstrated that the KGMN approach enables
global and efficient annotation of unknown metabolites in different
biological samples.

Validation of recurrent unknowns through repository-mining
With global annotation of unknown metabolites, it is feasible to eval-
uate the recurrence of unknowns in the public metabolomics data
repository. Here, we searched our putatively annotated unknowns in
NIST human urine samples against GNPS/MassIVE database through
MASST50 (Fig. 5a). A total of 187 unknowns were recurrent in 351 data
sets and 13,418 data files (Fig. 5b and Supplementary Data 6). Specifi-
cally, 69, 73, 20, and 25 unknowns were detected in 1, 2–5, 6–10, and
>10 data sets, respectively. Among them, 76, 25, 13, and 73 unknowns
were present in 1–10, 11–30, 31–50, and >50 data files, respectively.
These data sets were acquired from 10 different species and 12 dif-
ferent sample types (Fig. 5c). We noticed that recurrent unknown
metabolitesmainly appeared in human species, such as plasma, serum,
and urine, which were the same as the sample types tested in
this study.

We further demonstrated an example for a recurrent unknown
peak of M262T526, which was observed in seven data sets and 41 data
files (Fig. 5d). Throughmining their relatedmeta information in GNPS/
MassIVE, we found it was reported in multiple species as an unknown,
including human (63%), mouse (10%), and plants (27%, e.g., Solanum
lycopersicum). Interestingly, itwasonly observed in bodyfluid (plasma,
serum, and urine) instead of tissues in mammals, which indicates that
this unknown may come from microbiota or xenobiotic resources
(e.g., foods). Our KGMN approach putatively annotated this feature as
O-sulfotyrosine (Fig. 5e). In the knowledge-based metabolic reaction
network, this metabolite can be converted from two possible routes,
including sulfation (+SO3) of tyrosine and demethylation (-CH2) of L-
tyrosinemethyl ester 4-sulfate. In themetabolomics data, tyrosine was
first annotated in seed annotation, and its annotation further propa-
gated to O-sulfotyrosine with the guidance of a knowledge-based
metabolic reaction network. Finally, O-sulfotyrosine was annotated
with six related ion form peaks in its subnetwork through the global
peak correlation network. To confirm this propagated metabolite
annotation, we chemically synthesized O-sulfotyrosine. The synthetic
O-sulfotyrosine showed good consistencies in both retention time and
MS/MS spectrum with the unknown peak in a human urine sample
(Fig. 5f). At the time of writing our study, this metabolite is not inclu-
ded in common metabolite databases such as KEGG, HMDB (v4.0),
MoNA, and GNPS. According to the definitions in the previous
literatures5,55,56, this metabolite is defined as a known-unknown

metabolite. O-sulfated metabolites are products of the co-metabolism
ofmicrobes and their hosts and function as a class of key regulators for
interaction between microbes and their hosts. This characteristic is in
concordance with its recurrent distributions in various sample types
(Fig. 5d). Another example of unknown peak M196T420 was observed
only in human and mouse samples (Fig. 5g). It was annotated as a
known-unknown metabolite of 4-hydroxyhippuric acid from the seed
metabolite 4-hydroxyanilian in KGMN (Fig. 5h). Similarly, this annota-
tion was validated using the chemical standard (Fig. 5i). We also vali-
dated another three propagatedmetabolites in Supplementary Fig. 15.
Taken together, we demonstrated that the combination of KGMN and
repository-mining facilitated validations of recurrent unknowns and
advanced understanding of potential origins and biological functions
of the newly discovered unknown metabolites. These recurrent
metabolites expanded the coverage of potential bioactivemetabolites,
and offered deeper biological insights of physiological and pathology
mechanisms, like microbiota-metabolite-host interactions.

Discussion
Despite accumulative progress in developing network-based methods
for metabolite annotation, most of these studies are primarily limited
to one major network imbedded with different chemical information.
Integration of multiple data-driven and knowledge-based networks for
metabolite annotation has been increasingly appreciated but remains
unrealized due to the lack of appropriate technologies. In this work, we
developed the knowledge-guided multilayer network approach to
enable global metabolite annotation from knowns to unknowns in
untargetedmetabolomics.We demonstrated that the KGMN approach
substantially advanced the discovery of unknown metabolites toward
deciphering darkmatters in biological samples. Compared to previous
network-based approaches, the key advancements of KGMN come
from two aspects, including the utilization of metabolic reaction
knowledge and proper integration of multilayer networks. The first
characteristic of KGMN is using known metabolic reactions to in silico
curate unknown metabolites. These unknown metabolites are further
linked with their precursors to expand the metabolic network from
known chemical space to unknown space. The generated knowledge-
based metabolic reaction network (network 1) provides known-to-
unknown biotransformation knowledge to guide the construction of
the MS2 similarity network from LC–MS/MS data (network 2).
Although a few studies have also reported the use of in silico reactions
to annotate unknowns in biological samples, these curated unknowns
were simply used as an alternative compound database23,57. As a com-
parison, KGMN uniquely uses the knowledge of reaction relationships
to expand classic metabolic reaction networks with curated unknown
metabolites and provides essential routines for annotation from
knowns to unknowns. Such a knowledge-based reaction network pro-
vides straightforward interpretations of unknown annotations and
effectively reduces the complexity of the MS/MS similarity network
generated fromuntargetedmetabolomics data (Supplementary Fig. 2).

