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Abstract: A hallmark of thoracic aortic aneurysms (TAA) is the degenerative remodeling of aortic wall,
which leads to progressive aortic dilatation and resulting in an increased risk for aortic dissection or
rupture. Telocytes (TCs), a distinct type of interstitial cells described in many tissues and organs, were
recently observed in the aortic wall, and studies showed the potential regulation of smooth muscle
cell (SMC) homeostasis by TC-released shed vesicles. The purpose of the present work was to study
the functions of TCs in medial degeneration of TAA. During aneurysmal formation an increase of
aortic TCs was identified in human surgical specimens of TAA-patients, compared to healthy thoracic
aortic (HTA)-tissue. We found the presence of epithelial progenitor cells in the adventitial layer, which
showed increased infiltration in TAA samples. For functional analysis, HTA- and TAA-telocytes were
isolated, characterized, and compared by their protein levels, mRNA- and miRNA-expression profiles.
We detected TC and TC-released exosomes near SMCs. TAA-TC-exosomes showed a significant
increase of the SMC-related dedifferentiation markers KLF-4-, VEGF-A-, and PDGF-A-protein levels,
as well as miRNA-expression levels of miR-146a, miR-221 and miR-222. SMCs treated with TAA-
TC-exosomes developed a dedifferentiation-phenotype. In conclusion, the study shows for the first
time that TCs are involved in development of TAA and could play a crucial role in SMC phenotype
switching by release of extracellular vesicles.

Keywords: telocytes; aorta; thoracic ascending aortic aneurysms; exosomes; cellular senescence;
miRNA; SMC-phenotype switching

1. Introduction

Thoracic ascending aortic aneurysms (TAA) are in most cases asymptomatic, but
can present an increased risk of aortic dissection and can consequently lead to death [1].
Anatomy and function of the ascending aorta are complex and dependent on a normal
extracellular matrix (ECM). Aortic ECM remodeling can lead to an increase of collagen fibers
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and loss of vascular smooth muscle cell (vSMC) contractility. The remodeling processes can
be induced by chronic oxidative stress [2]. This repetitive cellular stress leads to cellular
senescence, which includes the secretion of pro-inflammatory cytokines, growth factors,
and extracellular matrix degradation proteins [3]. However, most vSMCs in a healthy aortic
wall exhibit a contractile phenotype that maintains vascular tone. During the formation of
TAA vSMCs can dedifferentiate into a synthetic phenotype, which is characterized by a
decrease in contractile protein expression, degradation of ECM, and increased production
of matrix metalloproteinases (MMPs) [4]. This process of vSMC dedifferentiation is called
SMC phenotype switching [5]. These characteristic changes of TAA tissue may result in
decreased arterial structural stability, thereby increasing the chance for development of
aortic aneurysm and leading to a potentially lethal dissection [6,7].

Telocytes (TCs) are a recently defined interstitial cell type [8], and can be found in
most organs [8,9]. TCs were detected in a wide range of tissues including the heart and
cardiac valves [10–12], small blood vessels [13], and in other major organ systems and
tissues [14–27]. Most recently, we described the presence of TCs in the human ascending
aortic tissue [28]. Moreover, detailed analysis clarified cell marker specificity for CD34, ckit,
PDGF-a/b and a-SMA in cell cultures of isolated aortic TCs [28]. With negative staining
of CD90 and CD31, they clearly differed from pericytes, and other cells found in aortic
tissue [2,28,29]. TCs play different roles from mechanical support to immune surveillance
depending on their specific locations within different tissues [19,20]. The morphology of
TCs is characterized by spindle- or stellar-shaped small cell bodies, and a variable number
of prolongations, called telopodes (Tps). Telopodes, in turn, include thick sections, the
podoms, which contain mitochondria, endoplasmic reticulum, and other organelles and
the podomers, which are the thin extended sections. Together they form an interstitial
network around the vasculature with homo- and heterocellular junctions to release shed
vesicles and exosomes, which might have the ability to control the blood vessels. However,
the relation of TCs to blood vessels and vSMCs, as well as participation to intercellular
signaling, tissue renewal, and regeneration was described previously [22–24]. Most widely
described expression markers for TCs include CD34, Vimentin, ckit and platelet-derived-
growth-factor receptor-® (PDGFR-®) [25]. A physiological role for vascular TCs is assumed
by their expression of Krüppel-like factor-4 (KLF-4), vascular endothelial growth factor
(VEGF), and angiogenic miRNAs [26,28]. TCs express MMP-9 and play an essential role in
ECM degradation during angiogenesis [27].

The human aorta is noted to have a highly heterogeneous microenvironment with
many CD34 expressing cell types [30], the most important of which are pericytes and
endothelial progenitor cells (EPCs). Whereby, pericytes and supra-vasa are double positive
for CD34 and CD90 (fibroblast marker), EPCs are positive for CD34 and CD31 [31]. The
presence of EPCs in the adventitia is thought to be associated with their potential for
neovascularization and capability of smooth muscle lineage progression [29]. In this context,
EPCs which are additionally CD133 positive (synonym AC133, Prominin) were described
as ‘primitive circulating stem cells’ [32,33]. CD34+/CD133+ EPCs express high levels of
VEGF [34,35], and lose CD133 expression during an early stage of differentiation [36].

