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Abstract
The problem of discrimination and classification is central to much of epidemiology. Here

we consider the estimation of a logistic regression/discrimination function from training sam-

ples, when one of the training samples is subject to misclassification or mislabeling, e.g. dis-
eased individuals are incorrectly classified/labeled as healthy controls. We show that this

leads to zero-inflated binomial model with a defective logistic regression or discrimination

function, whose parameters can be estimated using standard statistical methods such as

maximum likelihood. These parameters can be used to estimate the probability of true

group membership among those, possibly erroneously, classified as controls. Two exam-

ples are analyzed and discussed. A simulation study explores properties of the maximum

likelihood parameter estimates and the estimates of the number of mislabeled

observations.

Introduction
The problem of discrimination and classification has generated an extensive literature both
from the biostatistical/epidemiological and from the machine learning communities. In its sim-
plest form two populations, identified by a binary (dependent) variable y (y = 0 for controls or
non-cases and y = 1 for cases, e.g. individuals with a specific disease), have to be distinguished
on the basis of a set of p (e.g. genetic or behavioral) traits or (independent) (co)variables x =
(x1,..,xp)

T,. In addition, the role of individual components of x is often also of interest as this
may provide insight in the mechanisms that generate values of y; for example the role of a
(mutant) gene in the etiology of a disease. A discrimination rule has to be estimated on the
basis of a training sample of n = n0+n1 observations, representative of the two underlying pop-
ulations; in machine learning terminology this is called supervised learning. Solutions range
from classical Fisher Linear Discriminant Analysis and Logistic Regression to kernel based
methods, Random Forests and Support Vector Machines. A nice overview is given by James
et al [1].
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A problem that, while surprisingly common in practice, has apparently attracted limited
attention, is how to develop a discrimination rule when training samples have been “contami-
nated” by misclassification or mislabeling of the group membership. This type of misclassifica-
tion is also known as “label error” or “label noise”. Mislabeling, that is misclassification of
labels (i.e. the outcome or dependent y variable in the context of binary regression) may arise,
for example, because the labeling involves some guesswork or subjective judgment as in medi-
cal diagnoses. The presence of misclassification/mislabeling in training samples is often
ignored in practice, or the problem is redefined in terms that fit available solutions. When
researchers are aware of the problem it is also sometimes dealt with by removing or relabeling
observations, either in an ad-hoc heuristic manner, or using an algorithm such as “depuration”
that essentially removes “outliers” [2].

Some authors who explored this problem more formally were Lugosi[3], who explored this
problem in the context of non-parametric pattern recognition, and Manevitz and Yousef [4],
who explored this problem when only observations from one (sometimes misclassified) popu-
lation are available. Some authors treated the “true label” as a latent or missing variable and
used the EM algorithm for parameter estimation [5–6]. Some other authors considered the
related problem of developing a discrimination rule when observations with a set of labels are
available, only one of which is correct [7]. This situation of course is less relevant to the com-
mon situation when only two labels are possible. In fact, in this situation, i.e. no information
about the true label of any observation is available, the problem becomes a mixture analysis
problem. Some authors considered the two possible labels mislabeling problem in the context
of an underlying logistic regression function or discrimination rule. This is highly relevant for
epidemiological case-control studies, where other types of discrimination rules cannot be esti-
mated from this type of stratified samples. Nagelkerke et al considered this in the context of
“mixture” situations where no true labels are available [8]. As early as 1966 Lachenbruch
explored the effect of mislabeling on Fisher's discriminant functions (also logistic functions),
and found that, to first order, the effect is to shrink all coefficient towards the null with the
same coefficient K and concluded that if some members of the original samples are incorrectly
classified the utility of the discriminant function may not be seriously affected [9]. This how-
ever, is not relevant if interest is in the values of the coefficients, or if the probability of the true
label is important, as is the case in medical decision problems. For example, correctly estimat-
ing the probability of seminal vesicle involvement in prostate cancer is key in making optimal
therapeutic decisions. More recently, Albert et al [10] considered this mislabeling problem in
situations in which there is a subsample with known true case status. Bootkrajang and Karan
thoroughly addressed the mislabeling problem in the context of logistic discriminant rules in
its most general form and explored, as we shall do for the one-sided (misclassifications occur in
one direction only) problem, likelihood estimators for the parameters of the underlying logistic
function [11–13].