The second characteristic of KGMN is the proper integration of
three layers of networks as an automated and unsupervised workflow
to enable global unknown annotation and improve annotation accu-
racy. Such an approach provides several strengths, including but not
limited to: (1) the well-defined known-to-unknown routines in
knowledge-based metabolic reaction network preferentially link
metabolic features with definitive chemical reaction relationships;
(2) connections between nodes in the knowledge-guided
MS2 similarity network have four constrains (MS1 m/z, RT, MS/MS
similarity, and metabolic biotransformation), which generates explic-
able structural relationships between two nodes and a more succinct
network topology. However, this approach also removes some spec-
trally similar but hard-to-interpret connections, which may aid to
provide interpretations in data-driven networks (i.e., molecular net-
working). (3) the addition of a global peak correlation network
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recognizes all possible ion forms,which further increases the coverage
of recognized peak number by ~4–5-folds and effectively optimizes
and filters putative metabolite annotations from the first two-layer
networks. As a comparison, in GNPS, the MS2 spectral similarity net-
work is the main network. To achieve global metabolite annotation,
additional bioinformatic tools, such as MetFrag and MS2LDA, or
manual interpretation are usually required, andmetabolite annotation
is performed inmultiple steps. Similarly, in NetID, the peak correlation
network is themain network. Manual interpretation is usually required
to elucidate structures of unknown metabolites in NetID. Although
additional chemical information could be added to the main network
to further improve the accuracy of metabolite annotation (e.g., ion
identity and taxonomic information for GNPS network; MS2 informa-
tion for NetID), these studies mainly focus on one major network.
Therefore, the integration of multiple networks, in particular the

knowledge-based network for metabolite annotation, has been
increasingly recognized as a promising strategy. We believe that
KGMN is a unique network-based approach that successfully inte-
grates three layers of knowledge-based and data-driven networks for
metabolite annotation.

The definition of a multilayer network caused one of the review-
ers’ discussions during revision. According to a recent review58, this
term lacks a terminology convention, where the authors summarized
two types of multilayer networks, “node-colored graphs” and “edge-
colored graphs”. KGMN is anapproach,which integrates the above two
types of multilayer networks. Specifically, the relationship between
knowledge-guided reaction networks and experimental networks
(MS2 similarity network and global peak correlation network) belongs
tonode-coloredgraphs, wherenodes are notdirectly shared. Thenode
represents a metabolite in a knowledge-guided reaction network,
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while the node represents an experimental peak (or feature) in the
MS2 similarity network and the global peak correlation network. In
addition, the relationship between the MS2 similarity network and the
global peak correlation network belongs to the edge-colored graph.
They share nodes but have different edge types. Edge in the
MS2 similarity network representsMS2 similarity, while the edge in the
global peak correlation network represents ion form relationship. A
recent review also termed a similar concept which integrates knowl-
edge and experimental networks as a multilayer network approach25.

The accuracy of unknown annotation in KGMN depends on sev-
eral key factors. First, the characterization ofMS/MS spectral similarity
has a significant impact on the accuracy of unknown annotations.
Specifically, although ~60% of reaction-paired metabolites (either
known or predicted pair) have MS/MS similarity scores larger than 0.5
(dot product score), the remaining ~40%of reactionpairs have lowMS/
MS similarity scores even they have high structural similarity (Sup-
plementary Fig. 16). Recently, a similar observation was also reported
by the Van der Hooft Computational Metabolomics Group59. We
believe the implementation of newly developed scoring approaches
for MS/MS similarity, like CSS score60, Spec2Vec59, and spectral
entropy score61, would further enhance the performance of KGMN.
Second, we need to be aware of the challenge to discriminate struc-
turally similar isomers of unknownmetabolites. Specific to KGMN, one
known metabolite may generate several possible unknown isomers
throughonebiotransformationwhenperforming in silico reaction. For
example, isocitrate has four reactive functional groups for glucur-
onidation, whose product isomers cannot be distinguished effectively
in KGMN. To address these challenges, incorporatingmore orthogonal
properties, suchas collision cross-section (CCS)62, would be valuable in
the future. Third, we think the accuracy of chemical structures of
unknowns is largely dependent on the in silico biotransformation
algorithms. In KGMN, we used the predefined reaction sets in Bio-
Transformer, which mainly originated from metabolic reactions in
humans. With continuing innovations of in silico reaction tools (e.g.,
ATLAS63, CyProduct64, and MINE265) and the inclusion of metabolic
reactions in other species, structural reliability, and coverage of pre-
dicted unknown metabolites will be improved, thereby benefiting the
performance of the KGMN approach. Finally, although current KGMN
hasbeen tested in several commonbiological samples, oneneeds tobe
cautiouswhen applying it to some cases like non-model organisms and
environmental and exposomics-related profiles (e.g., waste waters,
non-model plants, fungi, and bacteria). It is feasible to incorporate
databases for these organisms in the future, like Nature Products
Atlas66 (for bacterial and fungal) and T3DB67 (for toxin). Through
expanding the knowledge of structures and pathways with wider
coverages, it is foreseeable that the next versions of KGMN may
encompass wider applicability.

