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Abstract: This study explores the combined effect of lead (Pb) exposure and an index of chronic
physiological stress on cardiovascular disease mortality using data from the National Health and
Nutrition Examination Survey (NHANES) 1999–2008 linked to 1999–2014 National Death Index
data. Chronic physiological stress was measured using the allostatic load (AL) index, which was
formed by analyzing markers from the cardiovascular, inflammatory, and metabolic systems, with Pb
levels, assessed using blood lead levels (BLL). The dataset was analyzed with statistical techniques
to explore (a) the relationship between Pb exposure and AL, and (b) the combined role of Pb and
AL on cardiovascular disease mortality. Results indicated that AL was more elevated in those with
BLLs above the 50th percentile in the US population and that those with elevated AL were more
likely to have high BLL. Finally, the interaction of AL and BLL significantly increased the likelihood
of cardiovascular disease mortality. These findings highlight the need for considering the totality of
exposures experienced by populations to build holistic programs to prevent Pb exposure and reduce
stressors to promote optimal health outcomes and reduce cardiovascular mortality risk.

Keywords: stress; mixed exposures; allostatic load; cardiovascular disease mortality; lead exposure

1. Introduction

In the US population, cardiovascular diseases are the leading cause of mortality [1].
Numerous epidemiological studies have linked lead (Pb) exposure with adverse cardiovas-
cular disease outcomes [2–5]. According to the Centers for Disease Control and Prevention
(CDC), any exposure to Pb can induce disease and dysfunction in children [6].

Lead (Pb) is an environmentally and biologically persistent source of adverse out-
comes affecting nearly all the organ systems in the human body [7–12]. Sources of Pb
exposure in the United States include Pb-based paint, contaminated soil, drinking water,
workplace sources (e.g., battery manufacturing), and Pb-contaminated imported goods [13].
Adults are primarily exposed to Pb in the workplace [14] with 5 µg/dL used as the case
classification by the Adult Blood Lead Epidemiology and Surveillance (ABLES) to indicate
an elevated BLL for surveillance purposes [15]. However, the US Centers for Disease Con-
trol and Prevention (CDC) have concluded that no Pb exposure level is safe for adults as
adverse health outcomes have been documented at all exposure concentrations [6,16]. Race
is a critical factor in Pb exposure risk in the United States, with environmental inequities
leaving Black populations disproportionately exposed. Owing in part to environmental
racism, social and environmental conditions such as residential location, education, and
employment have historically led to greater exposure in minority populations to environ-
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mental hazards such as Pb, with prevention and remediation of exposure sources being
slow for affected groups [17,18].

Cardiovascular disease risk factors, such as hypertension, diabetes mellitus, and
cardiovascular diseases, such as heart failure and ischemic heart disease, play a significant
role in cardiovascular disease mortality [19]. Environmental contaminants such as Pb
may also play a role in cardiovascular disease mortality. The role of Pb in cardiovascular
disease mortality was explored in a 2018 study by Lanphear and colleagues, in which
they estimated that 256,000 premature deaths from cardiovascular diseases, including
185,000 deaths from ischemic heart disease, may be linked to Pb exposure adults [20].

Allostatic Load (AL), a measure of chronic stress, represents the hypothalamic–pituitary–
adrenal (HPA) axis in an over-activated state and involves dysregulation of multiple
physiological systems [21]. Dysregulation of the HPA axis, critical for regulating neuroen-
docrine system responses to stressful stimuli, has been associated with cardiovascular
dysfunction [22]. AL offers vital insight into the effects of chronic stress on health out-
comes [23–26].

Epidemiological studies have demonstrated that chronic stress predicts the occur-
rence of coronary heart disease (CHD), with even short-term emotional stress triggering
cardiac events [27,28]. Studies have also found that stress plays a role in cardiovascular
mortality [29,30].

Pb may also increase the stress response. In a study of Pb-exposed workers, Chang
and colleagues found high plasma norepinephrine but normal plasma dopamine and
epinephrine levels, pointing to heightened sympathetic nervous system activity [31]. Gump
and colleagues found that after an acute stressor, increasing prenatal and postnatal blood
Pb levels were independently associated with significantly heightened salivary cortisol
responses [32], with Pb’s effect on salivary cortisol confirmed by others [33]. Regarding
chronic stress, Zota and colleagues found that AL may amplify the adverse effects of Pb on
blood pressure [33], with other studies confirming Pb exposure at lower levels contributing
to AL and in adults [34].