Here we want to discuss the situation when only one of the training samples, in particular
the control sample (but this is arbitrary of course), contains a non-negligible proportion of the
other group (here cases). We assume that the underlying true discrimination rule–in which we
are interested–is a logistic one.

The motivating example comes from public health, genetics, and microbiology. Legion-
naires disease is a serious bacterial (Legionella Pneumophilia) infectious disease, that results
from inhaling contaminated aerosols, e.g. generated by an air conditioning installation or a
Jacuzzi. The bacteria are almost ubiquitous but not all strains of the bacteria are pathogenic. To
develop a test for the pathogenicity of a strain, on the basis of the genome of the bacteria, one
should ideally compare pathogenic strains, isolated from patients, with non-pathogenic control
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strains. However, such control strains clearly do not exist, and instead environmental samples,
comprising of a mixture of non-pathogenic and pathogenic strains, are used as controls.

This one-sided mislabeling problem however is very common. In data from health surveys,
one can only compare people reporting hypertension, almost all of whom probably having this
condition, to those who do not. A substantial proportion, however, of hypertensives may not
be aware of their condition and are thus mislabeled as normotensives. In criminology, one can
easily compare individuals convicted of a specific crime (say burglary) to those who have not,
although many burglaries never result in convictions. Another common situation where this
occurs is in the context of determining the sensitivity and specificity of a (new) test, when the
putative gold standard itself has imperfect specificity or sensitivity. This is the case, for exam-
ple, in tuberculosis, where culture is traditionally considered the gold standard, although there
may be false-negative culture results [14]. Ignoring this problem may often be undesirable as in
our legionella example where identifying strains as pathogenic may lead to costly public health
interventions. It also has implications for the performance of classification methods. For exam-
ple, boosting methods that iteratively increase the weight of misclassified observations may not
work properly, and thus should either be avoided or applied asymmetrically, as argued by Long
and Servedio [15].

Methods
Consider a population of stratified training samples, z = 0 and z = 1, sampled in the propor-
tions n0:n1 from the populations of possibly contaminated controls and cases. Denoting by
y = 1 the true cases and by y = 0 the true controls, we have P(y = 1|z = 1) = 1 and P(y = 1|
z = 0)�0, that is all observations with z = 1 are actually y = 1, but a possibly positive fraction of
those with z = 0 is actually y = 1. Consequently, there will also be a positive probability λ = P
(z = 0|y = 1,x) (assumed to be independent of x). This probability depends both on P(y = 1|
z = 0), which is assumed to be a fixed parameter, and the population mixing proportion n0:n1.

Here we consider this problem in the context of logistic regression. That is we assume that

Pðy ¼ 1jxÞ ¼ expðb0 þ βTxÞ=ð1þ b0 þ βTxÞ

where β = (β1,. . .,βp)
T and β0 obviously depends on the proportion of true cases (y = 1) in the

total sample. For the probabilities of z conditional on x we have

Pðz ¼ 1jxÞ ¼ Pðz ¼ 1jy ¼ 0; xÞ � Pðy ¼ 0jxÞ þ Pðz ¼ 1jy ¼ 1; xÞ � Pðy ¼ 1jxÞ
which in the case of an underlying logistic regression function becomes

ð1� lÞ � expðb0 þ βTxÞ=ð1þ b0 þ βTxÞ

Similarly,

Pðz ¼ 0jxÞ ¼ Pðz ¼ 0jy ¼ 0; xÞ � Pðy ¼ 0jxÞ þ Pðz ¼ 0jy ¼ 1; xÞ � Pðy ¼ 1jxÞP
which again, by assuming a logistic regression function, becomes

½1þ l � expðb0 þ βTxÞ�=ð1þ b0 þ βTxÞ

As P(z = 1|x) assumes values between 0 and 1-λ, it can be termed a defective logistic regres-
sion (DLR). This model is formally equivalent to the zero-inflated logistic regression model,
see e.g. Hall [16]. Although (unlike zero-inflated count models) this model appears to be
unavailable in major statistical packages, similar to standard logistic regression, parameters of
this function can be estimated easily using maximum likelihood. In cases where, unlike in our
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examples, the number of covariables p is large compared to n0+n1 estimation (regularization)
methods penalizing model complexity, e.g. the lasso which penalizes the absolute values of the
β coefficients (the λ should perhaps not be penalized), should be used (we did not as we consid-
ered only few covariables).