Since unknownmetabolites are not included in spectral databases
and have no chemical standards, validation of unknown annotations
remains a grand challenge. In thiswork, we demonstrated the principle
of metabolite annotation from knowns to unknowns in an in vitro
enzymatic reaction system and validated this principlewithmetabolite
standards. For unknown annotation in biological samples, we also
employed common in silico bioinformatics tools to corroborate
structural reliability on a large scale. Even so, it is noteworthy that the
confidence levels of all annotatedmetabolites inKGMNare assigned as
level 3 according to the definition of MSI51. Metabolite identification
still needs to be validated using synthetic chemical standards. In our
work,wedemonstrated that the combinationof KGMNand repository-
mining facilitated validations of recurrent unknowns at the repository
level. We used such an approach to discover five recurrent unknown
metabolites, and further confirmed their annotations with synthetic
chemical standards.With the accumulation of open-source data sets in
themetabolomics repository, we believe that the KGMN approachwill
gear to validate more unknown structures through repository-mining.

Methods
Chemicals
Pooled human liver S9 fraction (H0610.S9) and NADPH regenerating
system (K5100-5) were purchased from Sekisui Xenotech (Kansas City,
KS, USA). The cofactors adenosine 3′-phosphate 5′-phosphosulfate
lithium salt hydrate (PAPS), acetyl-coenzyme A (acetyl-CoA), uridine
diphosphate glucuronic acid (UDPGA) were purchased from Sigma-
Aldrich (St. Louis, MO, USA). The glutathione (GSH) was purchased
from J&K (Shanghai, China). The NIST urine (SRM 3667) and NIST
plasma (SRM 1950) sampleswere purchased fromAngoBiotechnology
Co. (Shanghai, China). LC–MS grade methanol (MeOH) and water
(H2O) were purchased from Honeywell (Muskegon, MI, USA). LC–MS
grade acetonitrile (ACN) was purchased from Merck (Darmstadt,
Germany). Ammonium hydroxide (NH4OH) and ammonium acetate
(NH4OAc) were purchased from Sigma (St. Louis, MO, USA). Other
chemical standards were purchased from Sigma-Aldrich (St. Louis,
MO), J&K (Shanghai, China), and TopScience (Shanghai, China).

Standard MS/MS and RT libraries
In-house MS/MS and RT libraries from chemical standards were used
for seedmetabolite annotation in KGMN. It supports different types of
high-resolution mass spectrometers from various vendors (including
Sciex, Agilent,Waters, Bruker and Thermo Fisher). The curation ofMS/
MS spectral library curation followed the previous publication68,69.
Briefly, a total of 868 metabolites and 611 metabolites were acquired
with 14 collision energies from Sciex TripleTOF 5600/6600 and
Thermo Fisher Exploris 480, respectively. Their retention time were
also acquired under the Waters BEH Amide column (HILIC) and Phe-
nomenex C18 column (reverse phase). The LC details are provided in
LC–MS/MS part.

Knowledge-based metabolic reaction network
Knowledge-based metabolic reaction network (KMRN) is a network
containing known and unknown metabolites (nodes), and their reac-
tion relationship (edges) from known reactions or in silico reactions.
The known metabolites and their metabolic reactions were directly
downloaded from the KEGG reaction pair database (KEGG RCLASS)70