People’s daily activities, including their diet, neighborhood, environmental exposures,
social interactions, and lifestyle behaviors such as alcohol and smoking, affect health
outcomes. The exposome, a concept that seeks to assess the cumulative measure of envi-
ronmental impacts and related biological responses throughout the life-course, including
exposures from diet, behavior, the environment, and endogenous processes, better reflects
populations’ exposure risk. The combined effect of Pb and life stressors on cardiovascular
disease mortality is thus critical to study since both may have a cumulative impact on the
cardiovascular system.

Prior studies by the lead author have demonstrated potential associations between AL
and cardiovascular dysfunction among those exposed to differing concentrations of Pb, but
more information is needed to understand how the combination of Pb and AL contributes
to cardiovascular disease mortality [35].

This study had two objectives:
1: Determine the association between Pb and AL among adults.
2: Determine the association between the combined effect of AL and Pb on cardiovas-

cular disease mortality among adults.

2. Materials and Methods

This study examined the association between BLL and AL, and the combined effect of
BLL and AL on cardiovascular disease mortality in adults using data from the National
Health and Nutrition Examination Survey linked to the National Death Index. Biological
and clinical markers from multiple physiological systems such as the cardiovascular, in-
flammatory, and metabolic systems were used to develop the AL index. AL, an established
index of chronic stress [21,36–41], is a suitable means to explore the role of Pb and chronic
stress in adults, as it represents the cumulative wear-and-tear on the body.
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2.1. Measures

Allostatic Load Index:
Informed by prior studies [35,42,43], a cumulative index of physiologic dysfunction of

the cardiovascular (SBP, DBP, triglycerides, HDL cholesterol, total cholesterol), inflamma-
tory (CRP), and metabolic systems (BMI, hemoglobin A1C, albumin, creatinine clearance)
was developed. AL markers were divided into quartiles based on their distribution within
the database. High-risk for each biomarker was considered to be the top 25% in the dis-
tribution for all markers apart from albumin, creatinine clearance, and HDL cholesterol,
for which the bottom 25% of the distribution was considered to have the highest [44–50].
Each individual in the study was assigned a value of 1 if they are in the high-risk category
or a 0 if in the low-risk category for all markers to calculate a total AL value out of 10.
Clinical and laboratory collection and analysis of markers and variables of interest have
been described elsewhere [35,43].

2.2. Data and Study Design

The relationships in this study were explored using NHANES 1999 to 2008. Mortality
was determined from linked 1999–2014 National Death Index data. NHANES data is
a stratified, multistage probability sample of civilian non-institutionalized individuals
in all of the 50 US states, including the District of Columbia. Technical details of the
survey, including sampling design, data collection protocols, and data availability, are
freely available on their website. Data collection for NHANES makers of interest have been
described elsewhere [35]. This study used de-identified secondary data; hence, the study
did not require IRB approval.

2.3. Data Analysis

Variables of interest were explored in adults aged 20 or older in those with BLL above
the 50th percentile in the US population as compared to those with BLL below the 50th
percentile. This study included an overall eligible sample of 28,852 adults with 52.05%
being female.

Linear regression and logistic regression were used to explore the association between
AL and BLL in adults by dichotomizing low AL ( <3 or <4 ) vs. high AL ( ≥3 or ≥4) for
logistic regression, as high AL subjects using this definition have been consistently shown
in the literature to be at high risk of adverse health outcomes from chronic stress [51–53].

Synergistic effects of co-exposures to high values of both blood Pb and AL on cardio-
vascular mortality were determined by estimating odds ratios concerning exposures to low
values of both blood Pb and AL.

Cox proportional hazards regression was used to model the risk of death with less-
stressed (AL <3) and low Pb exposure (BLL < 50th percentile in population) participants as
the reference groups. Additional covariates used were gender, BMI, alcohol consumption,
smoking, and country of birth, as these factors were different across Pb exposure levels
and the literature has demonstrated they may confound variables of interest.