As P(y = 1) = P(z = 1,y = 1)+P(z = 0,y = 1) = P(z = 1) + λ�P(y = 1), we have P(y = 1) = P
(z = 1)/(1-λ). Thus the expected number of cases in the total sample equals n1/(1-λ), and the
expected number of controls who are actually cases is n1�λ/(1-λ).

The parameters β0, β in the defective logistic regression model are identical to the ones in
the underlying logistic model for y. Thus the latter model can be used for classification. (As β0
depends on the arbitrary mixing proportions of cases and controls these probabilities should
be interpreted cautiously.). As our objective is the prediction (classification) of the y (instead of
the observed, but possibly mislabeled, outcomes z) values of the observations, techniques such
as cross-validation to explore the performance of our proposed method in given empirical con-
texts, are not meaningful. Cross-validation would require a subset of observations, not used in
estimating the classification function, for which the true, or gold standard, outcomes are
known. This is obviously not the case.

Results
We apply our proposed method to two examples. In both examples we used the mle() function
from the stats4 library of the statistical package R [17] for ML estimation of the DLR parame-
ters. The loglikelihood, as usual, is the sum over all observations of {zlog(P(z = 1|x)) + (1-z)log
(P(z = 0|x)}. Use of the maximum likelihood guarantees that–if the model is correctly speci-
fied–the parameter estimators have well established nice properties such as consistency and
(asymptotic) efficiency [18]. Also, criteria such as AIC, BIC, significance testing, etc. for decid-
ing which elements of x to include in the (final) model, can be used. However, we advise to
base the decision to use defective logistic regression instead of standard logistic regression on
prior, substantive, knowledge that non-negligible mislabeling occurs. This is, because standard
asymptotic theory makes the assumption that the true parameter value λ lies away from the
boundary λ = 0.

We used the solutions of the standard logistic regression, that is the maximum likelihood
solution when fixing λ = 0, as starting values. These starting values will guarantee convergence
to a (possibly local) maximum with a likelihood at least as large as that of the standard logistic
model. It is also possible to plot the profile likelihood of λ (i.e. the maximum likelihood–over
β-for given values of λ) to ensure that the likelihood is well-behaved in the relevant region of
the parameter space. Where appropriate, as in example 2, we also bounded λ by 0 below and by
n0/(n0+n1) above using the L-BFGS-B method.

As our first example, we consider the above described problem of identifying pathogenic
legionella strain when the environmental control sample potentially contains several patho-
genic strains. In short 49 pathogenic strains are to be compared to 173 environmental ones.
We restricted ourselves to the four genetic markers previously identified as important by Euser
et al [19]. Table 1 summarizes the data, while Table 2 presents results of fitting the DLR and
logistic regression (LR) model. We reparameterized λ to μ = λ/(1-λ) because it yielded greater
symmetry of the profile likelihood. The ML estimate of the expected number of environmental
strains which are actually pathogenic, n1 λ/(1-λ), is 9 (95% CI: 0 to 19). There seems to be a
substantial difference for the third marker, justifying further exploration of its role in patho-
genesis. The likelihood ratio test (the difference in twice the log-likelihood between the defec-
tive logistic regression and usual logistic regression models) yields P = 0.078, the Wald test
statistic for testing the null hypothesis λ = 0 gives P = 0.047. Thus the DLR model fits slightly
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better than the LR model. Using the DLR estimates of β0 and β we calculated the predicted
probabilities P(y = 1|x) of being a case, and also P(y = 1|x,z = 0). These probabilities can be
used for classification choosing a suitable cut-off. (As β0 depends on the chosen proportions of
pathogenic and environmental strains, these probabilities should be interpreted cautiously). As
an example we chose a cut-off 0.285 for which 9 of 173 contaminated controls were classified
as cases (9 is the estimate by the fitted DLR model), that is the DLR model estimated probabil-
ity P(Y = 1|z = 0,x) exceeded 0.285. Then, also, the estimated P(y = 1|x) of 41 of 49 cases (i.e.
z = 1) exceeded the cut-off. Histograms of estimated probabilities P(y = 1|x) are shown in Fig 1.