Since SMC phenotype switching occurs early in the development of aortic disorders,
and the mechanisms by which this occurs are not completely understood, our overall goal
was to investigate the regulatory role of TCs on SMC phenotype and aneurysm disorders.
We hypothesized that the number of TCs, and their functional role in releasing vesicles
plays a crucial role in SMC phenotype regulation during aneurysm formation. Here, we
evaluated and characterized TCs and EPCs in patients with either aortic root dilatation or
sporadic TAA.
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2. Results
2.1. Increased Number of TCs in Aortic Aneurysm Disease

To investigate the role of TCs in aortic aneurysms, we investigated the number of
TCs using immunohistochemistry. Immunofluorescence is an ideal method to measure
the occurrence of TCs by detection of telocyte-specific markers in aortic tissue sections, as
described previously [28], and TAA samples were obtained from patients undergoing heart
transplantation or elective aneurysm surgery. Patient baseline characteristics are presented
in Table 1. It should be noted that TAA patients differ with respect to cardiovascular risk
factors from patients undergoing heart transplantation. A significance was also observed in
chronic renal failure, ejection fraction, and a higher proportion of patients taking aspirin and
®-blocker, whereby the significance is due to obtained HTA specimens from heart transplant
recipients and their chronic heart insufficiency. Tables 2 and 3 show patient’s characteristics
with focus on aortic diameter and intimal thickness measured by immunohistochemistry.

Table 1. Characteristics of the study population.

Study Population HTA TAA p Value

(n = 52) (n = 23) (n = 29)

Demographic, risk factors,
and comorbidities
Age (years) (range) 58.6 (20–79) 52.2 (20–69) 63.8 (36–79) <0.01

female, n (%) 15 (28.8) 5 (18.9) 10 (34.5) 0.26
Body mass index (BMI), n (range) 26.8 (18–41) 24.9 (19–30) 28.3 (18–41) <0.01

Adipositas (BMI > 30), n (%) 11 (21.2) 2 (8.7) 9 (31.0) <0.05
Smoker, n (%) 10 (19.2) 0 (0) 10 (34.5) <0.01

Hypertension, n (%) 32 (61.5) 9 (39.1) 23 (79.3) <0.01
Dyslipidaemia, n (%) 24 (46.2) 10 (43.5) 14 (48.3) 0.42

Chronic renal failure, n (%) 10 (19.2) 8 (34.8) 2 (6.9) <0.01
Diabetes, n (%) 6 (11.5) 3 (13.0) 3 (10.35) 0.39
COPD, n (%) 9 (17.3) 2 (8.7) 7 (24.1) 0.07

Positive family history, n (%) 2 (3.8) 1 (4.4) 1 (3.5) 0.44
Ejection fraction (<50%), n (%) 30 (57.7) 23 (100) 7 (24.1) <0.01

Therapeutics
Oral diabetes therapy, n (%) 3 (5.8) 2 (8.7) 1 (3.5) 0.23

Statins, n (%) 15 (28.8) 9 (39.1) 6 (20.7) 0.13
Aspirin, n (%) 16 (30.8) 10 (43.5) 6 (20.7) <0.05

Beta-Blocker, n (%) 25 (48.1) 16 (69.6) 9 (31.0) <0.01
ACE-Inhibitor, n (%) 20 (38.4) 9 (39.1) 11 (37.9) 0.47

COPD, chronic obstructive pulmonary disease.

Table 2. Correlation coefficients (r) of localization of TCs to patient’s baseline characteristics.

% Telocytes in
T. Adventitia

% Telocytes in
T. Media

% Telocytes in
T. Intima

Correlation
Coefficients (r)

p
Value

Correlation
Coefficients (r)

p
Value

Correlation
Coefficients (r)

p
Value

Age 0.369 <0.01 0.283 <0.05 0.371 <0.01
Gender 0.317 <0.05 −0.026 n.s. 0.177 n.s.

Body mass index (BMI) 0.344 <0.01 0.342 <0.01 0.134 n.s.
Adipositas (BMI >30) 0.348 <0.05 0.316 <0.05 0.046 n.s.

Smoker 0.416 <0.01 0.273 n.s. −0.113 n.s.
Hypertension 0.373 <0.01 0.431 <0.01 0.334 <0.05
Dyslipidaemia 0.175 n.s. 0.121 n.s. 0.051 n.s.

Statins −0.075 n.s. 0.092 n.s. −0.051 n.s.
Chronic renal failure −0.152 n.s. −0.240 n.s. −0.240 n.s.

Diabetes 0.072 n.s. 0.172 n.s. 0.079 n.s.
Oral diabetes therapy 0.014 n.s. 0.006 n.s. 0.042 n.s.

COPD 0.122 n.s. 0.333 <0.05 0.190 n.s.
CVD −0.070 n.s. 0.136 n.s. −0.071 n.s.

Ejection fraction (<50%) −0.420 <0.01 −0.439 <0.01 −0.360 <0.05
Aspirin −0.188 n.s. −0.260 n.s. −0.136 n.s.

COPD, chronic obstructive pulmonary disease; CVD, coronary vessel disease; n.s., non-significant.
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Table 3. Aneurysm size characteristics of the study population.

Study Population HTA TAA p Value

(n = 52) (n = 23) (n = 29)

Thoracic aorta ascendens:
Size < 35 mm, n (%) 23 (44.2) 23 (100) 0 (0) <0.01
45–54.9 mm, n (%) 14 (26.9) 0 (0) 14 (48.3)
55–64.9 mm, n (%) 9 (17.3) 0 (0) 9 (31.0)
65–74.9 mm, n (%) 3 (5.8) 0 (0) 3 (10.4)

>75 mm, n (%) 3 (5.8) 0 (0) 3 (10.4)
Intima thickness, µm (range) 60.7 (15–115) 81.7 (20–115) 44.7 (15–100) <0.01