on 7March 2017. It contains 6397 knownmetabolites and 8129 known
reaction pairs, which was described in our previous MetDNA
publication49. Unknown metabolites were curated from in silico
enzymatic reactions with 6397 known KEGG metabolites (Supple-
mentary Fig. 1). The unknown metabolite is defined as the in silico
curated metabolites not included in the KEGG database. The
BioTransformer22 (version 1.0.8) was used for in silico enzymatic
reactions, and “EC-based transformation” was used for two-step reac-
tions. All curated metabolites were merged with the first layer of
InChIKey (14 characters) to remove the stereoisomers. The chemical
elements of unknown metabolites were restricted within “CHONPS”.
As a result, a total of 50,471 unknownmetabolites were curated via 193
chemical reactions and 114 enzymes. These curated unknown meta-
bolites had a higher natural product likeness71 than those in PubChem
(Supplementary Fig. 16). Theunknownmetaboliteswere further paired
with its reactant in an in silico enzymatic reaction, and Tanimoto
structural similarity between reaction-paired metabolites was calcu-
lated. The reactionpairswith Tanimoto structural similarity larger than
0.7 were reserved. The unpaired metabolites are discarded. The
Tanimoto structural similarity was calculated based on PubChem
molecular fingerprinting via the R package rcdk (version 3.4.7.1).
Finally, both known and unknown reaction pairs were integrated to
curate the knowledge-based metabolic reaction network, including
41,336 nodes (6478 knowns and 34,858 unknowns) and 52,137 edges.
Compared to original network, it increased 34,939 nodes (i.e., meta-
bolites) with in silico reaction. Through searching against HMDB ver-
sion 4.0 (released on 2018-12-18), these nodes can be classified as 81
known-known (the compound is included in KEGG database), 405
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known-unknowns (the compound is not included in KEGG but inclu-
ded in HMDB), and 34,453 unknown-unknown (the compound is not
included in KEGG and HMDB). Consist with MetDNA (v1.3.2), reaction-
paired knowns and unknowns have higher MS/MS similarity than non-
reaction pairs (Supplementary Fig. 16). The networks can be visualized
in Cytoscape (v3.8), and a detailed tutorial of visualization has been
provided in Supplementary Note 1.

Knowledge-guided MS/MS similarity network and annotation
propagation
The procedures to curate knowledge-guided MS/MS similarity net-
works followed our previous MetDNA publication with some mod-
ifications. Briefly, seed metabolites were first annotated using the
standard MS/MS and RT libraries. The match tolerances were set as
MS1 match, 15 ppm; RT match, 20 s; MS2 match, 0.8 (dot product
score). The adducts of protonation and deprotonation were used in
seed annotation inpositive andnegativemodes, respectively. The seed
metabolites were then mapped to KMRN to guide the construction of
an MS/MS similarity network with four constraints, includingMS1m/z,
predicted RT, MS/MS similarity, and metabolic biotransformation.
Specifically, seed metabolite-paired knowns/unknowns (constraint 1)
were retrieved fromKMRN, and their calculatedMS1m/z (constraint 2)
and predicted RTs (constraint 3) were matched with experimental
values in LC–MS/MS data. Match tolerances of MS1 m/z and RT mat-
cheswere set as 15 ppmand 30%, respectively.MS2 spectraof qualified
peaks were further matched against the surrogated MS2 spectra from
seed metabolites (constraint 4). The qualified peaks with dot product
score larger than0.5 ormatched fragmentsmore than4were linked to
the seedmetabolites, and their putative structures were assigned from
the reaction-paired neighbor metabolites. The RT prediction and MS/
MS scoring are consistent withMetDNA. The random forestmodel was
used for RT prediction, where it used seed metabolite RTs and their
molecular descriptors for model training. A total of eight and five
molecular descriptors optimized in MetDNA were directly used for
HILIC and RP systems, respectively. The parameters of the RF model
were optimized with tenfold cross-validation via R package “caret”
(version 6.0.90). The dot product score with applied square root is
used for MS/MS scoring, and no other filtering is applied. Such anno-
tation was propagated in a recursive manner, where newly annotated
metabolites were also used as seeds to annotate their neighbor
metabolites in LC–MS/MS data. The annotation was terminated until
no new metabolites were annotated. A total of 11 and 8 common
adducts are considered in annotation propagation in positive and
negative modes, respectively (Supplementary Data 7).

Global peak correlation network
Global peak correlation network is used to recognize all possible ion
form peaks in LC–MS data, and further improve the structural
assignment (Supplementary Fig. 3). All putatively annotated peaks
from knowledge-guided MS/MS network were selected as base peaks,
and their co-eluted peaks were extracted from the feature table within
±3 s RT window (composed as a peak group). The recognition of dif-
ferent ion formpeakswasperformedwithin eachpeakgroup to build a
subnetwork, including isotopes, adducts, neutral losses, and in-source
fragments (ISF). The detailed procedures are described as follows.

Isotope peaks. The recognition of isotope peak includes the eva-
luations of mass deviation and intensity ratio. The pairwise m/z dis-
tance matrix was first calculated for deviation check. The theoretical
m/z of isotopes were calculated as:

mzisotope =mzbase feature + 1:003355×N ð1Þ

where mzisotope and mzbase_feature are m/z values for isotopes and base
peaks. The N represents the considered number of isotopes with a set
of values from 1 to 3 (i.e., [M] to [M+3]). The tolerance for mass

deviation was set as 25 ppm. The deviation of isotope ratio was cal-
culated as:

4ratio =
∣IntE � IntT∣

IntT
× 100 ð2Þ

Where IntE and IntT are the experimental and theoretical relative
intensities14, respectively. The maximum deviation of the isotope ratio
(Δratio) was 500% by default.