Stata SE/16.0 (StataCorp, College Station, TX, USA) was used for the analysis as it
factored in the complex design to ensure the analysis reflected the proper weights.

3. Results
3.1. Summary Statistics of Variables of Interest

Variables of interest we explored above and below the median BLL (1.55 µg/dL) were
among adults aged 20–85 years old (Table 1). The mean AL above the 50th percentile BLL
was significantly more elevated than below the 50th percentile, indicating the role Pb may
play in elevating AL.
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Table 1. Means (stderr) and prevalence of analysis variables across BLL levels above and below the
50th percentile in US population.

BLL above 50th Percentile BLL below 50th Percentile

Allostatic Load 2.16 (0.022) 2.10 (0.024)

Gender
M: 61.7 (0.51) M:36.3 (0.51)
F: 38.33 (0.51) F: 63.7 (0.51)

BMI 27.8 (0.081) 29.5 (0.123)

Race/Ethnicity

A) White A) 70.1% A) 72.2%
B) Black B) 11.3% B) 10.3%

C) Mexican American C) 8.5% C) 7.3%
D) Other Hispanic D) 5.0% D) 5.4%

Alcohol 0.06%(0.03) 0.02% (0.01)
Smoking 2.3% (0.20) 1.23%( 0.16)

The proportion of non-Hispanic Blacks and Mexican Americans increased above the
50th percentile in BLL as compared to other ethnicities while the proportion of non-Hispanic
Whites significantly (p < 0.05) decreased.

3.2. Association between AL and BLL

Linear and logistic regression models indicated that blood Pb was significantly associ-
ated with AL (Table 2). For logistic regression models, the threshold of an AL of 3 and 4
were both significantly associated with BLL even after adjusting for critical covariates.

Table 2. Association between AL and BLL.

Linear Regression
N = 4268 Unadjusted AL beta p-value * Adjusted AL beta p-value

BLL dichotomized at
50% 0.0657 (0.023) 0.005 0.255 (0.043) 0.0001

Logistic
Regression

N = 4268 Unadjusted AL 3 OR p-value * Adjusted AL 3 OR p-value

BLL dichotomized at
50% 1.11 (0.05) 0.015 1.52 (0.113) 0.0001

N = 4268 Unadjusted AL 4 OR p-value * Adjusted AL 4 OR p-value

BLL dichotomized at
50% 1.16 (0.75) 0.029 1.73 (0.168) 0.0001

* Adjusted for gender, BMI, smoking, alcohol consumption, country of birth, and income.

3.3. Association between Pb Exposure and Cardiovascular Disease Mortality

We explored the association of cardiovascular disease mortality risk with BLL, AL,
and the interaction of AL and BLL (AL X BLL) using cox proportional hazard ratios. The
results indicated that cardiovascular mortality was 2.35 times higher in those with BLL
above the 50th percentile in the US population as compared to below. The results also
found that the combined effect of Pb and AL was 1.82 times higher in those with BLL
above the 50th percentile and AL above 3 as compared to below. The results are found in
Table 3 below.

Table 3. Cardiovascular mortality risk in adults exposed to Pb and Stress.

Unadjusted HR p-Value * Adjusted HR p-Value

BLL 2.94 (0.293) 0.0001 2.35 (0.298) 0.0001
AL 0.984 (0.135) 0.908 1.078 (0.101) 0.435

AL X BLL 1.96 (0.323) 0.0001 1.82 (0.370) 0.014
* Adjusted for gender, BMI, alcohol consumption, smoking, country of birth.
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4. Discussion

Understanding the totality of exposures that contribute to cardiovascular disease
mortality is critical to mitigating the leading cause of death in the United States and
world. These high rates can be lowered only if the causes are understood. This study adds
to the literature on the effects of social and environmental exposures on cardiovascular
disease mortality.

With adjustment for demographic factors and some important potential confounders,
we observed a positive association between blood Pb and CVD mortality and the interaction
of blood Pb and chronic physiological stress with cardiovascular disease mortality.