We identified significantly more CD34+/ckit+ TCs in tissue from TAA patients (n = 29)
compared to HTA samples (n = 23) (Figure 1A). In detail, we observed an increase of TCs
in adventitial, medial, and intimal layers of the diseased aorta (p < 0.001) (Figure 1A,B).
The highest percentage increase in TC number was detected in the intimal layer of TAA
samples (Figure 1A). Moreover, correlation studies show a significance in the number of
TCs correlated to the aortic diameter, the higher the aortic diameter of aneurysmal aorta,
the higher the presence of TCs (adventitia, R = 0.346 p < 0.01; media, R = 0.454 p < 0.01;
intima, R = 0.2819 p < 0.05) (Figure 1C,D). Double staining of well-known TC markers
(CD34, ckit, vimentin, and PDGFR-®), as well as the lack of endothelial marker CD31
confirmed TC specificity (Supplemental Figures S1 and S2). Notable, the thickness of
the tunica intima showed a significant decrease after aneurysmal formation compared to
healthy aorta (p < 0.001) (Figure 1E). In the non-aneurysmatic aorta of the HTA samples
TC were predominantly found in the tunica adventitia as compared to tunica media and
tunica intima (p < 0.001 and p < 0.05, respectively). This corresponds to our previous
observations, where aortic TCs were mainly located in the adventitial layer and their
perivascular network [28,32]. In summary, during aneurysmal formation and advanced
stage of thoracic aortic disease, the number of TCs increased significantly with noticeable
distribution of TCs to the intimal layer.

Most recently, CD34+/CD133+ EPCs and CD34−/ckit+ hemopoietic stem cells (HSCs)
have been described to form a discrete progenitor cell niche for the development of thoracic
aortic disease [29]. Immunostaining showed distribution of CD34+/CD133+ positive cells
in aneurysmal tissue (Figure 1F). Further, we observed ckit positive, and CD34 negative
cells HSCs in HTA samples, which were significantly decreased after aneurysmal formation
in TAA cells (Figure 1G,H).

2.2. Comparison, Characterization, and Analysis of Released Exosomes of HTA- and TAA-TCs

To further investigate various protein expression markers in HTA and TAA samples,
TCs were isolated from HTA and TAA samples as previously described [8,9,28] (Figure 2A).
Cells were sorted based on CD34 and ckit protein expression and purification of CD90
negative cells to distinguish TCs from dedifferentiated vSMCs or fibroblasts. After reaching
~80% of confluence at cell culture, we performed mRNA and protein analysis. The TC
phenotype was characterized by mRNA expression of ckit, vimentin, PDGFR-α/-®, KLF-4,
and CD29/integrin β–1 in TCs (Figure 2B). TCs isolated from TAA specimens showed
a significant increase of vimentin (p < 0.01), PDGFR-α (p < 0.05), and KLF-4 (p < 0.01)
compared to TCs isolated from HTA specimens. Moreover, Western blot analysis was
conducted in two individual HTA-TC cell cultures and two individual TAA-TC cell cultures,
to analyze protein levels of TC expression markers as well as vSMC-dedifferentiation
markers (Figure 2C). This revealed higher protein levels of ‘contractile’ SMC-phenotype
marker SM-calponin, α-SMA in HTA-TCs, whereby ‘synthetic’-marker vimentin and KLF-4
were decreased in HTA-TCs compared to TAA-TCs. Using TEM, we observed a close
interaction of TCs via their telopodes with endothelial cells (ECs), fibroblasts (FBs), and
vSMCs. Interestingly, we found exosome-containing multivesicular carriers (MC) primarily
located in TC podomeres (Figure 2D(a)), suggesting a paracrine activity of TCs. Higher
magnifications showed possible communication between TC and vSMC with synthetic
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phenotype morphology (Figure 2F(a–c)). We observed an invagination of telopodes by
vSMC and formed caveolae close to the cell convergence of TC and vSMC.Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 17 

 

 

 

Figure 1. Human aneurysmal tissue showed an increase of TCs and EPCs depending on aneurysm
size. (A) Statistical analysis of TCs per cross-sectional (number of CD34+/ckit+ TCs/number of
total cells) in healthy thoracic aortic (HTA, n = 23) or thoracic ascending aneurysm (TAA, n = 29)
tissue. Specific layers of aorta are shown. (B) Representative image of double-positively TCs in all
three aortic layers, adventitia (Adv; on the left), media (Med; in the middle), and transition zone
of media, intima (Int), and endothelium (End; on the right), are presented. TCs are indicated by
narrows. Magnification shows morphology of a TC in medial layer. Scale bar, 20 µm. CD34, red; ckit,
green; cell nuclei, Hoechst, blue. (C) Correlation study through Pearson’s linear regression analysis
of the aortic diameter in mm and percentage of TCs per cross sectional area. Location of TCs was
separated into adventitial (adv, blue), medial (med, red) and intimal (int, green) layer. R and p values
are given on the top. (D) Diagram of TCs detected depending on aortic diameter (size in mm) in
healthy thoracic aortic (HTA, n = 23) or thoracic ascending aneurysm (TAA, n = 29) tissue. Data are
mean ± SD. (E) Intimal thickness was reduced in TAA samples (n = 29) compared to HTA (n = 23).
Intimal thickness is given in µm. (F) Representative images of immunostaining of EPCs (left) located
in medial layer were double stained with CD133 (green) and CD34 (red) with TC-like morphology.
CD34+/ckit+ TCs staining (CD34, red; ckit, green) is shown on the right. Single immunofluorescence
images are presented on the right of each merged image. Nuclei were counterstained with Hoechst
(blue). Scale bar, 50 µm. Statistical analysis in healthy thoracic aortic (HTA, n = 23) or thoracic
ascending aneurysm (TAA, n = 29) tissue (G) and representative image (H) of ckit-positive and CD34-
negative HSC-subset detected in human aortic tissue. CD34− EPCs were analyzed and given for
intima/media and adventitia of aortic vessel separately (G). (H) Immunofluorescence showed ckit+

EPCs next to endothelial tube with double-positive TCs. Magnifications present morphological round
to oval ckit+ EPC (right upon), double-positive TC (*) (right middle), and EPC close to endothelial
tube with TCs (right bottom). CD34, red; ckit, green; nuclei, blue (Hoechst).
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reduced levels of miR-21 (p < 0.05) and miR-145 (p < 0.01), and increased levels of miR-146a (p 
< 0.01), miR-221 (p < 0.05), and miR-222 (p < 0.001) confirmed miR levels which are mainly 
found in dedifferentiated vSMCs. 