Adduct and neutral loss peaks. A total of 28 types of adducts and
57 types of neutral losses were considered (Supplementary Data 7).
The adduct and neutral loss features are recognized based on mass
deviation and feature abundance correlations among samples. The
theoretical m/z values of adducts and neutral losses were calculated
andmatched within each peak group. The tolerance of mass deviation
was set as 25 ppm. The feature abundance correlation among samples
are calculated between the recognized feature and the base feature,
where feature pairs with Pearson correlation coefficient larger than0.3
are reserved by default. The isotopes of the adduct and neutral loss
peaks were also identified using the same approach in “isotope peaks”.

In-source fragment peaks. The in-source fragment was retrieved
from theMS/MS spectrumofbase features and co-elutedMS1 features.
The topfive intense fragments in theMS/MS spectrumof thebasepeak
were considered aspossible in-source fragments andmatchedwith the
features in one feature group. The m/z tolerance was set as 25 ppm.
The isotopes of in-source fragment features were also recognized
following the same approach in “isotope peaks”.

As a result, a peak correlation subnetwork of one base peak was
constructed by connecting the basepeak anddifferent ion formpeaks.
For all base peaks from the knowledge-guidedMS2 similarity network,
a list of subnetworks (referred to as “subnetwork list”) were generated.
All subnetworks were merged as a global peak correlation network.
The subnetwork optimization and filtering in the global peak correla-
tion network was performed as follows (Supplementary Fig. 4). Spe-
cifically, it contains three steps: (1) check of empirical rules. For each
subnetwork in the subnetwork list, we checked whether it quantified
the empirical rules (see details in Supplementary Data 7). The dis-
qualified subnetworks were removed from the subnetwork list (e.g.,
type 1—subnetwork of M175T462_2_[2M+H]+ in Supplementary Fig. 3);
(2) removal of conflict peaks. We checked the conflict base peaks
across different subnetworks in the subnetwork list, where conflict
base peaks represent the same base peak has different adduct or
neural loss annotations (e.g., type 2—subnetworks of M195T69_[M+H]+

and M195T68_[M-H2O+H]
+ in Supplementary Fig. 3). To solve the

conflict, we reserved the base peak and its subnetwork with the larger
size in the subnetwork list; (3) consolidation of redundant ion form
peaks. We consolidated different base peaks originated from the same
metabolite (e.g., type 3—subnetworks of M153T279_[M+H]+,
M170T280_[M+NH4]

+, and M135T279_[M-H2O+H]
+ in Supplementary

Fig. 3). Similarly, the subnetwork with the maximum size was kept in
the subnetwork list. Finally, the reserved subnetworks in the subnet-
work list were exported as network 3, and related metabolite candi-
dates were also exported.

Annotation confidence and reporting
Annotated structures are assigned with different confidence levels
according to the definition by Metabolomics Standards Initiative
(MSI)51. The confidence levels were defined as follows: level 1: meta-
bolites annotated using in-house metabolite standards with three
orthogonal properties (i.e., MS1 + RT +MS/MS); level 2: metabolites
annotated using two orthogonal properties from the standard MS/MS
libraries without RT available (i.e., MS1 +MS/MS); level 3.1: known
KEGG metabolites annotated with MS1, predicted RT, and surrogate
MS/MS spectra (i.e., MS1 + Pred. RT + Surro. MS/MS); level 3.2:
unknown structures annotated with MS1, predicted RT, and surrogate
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MS/MS spectra (i.e., MS1 + Pred. RT + Surro. MS/MS). It should be
noted that not all metabolites annotations obtained fromMS1 andMS/
MSmatches are level 2 inbiological samples, especially formetabolites
such as hexenoic acid isomers. The confidence level should be adjus-
ted properly in specific situations.

For each feature, all candidates were ranked with a total score
(Stotal), which was calculated as Eq. (3):

Stotal = Siden + Sconfidence ð3Þ

where Siden and Sconfidence represent the identification score and con-
fidence score, respectively.

The identification score was calculated as Eq. (4):

Siden =Wm=z × Sm=z +WRT × SRT +WMS=MS × SMS=MS ð4Þ

where Sm/z, SRT, and SMS/MS are m/z match, RT match, and MS/MS
match scores, respectively. These scores are calculated using the
methodasMetDNA. TheWm/z,WRT, andWMS/MS areweights for them/z
match, RT match, and MS/MSmatch scores, and set as 0.25, 0.25, and
0.5, respectively.