Race/Ethnicity was a critical factor in exposure. Even though non-Hispanic Whites are
the largest segment of the US population in this study, and represented a large proportion
of those with BLL above the 50th percentile, they were proportinally less exposed to Pb.
Specifically, there was a substantial increase in the proprortion of non-Hispanic Blacks
and Mexican Americans that were above the 50th percentile in BLL compared to below
it, compared to other ethnicities suggesting that these ethnicities are more likely to be
exposed to Pb as compared to their proportion in the population. This matches the work of
others, which found that Pb concentrations were more elevated in non-Hispanic Blacks
and Mexican-Americans than Whites [54].

The results finding an association of BLL with AL suggest that although BLLs of adults
have continued to decline, the health impact of Pb and physiological stress are intricately
linked. This may either mean that environments which have Pb tend to be filled with more
stressors or it may indicate that those who are chronically stressed are more likely to work,
live in homes, or consume Pb-contaminated items. In addition, because Pb exposure and
stressors tend to occur concurrently with low socioeconomic status, these findings will
likely have a more significant impact among these populations [55]. These results match
the work of Lindgren and colleagues who found in a study of occupationally-exposed
patients that cumulative Pb exposure was associated with general distress [56].

Our findings suggest that BLL may be more critical than AL in bringing forth car-
diovascular disease mortality. The reason for this is difficult to disentangle in a study of
this sort and would need lab-based methods to assess the mechanistic differences between
both exposures. We hypothesize that varying degrees of inflammation and oxidative stress
produced by both processes are likely critical in any differences that may be produced.

The exposure to environmental contaminants is rarely isolated. Most human beings are
exposed to a complex mixture of many environmental [57,58] and social exposures [59,60],
and the physiological manifestation of them determines the biological response both in the
short and long term. The exposome embodies this concept and reflects the reality of how
exposure occurs [61]. The co-occurrence of elevated Pb burden with higher levels of chronic
stress increases the possibility of interactions of these risk factors. Further support for such
a possibility derives from the fact that both Pb exposure and stress stimuli (through the
hypothalamic-pituitary-adrenal [HPA] axis) act on dopamine/glutamate mesocorticolimbic
systems of the brain [62,63].

AL and subsequent biological dysregulation bring forth cardiovascular disease [35,64,65].
When combined with Pb, the outcome can result in cardiovascular disease mortality in
adult populations.

The results of this work suggest that public health agencies must target their messaging
about behavioral interventions such as diet, exercise, and other resilient behaviors along
with environmental messages about Pb exposure risk in order to holistically alleviate
cardiovascular disease risk. In addition, prevention of Pb exposure risk from water [66],
soil [67,68], and the air [69] is critical to mitigating risk. This will require governments to
monitor water infrastructure and remediate areas impacted by legacy Pb.

Finally, more must be done to educate children in school environments about the risk
of Pb exposure by giving the teacher the requisite knowledge and strategies [70] about the
dangers of Pb exposure to provide students with the agency to mitigate Pb exposure risk at
all stages of their lives.
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Limitations of this study include blood Pb levels being used for the analysis. BLL
represents acute exposure to Pb as the half-life for Pb in the blood is roughly 28 days. Bone
Pb levels or Zinc protoporphyrin (ZPP) analysis would have given a better indication of
more long-term exposure. Measuring lead in plasma may also have improved the study,
as plasma lead levels may better reflect Pb that is more freely available for exchange with
target tissues than Pb levels in whole blood [71]. Also, AL may not fully capture the
experience and full impact of chronic stress related to health; however, it offers critical
insight and is an accepted method to use with NHANES data [23–26].

Future work should explore these findings in a longitudinal study among various
age groups. Indeed, as individuals age, their Pb exposure levels increase [72] due to its
biological persistence, while stress levels have been found to decrease [73] with age in
some studies. Future work should seek to understand the exact point in the life course
where the Pb–stress interaction produces the most risk for cardiovascular disease mortality.

5. Conclusions

In summary, US Adults exposed to Pb are more likely to have elevated chronic stress
levels. Finally, the combined effect of Pb and chronic physiological stress has a significant
influence on cardiovascular disease mortality.
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