 

Figure 2. Characterization of isolated and sorted TCs and exosomes from HTA (n = 23) and TAA
(n = 29) specimens. (A) Representative image of isolated and CD34+/ckit+ sorted TCs from aortic
tissue. In the magnification TC showed typical morphology with oval cell body (Asterisc), long
thin processes including intermitted telopodes (arrows) shown by light microscopy 14 days after
isolation. (B) mRNA expression profile of aortic TC marker genes (KIT, VIM, PDGFRA, PDGFRB,
KLF4, and ITGB1) confirmed TC phenotype and showed differences between cells isolated from
healthy aortic specimens (HTA-TCs, n = 10) compared to aneurysmal aortic specimens (TAA-TCs,
n = 10). Bars indicate the relative expression of each mRNA normalized to GAPDH and RPLP0.
Data are mean ± SD of three independent experiments. (C) Western blot analysis of TCs isolated
from two individual HTA-aortic samples and two from TAA-aortic samples. Six protein markers
which are involved in phenotype switching of SMCs were analyzed (ckit, SM-calponin, α-SMA,
CD29/integrin ®-1, and KLF-4). ACTB was used as loading control; Primary antibodies and the
observed molecular weight (kDa) are given on the left. Statistical calculation given by HTA/TAA
ratio are given on the right. (D–F) Representative transmission electron micrographs of medial
layer in human aortic specimens. The connections between TCs and (D-a) endothelial cell (EC), and
(D-b) fibroblast (FB) embedded between collagen fibers (Col) is shown. Preparation artifact (Asterix).
(E) Cell convergence of TC and vSMC from synthetic phenotype is shown. vSMC-phenotype was
characterized by their found intracellular filament order. (F) Magnifications of TC telopode (Tp)
to synthetic vSMC (a) revealed active intake of caveolae (b) and invaginated telopode (INV) and
mitochondria (asterisks) by vSMC (c). MC, multivesicular cargos; ECM, extracellular matrix; TC,
telocyte. (G) The quality, concentration (particle per ml) and particle diameter (nm) of exosomes
was confirmed by qNano analysis (Izon instrument, UK) (n = 7). (H,I) Representative western blots
of isolated HTA- and TAA-exosomes are shown. Cell lysate was used as control. Exosome-specific
soluble factors (VEGF-A, KLF-4, CD34 and α-SMA) (H) as well as surface proteins (CD63, HSP90 and
TSG101) (I) were analyzed. ACTB and GAPDH were used as loading control; Primary antibodies
and the observed molecular weight (kDa) are given on the left of each blot. (J) Micro RNA (miR)
expression profile in HTA (black, n = 23) and TAA (grey, n = 29) isolated exosomes. Expression
of some miR which are involved in SMC-phenotype switching were measured by qRT-PCR. Bars
indicate the relative expression of each miR normalized to U6 small nuclear RNA (RNU6B) and
SNORD44. Data are mean ± SD of two independent experiments. * p < 0.05; ** p < 0.01; *** p < 0.001.
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We next isolated exosomes from HTA and TAA cell cultures and analyzed their phe-
notype using immunoblotting (Figure 2G–I). The quality, concentration (particle per ml)
and particle diameter (nm) of exosomes was confirmed by qNano analysis (Figure 2G).
Exosomes were characterized by KLF-4 and VEGF-A protein. These proteins were in-
creased in TAA cell cultures versus HTA cultures (Figure 2H and Supplement Figure S1).
Exosomal surface marker CD34, CD63, HSP90, and TSG101 revealed exosome purity
(Figure 2H,I). MicroRNA (miR) expression profiles were performed to analyze miRs in-
volved in phenotype-switching of vSMCs (Figure 2F). TCs isolated from TAA showed a
significant increase of miR-146a, miR-221, and miR-222, which were previously described
for dedifferentiated vSMC, p < 0.001, p < 0.01, and p < 0.01, respectively (Figure 2J). Whereas
miR levels found in contractile vSMCs were decreased, miR-143 and miR-145, p < 0.05 and
p < 0.05, respectively. In TAA-exosomes, reduced levels of miR-21 (p < 0.05) and miR-145
(p < 0.01), and increased levels of miR-146a (p < 0.01), miR-221 (p < 0.05), and miR-222
(p < 0.001) confirmed miR levels which are mainly found in dedifferentiated vSMCs.