The confidence score was calculated as follows Eq. (5):

Sconf idence =

3, level 1

2, level 2

1, level 3:1=3:2

8
><

>:
ð5Þ

For each feature, annotation candidates with the highest con-
fidence level were reported. If multiple annotations with the same
confidence level, the top 10 ranked candidates using the total score
were kept.

In vitro metabolism experiment with human liver S9 fraction
We experimentally incubated a mixture of 46 common metabolites
(46std_mix) with the human liver S9 fractions for 24 h. The 46std_mix
solution was prepared using the concentrations provided in Supple-
mentary Data 2, and stored at −80 °C before incubation. The incuba-
tion followed the previously reported protocol72 with minor
modifications. Before the experiment, 50μL of pooled human liver S9
fraction solution (H0610.S9) was diluted into 500μL using water. The
NADPH regenerating system was reconstituted with the addition of
3.5mL of water to make a final volume of 5mL. The 4× cofactor stock
was freshly prepared with the following composition: 10mM UDPGA,
2mM GSH, 2mg/ml PAPS, 0.1mM acetyl-CoA, and NADPH regenerat-
ing system (1mM NADP, 5mM glucose-6-phosphate, 1 unit glucose-6-
phosphate dehydrogenase). The incubation was performed in the
1.5mLof Eppendorf centrifuge tube. In each tube, 30μL of S9 fraction,
30μL of Tris buffer (0.2M; pH 7.5; 2mM MgCl2), and 30μL of
46std_mix solution were first pooled. To start the reaction, 30μL of 4×
cofactor stock was added, and the incubation was carried out at 30 °C
for 24 h. 360μL of MeOH:ACN (1:1, v-v) were added to terminate the
reaction and extract the metabolites. For metabolite extraction, the
sample was incubated at −20 °C for 1 h to facilitate protein precipita-
tion. After the incubation, sampleswere centrifuged at 13,000 rpmand
4 °C for 15min. The supernatant was taken out and evaporated to
dryness at 4 °C. The samples were reconstituted with 120μL of ACN/
H2O (v:v, 1:1) and vortexed for 30 s and sonicated for 10min at 4 °C
water bath. Finally, the samples were centrifuged for 15min at
17,000× g and 4 °C. The supernatant was taken into the sample vial for
the LC–MS experiment. Finally, the annotated known and unknown
metabolites from incubated 46mix_std samples were validated using
multiple strategies. For known metabolite annotations, chemical
standards (MS1 + RT +MS/MS, level 1) and public spectral database
(MS1+ MS/MS, level 2) were used. Public spectral libraries included
NIST17, SonnenburgLabLib,Metlin, MassBank, FiehnHILIC library, and

GNPS library. For validation of unknown metabolites, 3 different in
silico MS/MS tools were used, including MetFrag (version 2.4.5-CL),
CFM-ID (version 2.4), and MS-FINDER (version 3.24).

Preparation of biological samples
The biological samples were extracted following our published
protocols73. In brief, NIST urine samples were thawed at 4 °C on ice.
Then 150μL of urine samples were taken and transferred into a cen-
trifuge tube, and 600μL of MeOH were added to extract the sample.
After vortexed for 30 s and sonicated for 10min at 4 °C in awater bath,
the samples were incubated for 1 h at −20 °C to facilitate protein pre-
cipitation. After the incubation, the samples were further centrifuged
for 15minutes at 17,000× g and 4 °C. The supernatant was collected
and evaporated to dryness at 4 °C. The dry extracts were then recon-
stituted into 150μLofACN:H2O (1:1, v/v), followedby sonication at 4 °C
for 10min, and centrifuged at 17,000× g and 4 °C for 5min to remove
the insoluble debris before LC–MS/MS analysis. For NIST plasma,
100μL ofNISTplasmawas extracted using 400μL of a solventmixture
ofMeOH:ACN (1:1, v/v) in the centrifuge tube, and then themixturewas
vortexed for 30 s and sonicated for 10min at 4 °C water bath. The rest
of the procedure was the same as described for the NIST urine sample.
BV2 cell lines were originally purchased from ATCC with product
number CRL-3265. BV2 cells, it was plated in 6-cm dishes at 2000,000
cells/dish, and cultured in DMEM medium containing FBS (10%) and
penicillin/streptomycin (1%). The culture medium was quickly
removed, and the cells were washed with cold PBS twice. The cell
dishes were placed on dry ice and the metabolite extraction solution
(ACN/MeOH/H2O = 2/2/1, v/v/v, 1mL) was added to the dishes to
quench the metabolism. The extraction solution was pre-cooled at
−80 °C for 1 h prior to the extraction. Theplateswere then incubated at
−80 °C for at least 40min. The cell contents were scraped and trans-
ferred to a 1.5mLEppendorf tube. The sampleswere vortexed for 1min
and centrifuged for 10min at 17,000× g and 4 °C to precipitate the
insoluble materials. The rest of the procedure was the same as
described for the NIST urine sample.