2.3. Exosomes Isolated from TCs Influence vSMC Phenotype Characteristics

We then investigated whether exosomes, isolated from HTA- versus TAA-cultured TCs,
had a regulatory potential to markers involved in SMC dedifferentiation. When vSMC were
cultured in the presence of exosomes isolated from TAA-TCs they tended to become less
spindle-shaped, and to develop the more irregular morphology associated with synthetic
vSMCs, compared to exosomes isolated from HTA-TCs or exosome isolation procedure
from cultured vSMCs as control (Figure 3A). vSMCs treated with TAA-exosomes showed
a trend of decreased mRNA expression of smooth muscle-cell myosin-heavy-chain 11
(SMMHC), -SMA, and SM-calponin compared to control groups (Figure 3C). TAA-exosome
treatment of vSMCs significantly increased mRNA expression of SMC-dedifferentiation
markers collagen-1 (p < 0.01), vimentin (p < 0.01), and KLF-4 (p < 0.01) (Figure 3B). Cell-
metabolism assays (MTT) and cell proliferation assays demonstrated an increase of vSMC
cell proliferation in vSMCs treated with TAA-exosomes (p < 0.01), compared to control
group (Figure 3C,D). MTT assays were conducted 1 and 4 days after treatment start
(Figure 3C). Moreover, these effects were very similar to those observed in samples which
dedifferentiation process of vSMCs were induced by recombinant PDGF-BB protein in a
concentration of 20 ng treatment [36]. Cell proliferation assay was used to exclude off-
target effects by several dilutions of undiluted (0), 2-times, 4-times, and 6-times exosome
concentrations compared to control supernatant of vSMCs (Figure 3D).

Similar to RT-qPCR results, ELISA measurement of collagen-I confirmed an increase of
protein concentrations after TAA-exosome or PDGF-BB treatment, p < 0.01 and p < 0.001,
respectively (Figure 3E). Additionally, wound healing assay was performed on vSMCs
treated with isolated TC-exosomes or TC-conditioned medium (TCM) (Figure 3F,G). Migra-
tion distance of vSMCs was increased after 24 h of treatment with TAA-exosomes (p < 0.01),
whereby, a significant increase was observed after treatment with both ‘whole’ cell cul-
ture supernatant of sorted HTA- and TAA-TCs, compared to specific controls (p < 0.01)
(Figure 3F). The assumption that exosomes may initiate or regulate SMC-dedifferentiation
would merit gain-of-function and loss-of-function analysis of miR.
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Figure 3. Effect of exosomes isolated from aneurysmal telocytes (TCs) on proliferation, metabolism,
and phenotype specific mRNA expression of aortic vascular smooth muscle cell (vSMC)-cell culture.
Exosomes were isolated from isolated TCs from healthy aortic tissue (HTA, n = 10) or thoracic
ascending aneurysm (TAA, n = 10). (A) Morphological changes shown by light microscopy and
α-SMA reengagement by immunofluorescence in SMCs treated with TC-exosomes compared to
SMC control in isolated aortic cell culture containing vSMCs and fibroblasts (FB). CD90 (FB-marker),
red; α-SMA (vSMC-marker), green; DAPI (cell nucleus), blue. Scale bar of light microscopy 20 µm.
(B) Quantitative RT-PCR of SMC-phenotype specific mRNA expression after HTA-exosomes or TAA-
exosomes compared to vSMC-control. Synthetic phenotype mRNA expression (COL1A1, VIM, and
KLF4) were increased, whereby contractile phenotype mRNA expression (MYH11, ACTA, and CNN1)
showed no differences after treatment with TAA-exosomes. Bars indicate the relative expression of
each mRNA normalized to GAPDH and RPLP0. Data are mean ± SD of two independent experiments.
**, p < 0.01. (C) Effect of HTA- and TAA-exosomes compared to vSMC-control tested in aortic vSMCs
by MTT assay after 1 and 4 days of treatment. PDGF-BB treatment was used as positive control.
ns, non-significant. Data are mean ± SD of four independent experiments. (D) Dilution-depended
exosome-induced cell proliferation tested in aortic SMCs. OD values resulting from CCK-8 assay,
HTA- and TAA-exosomes were compared to vSMC control. OD, optical density. Data are mean
± SD of four independent experiments. *, p < 0.05; **, p < 0.01. (E) Collagen-I measurements after
different exosome or control treatments after 3 days tested in vSMCs with PDGF-BB as positive
control. Data are mean ± SD of three independent experiments. (F,G) Cell migration (scratch wound
healing assay). (F) Values of percentage wound closure ± SEM (n = 3). Different exosome treatment
or TC-conditioned medium (TCM) treatment were compared to vSMC medium as control group 24 h
after treatment start. (G) Representative images are shown from three independent experiments at
time points beginning (0 h), 12 h, or 24 h. Blue area defines the areas lacking cells, initial scratch line
shown by dashed lines (wound area, ImageJ). Scale bar, 20 µm.
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3. Discussion

The adventitia of the ascending thoracic aorta represents a specialized perivascular
niche. The occurrence of TCs in aortic human tissue has been demonstrated previously [28].
For the first part, we classify that TCs are playing a crucial role in enhancement of aneurysm
formation depending on the expression profile of aortic TCs and their released exosomes.
For the first time, we classify TCs by their antigenic profile, function, and location associated
with aneurysm formation and show a significant increase of TCs in the diseased aorta,
which correlated to advanced pathogenicity. Based on the expression profile of TCs and
the high occurrence of well-known factors during aneurysmal formation (e.g., KLF-4 and
VEGF-A) [1], we characterize their potential for smooth muscle lineage progression. This
finding is supported by a cell culture experimental subset showing that the treatment
of vSMC with TC-exosomes leads to dedifferential-phenotype changes. This release of
TC-related factors is involved in vSMC phenotype switching, which could play a crucial
role in the development of instable aortic tissue.

Popescu et al. discussed a TCs stromal progenitor cell analogy, which means that TCs
can participate in immune surveillance and mesenchymal differentiation functions [37].
However, the classification and functional characterization of vasa-vasorum-associated
perivascular progenitor cells in human aorta describe a subset of CD34+/CD31+/α-SMA−

endothelial progenitor cells which are mainly abundant in aortic adventitia [29]. The
functionality of EPCs is described in neovascularization of cardiovascular diseases [36,38].
Our current finding of the regulatory function of TCs and their markers’ similarity to
HSCs such as EPCs, provide additional support that these unique cell populations may
play a distinct and important role in aortic diseases [39]. Concordantly, we found that
the onset of CD34−/ckit+-progenitor cells were decreased with disease progression, and
CD133+/CD34+ double positive cells were detected in aortic media. However, the molecu-
lar identification of TCs and the distinction from endothelial progenitor cells (EPCs) are
presented by negative staining of CD34+/ckit+/CD133− for TCs. Nevertheless, it remains
open how an attraction of TCs from the adventitial layer to the intimal layer occurs. Is the
attraction of EPCs in aneurysmatic tissue, the origin for TCs, or are they only involved in
the induction of TCs? Further studies are required to clarify the relationships between the
functionality of EPCs or the infiltration and differentiation of EPC-subsets to TCs, regarding
the near identically expression profile.

In recent years, the therapeutic effect of exosomes derived from TCs have been investi-
gated intensely in multiple disease models and show that these exosomes exert functions
similar to those of stem cells, including promoting tissue remodeling and expression of
pro-angiogenic miRNA that regulate tissue repair via a paracrine-mediated mechanism in
the vasculature [34]. However, to date, few studies have aimed to determine the functional
role of exosomes derived from TCs in angiogenesis and tissue remodeling in vascular
disorders [9,34]. In this study, we frequently observed exosomes in the immediate vicinity
of pits, which suggests that the endocytosis of these vesicles may pass messages from one
cell to another through exosomes. Thus, we isolated exosomes from TCs and evaluated
their functions. Since it has been reported that TCs have proangiogenic functions, we hy-
pothesized that exosomes of TCs would exert an influence on SMCs. The diversity of vSMC
function is reflected in their contractile and synthetic phenotype, which are characterized
by substantial differences in marker expression, morphology, and activity [34,40–42]. When
TCs derived from aneurysmal human tissue were compared to those of healthy aortic tissue,
we detected an increase of specific mRNA expression for a synthetic vSMC phenotype.
Whereby markers for a contractile vSMC phenotype were downregulated in western blot.
HTA-exosomes and TAA-exosomes are equally found in the vimentin and KLF-4 mRNA
expression, their cell metabolism and proliferation, whereas TAA-exosomes interestingly
show more disrupting features of diseased aortic tissue, collagen secretion, and regener-
ative potential (Figure 3), which correlates with previous findings of aortic cells found
during aneurysm formation. The development of a TAA or HTA is a process of several
pathomechanisms, still not clearly understood. Initial triggers release a destructive process
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of oxidative stress, apoptosis or dedifferentiation of vSMCs, and proteolytic fragmentation
of the ECM. The same triggers are found to release TCs exosomes. The adverse environment
now increases the reactivity and boosts oxidative stress by producing reactive nitrogen
and oxygen species, which aggravates apoptosis or dedifferentiation of vSMCs leading to
aneurysmal formation. Our findings, supported by a cell culture experimental subset, show
that the treatment of vSMC with TC-exosomes leads to dedifferential-phenotype changes.
Further investigations are needed to identify a direct link between oxidative stress and TCs
exosome release leading to aneurysmal formation.

The characterization and comparison of exosomes derived from HTA- and TAA-TCs
revealed a high amount of VEGF-A and KLF-4 proteins in shed vesicles. Further, the human
genome encodes 1048 miRNAs, which virtually regulate all biological processes [43]. Spe-
cific miRNA expression patterns have been previously described for TC-exosome treatment,
where they were responsible for complex regulatory function driven by telocytes [44]. In
our study, miRNA in aortic TC and TC-released exosomes showed an expression profile
which is consistent to previous observations [38,45], but in TAA-samples we detected an
increased shift of miRNAs involved in dedifferentiation of vSMCs (miR-146a, miR-221
and miR-222) [46]. Keeping in mind some of the roles attributed to the TC, such as the
juxta/paracrine activity, the ability to remodel the collagen fibrils and to control tissue
homeostasis [47], it could be speculated that the increased expression of vimentin, PDGFR-a
and KLF-4 represents a potentiation of these functions. Specifically, KLF-4 is upregulated by
shear stress [29,41], a typical EC differentiation stimulus found during aneurysm formation,
and inhibits SMC maturation [48]. When we cultured vSMCs in the presence of exosomes
isolated from TCs, we observed a dedifferentiation phenotype, which includes cell morpho-
logical changes, increased metabolism, and a significant increase of synthetic-phenotype
related mRNA expression in vSMCs (KLF-4, vimentin, and collagen-I). The synthetic phe-
notype of vSMCs plays a crucial role in progressive aneurysm formation in human and
is associated with high expression of VEGF-A, vimentin, KLF-4, and ECM degrading
enzymes [37]. Besides our findings and others of vimentin and VEGF-A expression in
TCs, most recently the expression of metalloproteinase-9 (MMP-9) was also attributed to
TC [28,29]. MMP-9 is essential for degradation of ECM components [39].

In conclusion, the study shows for the first time that TCs are involved in development
of TAA. Whereby the significantly high number of TCs found in TAA seems to be the
decisive factor leading to an imbalance of homeostasis and to an uncontrolled remodeling
of the tissue. The characterization of their exosome-related function and location in TAA,
as well the observation of progenitor cell recruitment of EPCs-subsets, show the potential
of aortic TCs for involvement in smooth muscle lineage progression during aneurysm
formation. Our results provide preliminary evidence that aortic TCs have therapeutic
potential for the treatment of TAA and the prevention of fatal progression of the disease.