LC–MS/MS
LC–MS analysis was performed using a UHPLC system (1290 series;
Agilent Technologies, USA) coupled with a quadruple time-of-flight
mass spectrometer (TripleTOF6600, SCIEX). AWaters ACQUITYUPLC
BEH Amide column (particle size, 1.7μm; 100mm (length) × 2.1mm
(i.d.)) was used for the LC separation and the column temperature was
kept at 25 °C. Mobile phase A was 25mM ammonium hydroxide
(NH4OH) and 25mMammonium acetate (NH4OAc) inwater, and Bwas
ACN for both the positive and negative modes. The flow rate was
0.3mL/min and the gradient were set as follows: 0–1min: 95% B,
1–14min: 95%B to 65%B, 14–16min: 65%B to 40% B, 16–18min: 40% B,
18–18.1min: 40% B to 95% B, and 18.1–23min: 95% B. The injection
volume was 2μL. The data acquisition was operated using the
information-dependent acquisition (IDA) mode. The source para-
meters were set as follows: ion source gas 1 (GAS1), 60 psi; ion source
gas 2 (GAS2), 60 psi; curtain gas (CUR), 30 psi; temperature (TEM),
600 °C; declustering potential (DP), 60 or −60V in positive or negative
modes, respectively; and ion spray voltage floating (ISVF), 5500 or
−4000V in positive or negativemodes, respectively. The TOFMS scan
parameters were set as follows: mass range, 60–1200Da; accumula-
tion time, 200ms; and dynamic background subtract, on. The product
ion scan parameters were set as follows: mass range, 25–1200Da;
accumulation time, 50ms; collision energy, 30 or −30V in positive or
negative modes, respectively; collision energy spread, 0; resolution,
UNIT; charge state, 1 to 1; intensity, 100 cps; exclude isotopes within
4Da;mass tolerance, 10 ppm; themaximumnumber of candidate ions
to monitor per cycle, 6; and exclude former target ions, for 4 s after
two occurrences. Analyst TF 1.6 software was used for LC–MS/MS data
acquisition.
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Evaluation of peak annotation accuracy
The peak annotation contains metabolite annotation and their asso-
ciated ion form annotation (Supplementary Fig. 5). For each data set,
the MS1 peak table was first processed and generated using XCMS.
Then, a total of 242metabolites were identified throughmatchingwith
MS1 (≤25 ppm), experimental MS/MS spectra (DP score ≥0.8), and
standard RT values (RT error ≤30 s) in an in-house chemical standard
library. These identifications are MSI level 1 identification. Then, these
metabolites were manually confirmed by two independent mass
spectrometrists by extracting their EIC and MS/MS spectra from the
raw data. As a result, a list of manually checked metabolites were
obtained. Thesemetaboliteswere used as base peaks. Their related ion
form peaks were also manually assigned in the peak table, and further
verified by extracting their co-eluted EICs, profiles of ion intensities,
and MS/MS intensities in raw data. Finally, a total of 3451 metabolic
peaks (2130 from positive mode and 1321 from negative mode) origi-
nated from 242 metabolites were labeled as metabolites, isotopes,
adducts, and in-source fragments (Supplementary Data 1). Among
them, somemetabolites were measured in both positive and negative
modes. All of the 3451 metabolic peaks were used to evaluate the
accuracies of peak annotation using MetDNA1 and KGMN (MetDNA2).
The first layer of InChIKey of metabolite was used to evaluate its
accuracy. The correct annotation is defined as the software returned
correct metabolites within the top three candidates.

Repository-mining and validation of recurrent unknowns
Recurrent unknowns were obtained by searching MS/MS spectra of
putative unknownmetabolites against GNPS/MassIV repository-mining
via MASST50 (http://gnps.ucsd.edu). The data were filtered using the
default parameters in GNPS. The mass tolerance for precursor ion and
fragment ion was set as 0.01Da. The library spectra were filtered in the
same manner as the input data. All matches between input spectra and
library spectra were required to have a score above 0.7 and at least two
matched peaks. The labels of organs and species are manually added
according to the description of projects and their meta information
(SupplementaryData 6). TheMASST search is basedonMS1 andMS/MS
similarity without considering the retention time. We named a spec-
trum using the feature name because this is consistent with the feature
list in the KGMN analysis. A detailed tutorial on combining KGMN and
repository-mining has been provided in Supplementary Note 2.

Recurrent unknown metabolites are validated with chemical stan-
dards through chemical or enzymatic syntheses. O-sulfotyrosine: The
O-sulfotyrosine was synthesized byMuJin Biotech Inc, Shanghai, China.
The experimental protocols for synthesis are below: 500mg of Fmoc-
Tyr(SO3Na)-OH was added to 25% piperidine/DMF solution at room
temperature and stirred for 0.5 h under nitrogen protection. Saturated
NaCl solution was added to the mixture, followed by ethyl acetate, and
extracted three times in a separating funnel, and then the organic
fraction was rotary evaporated to obtain 220mg of a viscous liquid.
After dissolved in water, it was purified by HPLC preparative chroma-
tography (0–20%, acetonitrile/water; flow rate at 25ml/min; room
temperature) to obtain O-sulfotyrosine sodium salt, which was lyophi-
lized to obtain 100mg of powder. The percent yield was 35.7%. The
O-sulfotyrosine structure was confirmed by nuclear magnetic reso-
nance spectroscopy (1H NMR, 400MHz, Methanol-d4), δ(ppm) = 7.26
(s, 4H), 3.78 – 3.49 (m, 1H), 3.03 (t, J = 5.5Hz, 2H). 4-hydroxyhippuic acid
was synthesized and purchased from Sunway (Shanghai, China) with
product number CB03526. The chemical structure was confirmed by
nuclear magnetic resonance spectroscopy (1H NMR, 400MHz, DMSO-
d6), δ(ppm) = 12.53 (s, 1H), 10.03 (s, 1H), 8.56 (t, J = 5.9Hz, 1H), 7.73 (d,
J = 8.0Hz, 2H), 6.81 (d, J = 8.0Hz, 2H), 3.87 (d, J = 5.8Hz, 2H).
3-hydroxyhippuic acid was synthesized and purchased from Macklin
(Shanghai, China) with product number H881672. The chemical struc-
ture was confirmed by nuclear magnetic resonance spectroscopy (1H
NMR, 400MHz, DMSO-d6), δ(ppm) = 12.56 (s, 1H), 9.69 (s, 1H), 8.71 (t,

J = 5.9Hz, 1H), 7.41 – 7.09 (m, 3H), 6.92 (dt, J = 6.9, 2.3Hz, 1H), 3.88 (d,
J = 5.8Hz, 2H). The NMR spectra were analyzed using MestReNova
(v9.0.1) software. NMR and HRMS data for synthesized compounds
have been deposited at https://doi.org/10.5281/zenodo.7233722, Pro-
tocatechuic acid-3-O-sulfate and 3-hydroxybenzoic acid-3-O-sulfate
were in-house synthesized using enzymatic reaction (S9 fraction incu-
bation) of their precursorsprotocatechuic acid and3-hydroxybenzoate,
respectively.

Validations of unknowns using in silico MS/MS tools
For validation of unknown metabolites in biological samples, three
different in silico MS/MS tools were used, including MetFrag (version
2.4.5-CL), CFM-ID (version 2.4), and MS-FINDER (version 3.24). The
format of imported data and parameters were adjusted according to
requirements of each tool. The detail parameters were kept the same as
in our previous publication62. A detailed tutorial on combining KGMN
and in silico MS/MS has been provided in Supplementary Note 3.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the metabolomics data sets described in our study can be
downloaded from the MetDNA2 website (http://metdna.zhulab.cn/).
The raw data files of NIST human urine, NIST human plasma, and BV2
cells can be accessed at the National Omics Data Encyclopedia under
Accession Code OEP003157. The raw data of in vitrometabolism can
be accessed at National Omics Data Encyclopedia under Accession
Code OEP003284. The raw data of fruit fly heads are available at
MetaboLights under Accession Code MTBLS612 and MTBLS615. The
raw data of mouse liver are available at MetaboLights under Acces-
sion CodeMTBLS601 andMTBLS606. RawNMR data and HRMS data
for synthesized compounds have been deposited to Zenodo [https://
doi.org/10.5281/zenodo.7233722]. Supplementary Data 1–7 can also
be accessed at Zenodo (https://doi.org/10.5281/zenodo.7089991).
The knowledge-based metabolic reaction network and the network
files of the supplementary figures are provided as Supplementary
Data 8 and 9, respectively. Source data are provided with this paper.

Code availability
KGMNwasmainly developed using R and is executed inMetDNA2. The
source code of MetDNA2 is provided in GitHub [https://github.com/
ZhuMetLab/MetDNA2] and Zenodo [https://doi.org/10.5281/zenodo.
7230249]74. The completed functions are provided in the MetDNA2
webserver [http://metdna.zhulab.cn/] via free registration. The
detailed tutorial is provided in the MetDNA2 webserver and GitHub.
The source code for the in silico MS/MS validation (MetDNA2InSili-
coTool) are provided in GitHub [https://github.com/ZhuMetLab/
MetDNA2InSilicoTool] and Zenodo [https://doi.org/10.5281/zenodo.
7233184]75. The source code of the multilayer network visualization
(MetDNA2Vis) were provided in GitHub [https://github.com/
ZhuMetLab/MetDNA2Vis] and Zenodo [https://doi.org/10.5281/
zenodo.7233189]76.
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