4. Materials and Methods
4.1. Patient’s Specimens

Human aortic tissue samples (52 samples) were obtained either during heart trans-
plantation (23 samples), or during surgical procedure which involved aneurysm surgery
of TAA (29 samples). Patients with ongoing endocarditis, sepsis, recent infectious disease,
or genetic disorders (e.g., Marfan’s syndrome) were excluded. Additionally, the intake
of immunomodulation therapy (e.g., cortisone) or anti-tumor therapy was an exclusion
criterium. After receiving the specimens, aortic tissue was sliced, and one part was snap
frozen and stored in liquid nitrogen, one part was fixed in 4.5% formalin, one part in
2.5% glutaraldehyde. The remaining tissue was subjected to cell isolation. This study was
approved by the Ethical Committee of the Medical University of Vienna (EK 1280/2015).
Written informed consent was obtained from all patients prior to inclusion in the study. The
investigation conformed to the principles that are outlined in the Declaration of Helsinki
regarding the use of human tissue.
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4.2. Isolation and Sorting of Aortic Telocytes, Fibroblasts and vSMCs

Isolation of human fibroblasts (n = 3), vSMCs (n = 4), and TCs (HTA, n = 10; TAA,
n = 10) was performed according to our established protocol with few modifications as
outlined in this section [28]. Briefly for isolation of TCs, aortic tissue was collected in
RPMI-1640 cell culture medium supplemented with 10% fetal bovine serum [FBS], 25 mM
HEPES as well as 100 IU/mL penicillin, and 100 UI/mL streptomycin (medium and
all supplements were obtained from Gibco/Life Technologies Ltd., Pailey, UK). Aortic
samples were dissected and minced into small pieces of about 1 mm3 and incubated for
3 h at 37 ◦C with mixture of collagenase type IV (Gibco) and elastase (porcine pancreas,
Calbiochem/Merk, Darmstadt, Germany) dissolved in TC-cell culture medium (TC-CCM):
high glucose (HG)-DMEM (Lonza Bioscience Solutions, Cologne, Germany) supplemented
with 1.5 mM HEPES and 20% FBS (Gibco/Life Technologies Ltd., Vienna, Austria). The
isolated cells were filtered through a cell strainer (100 µm), centrifuged and re-suspended
in TC-CCM. 90 min after seeding, the supernatant, which mainly contains the majority of
TCs, was removed and transferred into a new 24-well plate containing TC-CMM. Cells
were cultivated at 37 ◦C in humidified atmosphere (5% CO2). The morphology of TCs was
observed and pictures taken using a phase-contrast microscope (Olympus CKX41 with
Olympus SC-20 camera, Olympus Life Science, Vienna, Austria).

For CD34+/ckit+/CD90− TC-cell sorting to distinguish TCs from dedifferentiated
vSMCs or fibroblasts., cultured aortic cells were collected in FACS buffer (PBS including
0.1% FBS), and 25 mM HEPES was added to the FACS buffer to prevent it from becoming
basic and maintain the pH between 7.0–8.0, and 1 mM–5 mM EDTA to the buffer to prevent
formation of aggregates. Cells were stained with 1× or 0.5× of the antibody concentration
used for immunocytochemistry, followed by appropriate secondary antibody, if necessary
(Supplement Table S1). Cells were re-suspended at a concentration of 2–3 × 107 cell/mL. Im-
mediately before sorting, cells were filtered through a 70 µm mesh filter to prevent clogging
and collected in HG-DMEM supplemented with 30% FBS afterwards. Cells were analyzed
directly by western blot or cultivated in standard culture medium depending on the cell
type (see above). Cell sorting was performed with the BD FACSAria™III Fusion (Software:
BD FACSDiva Version 8.0.2, Becton, Dickinson and Company, San Jose, CA, USA).

4.3. Immunofluorescence Staining and Microscopy

For immunocytochemical staining, cells were grown on 8 chamber slides (Falcon®

glass slide with polystyrene vessel, Fa. Falcon/Szabo Scandic, Vienna, Austria) and fixed
in 4% paraformaldehyde for 10 min. Followed by permeabilization in 0.1% saponine, and
blocked with PBS (ThermoFisher Scientific, Waltham, MA, USA) containing 1% bovine
serum albumin (BSA), 10% goat serum and 0.3 M Glycine for 1 h at 37 ◦C. Samples were
incubated with 2–5 µg of primary antibody O/N according to the listed working dilutions
(Supplement Table S1), followed by incubation with an appropriate secondary antibody
including 1 µg/mL Dapi (ThermoFisher Scientific, Waltham, MA, USA) or 4 µg/mL
Hoechst 34580 (Bio-Connect B.V., TE Huissen, The Netherlands), and mounted in Prolong
Gold Antifade (Molecular Probes, ThermoFisher Scientific, Waltham, MA, USA). Negative
controls were obtained following the same protocol, but omitting the primary antibodies,
and the usage of purified anti-mouse and anti-rabbit IgG (Abcam, Cambridge, UK).

For immunohistological staining, aortic tissue samples were fixed in 4% PBS-buffered
formaldehyde. The tissues were embedded in paraffin, deparaffinized with HistoSAV and
rehydrated in a descending series of ethanol. Following heat-induced antigen retrieval
with citrate-buffer (pH 6), the sections were blocked (10% goat serum, 1% BSA, and 0.1%
Tween-20 in PBS) at RT for 60 min. The antibody incubations corresponded to ICC staining
protocol (see above). The density of TCs was calculated as the mean of total number of
TCs/total number of DAPI stained nuclei per cross section.

For confocal microscopy, we used a LSM700 Meta microscopy laser system, the appro-
priate filters, and a ZEN 2010 microscopy system (Zeiss, Inc. Jena, Munich, Germany). For
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spot counting and co-localization analysis images were analyzed with the CellProfiler™
cell image analysis software.

4.4. Transmission Electron Microscopy

Samples of the aortic wall of approx. 2 cm2 were fixed immediately after surgery in
2.5% glutaraldehyde. After 6 h, samples were cut into smaller pieces of 1 mm3 and washed
three times in 0.1 M cacodylate buffer. The secondary fixation was carried out either for
2 h. in 2% osmium tetroxide/0.1 M cacodylate buffer or for 2 h. in 1% reduced osmimum
tretroxide, both at room temperature. Dehydration and embedding in Epon resin followed
standard procedures. Ultrathin sections (70 nm) were cut with a Reichert UltraS microtome
and contrasted with uranyl acetate and lead citrate. Images were acquired with a FEI
Tecnai20 electron microscope equipped with a 4 K Eagle CCD camera and processed using
the Adobe Photoshop software package.

4.5. Microvesicle and Exosome Isolation

Microvesicle and exosome isolation was performed as previously described [28].
Briefly, HTA-TC-, TAA-TC-, and vSMC-cells were grown in FCS-free culture medium
for 24 h. The cell suspension was centrifuged at 480× g at 4 ◦C for 5 min to remove
any intact cells, followed by a 3200× g spin at 4 ◦C for 20 min to remove dead cells. To
isolate shedding microvesicles (sMVs), the supernatant was centrifuged at 10,800× g at
4 ◦C for 20 min in an Optima L80 ultracentrifuge with a SW41Ti rotor (Beckman Coulter,
Mississauga, ON, Canada). The pellet, containing sMV, was washed once with PBS−/−

and ultracentrifuged at 10,800× g for 30 min. The pellet was dissolved in fresh medium
for immediate use or stored at −80 ◦C for western blot analysis. The remaining culture
medium was transferred to ultracentrifuge tubes and sedimented at 110,000× g at 4 ◦C
for at least 75 min. The supernatant constituting exosome-free medium was removed and
the pellets containing exosomes plus proteins from media were resuspended in PBS. The
suspension was centrifuged at 100,000× g at 4 ◦C for at least 60 min to collect final exosome
pellets. The quality of exosomes was confirmed by qNano analysis (Izon Science Ltd.,
Oxford, UK). Protein content of the exosome pellet was quantified using the Bradford
protein assay kit (Biorad, Hercules, CA, USA). Pellet was dissolved in vSMC-specific cell
culture medium for cell growth analysis and scratch assay, or the pellet was analyzed for
miRNA and protein detection.

4.6. ELISA, Wound Healing Assay and EZ4U Measurements

Collagen-I level was measured with a Soluble Collagen Assay Kit according to manu-
facturer instructions (ab241015, Abcam, Cambridge, UK). For wound healing experiments
a scratch assay was used. Indicated cells were plated with ~80% intensity in 6-wells and
after attachment, medium was changed after 24 h. Scratch was conducted in an appropriate
size and cells were washed and treated with TC- or vSMC conditioned culture medium
(CCM) from separate cell cultures, or with isolated exosomes resolved in appropriate cell
culture medium. Images were conducted after 0, 12, and 24 h. Cell viability and cell prolif-
eration was assessed using an EZ4U kit (Biomedica MP, Vienna, Austria) or cell counting
kit (CCK)-8 assay (Sigma-Aldrich, Taufkirchen, Germany) according to manufacturer’s
instructions. Cells were seeded in ~25% cell density and after attachment, cells were treated
with indicated exosomes or vSMCs-control dissolved in vSMC culture medium. For EZU4
assay, the measurements were conducted 24 h. and 96 h. after treatment start. For CCK-8
assay, measurements were conducted 72 h. after treatment start. For cell growth analysis
and collagen-I measurements, a recombinant human 20 ng PDGF-BB protein (ab79746,
Abcam, Cambridge, UK) was used as positive control.

4.7. miRNA and mRNA Isolation and Real-Time PCR (RT-qPCR)

For mRNA of all samples, RNA was isolated using Trizol (PeqGOLD TriFast, Peqlab,
VWR, Vienna, Austria) followed by purification with the E.Z.N.A. Microelute Total RNA
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Kit (Omega Bio-Tek, VWR, Vienna, Austria), including the optional DNA digestion step
(RNase-free DNase I Set, Omega Bio-Tek, VWR, Vienna, Austria) according to manufactures’
instructions. For RT-qPCR, RNA was reverse transcribed using the QuantiTect Reverse
Transcription Kit (Qiagen, Hilden, Germany), followed by qPCR with the GoTaq RT-qPCR
Master Mix (Promega, Mannheim, Germany) according to manufacturer’s instructions.

For miRNA measurements, RNA was isolated from exosome pellet with miRNeasy kit
(Quiagen, Hilden, Germany) according to manufacturer’s instruction. cDNA was generated
with the miScript II RT Kit and was used as a template for real-time PCR with the miScript
SYBR Green PCR Kit (Quiagen, Hilden, Germany) in accordance with the manufacturer’s
protocol and a gene-specific probe in a 7500 Real-Time PCR system (Applied Biosystems,
Foster City, CA, USA). The relative expression level for each miRNA was computed using
the comparative CT method [31]. miRNA expression was normalized to small nucleolar
RNA U6. For mRNA analysis, samples were normalized to the geometric mean of two
reference genes (GAPDH, RPLP0). Primer sequences are listed in Supplement Table S2.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms23094730/s1.
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