For our second example, to explore the DLR model in a situation in which the level of mis-
classification is (artificially) known, we used data from the Ille-et-Verlaine case-control study
on esophageal cancer, with 200 cases and 778 controls (776 with complete data), by Tuyns et al
[20] (data obtained from: http://faculty.washington.edu/norm/datasets.html, see S1 File). Four,
highly significant (by standard logistic regression), covariables were of interest, age (rescaled),
the square of age (age2), tobacco group (treated as a continuous variable) and daily alcohol
consumption (in g/day, also rescaled). Applying DLR to these data correctly estimated λ = 0.
We then intentionally randomly misclassified 67 cases as controls and used DLR to estimate
the fraction misclassified. Table 3 and Table 4 summarize the data and the results of fitting the
DLR and LR models. The ML estimate of the expected number of controls who are actually
cases, n1 λ/(1-λ), is 116 (95% CI: 15–216). The real number 67 falls well within the CI. How-
ever, the assumed underlying logistic function may also not be entirely correct, and such viola-
tions of assumptions may bias estimates of λ/(1-λ). For example, it seems unlikely that the
probability of esophageal cancer can really approximate 1, as all cases must have been non-
cases prior to developing their disease, with the same covariable pattern (except perhaps for a
slightly lower age). The P-value of likelihood ratio test comparing LR and DLR is 0.021, thus
suggesting likely superiority of the DLR over the LR. Of course, as the hypothesis λ = 0 is on
the boundary of the parameter space this P-value has to be taken with a grain of salt. Using the

Table 1. Summary statistics of the 4 genetic traits in the 49 pathogenic and 173 environmental legio-
nella strains.

Environmental strains Pathogenic strains

Trait Mean (SD) Mean (SD)

L07B8 .42 (2.11) 8.54 (8.24)

L15D6 .34 (.43) .81 (.56)

L16E4 .99 (.34) 1.30 (.17)

L33F8 1.13 (.29) .83 (.44)

doi:10.1371/journal.pone.0140718.t001

Table 2. Parameter estimates and their standard errors of DLR and LR estimation.

DLR LR

variable estimate SE estimate SE

μ = λ/(1-λ) 0.180 0.108

b0 -5.255 2.240 -4.200 1.325

bL07B8 0.609 0.506 0.187 0.050

bL15D6 0.984 0.567 0.984 0.412

bL16E4 4.865 1.885 3.430 0.967

bL33F8 -2.566 1.087 -2.060 0.663

-2�log(L) 122.57 125.67

doi:10.1371/journal.pone.0140718.t002
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DLR estimates of β0 and β we calculated the predicted probabilities P(y = 1|x) of being a case.
Histograms of estimated probabilities P(y = 1|x) are shown in Fig 2. As an example we chose a
cut-off 0.35 for which 116 of 776 “z = 0” controls were classified as cases (116 is the estimate by
the DLR model), that is the estimated probability P(y = 1|z = 0,x) exceeded the cut-off. Then 33
(49%) out of 67 misclassified cases and 694 (89%) out of 776 controls were classified correctly.
The ROC curve is shown in Fig 3. To further explore the behavior of the proposed method we
analyzed one hundred samples obtained by selecting randomly 67 misclassified cases. The
median number of estimated misclassified controls was 103 (IQR: 69 to 142).

Fig 1. Frequency distribution of predicted probabilities of being a case in Example 1.

doi:10.1371/journal.pone.0140718.g001

Table 3. Summary statistics of risk factors age, daily alcohol, and daily tobacco use, among esopha-
gus cancer cases (n = 200) and controls (n = 776).

Control Case

Risk Factor Mean (SD) Mean (SD)

Age (years) 50.2 (14.3) 60.0 (9.2)

Alcohol (g/day) 44.3 (31.9) 85.1 (48.5)

Tobacco (g/day) % %

None 32.9 4.5

1–4 11.2 9.0

5–9 13.7 25.5

10–14 14.3 20.0

15–19 8.6 9.0

20–29 12.8 16.5

30–39 3.1 8.0

40–49 3.1 6.5

50- 0.4 1.0

doi:10.1371/journal.pone.0140718.t003
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Discussion
Misclassification is an important statistical problem that appears in many different contexts,
including the estimation of discrimination and classification rules. Misclassification or misla-
beling in training samples may seriously bias classifiers that are estimated from such samples.
Ignoring it may lead to biased estimates of the β; generally biases will be towards the null.

We explored a special case in which misclassification occurs in one direction only in the
context of logistic discrimination. It turns out that a simple modification of the standard

Table 4. Parameter estimates and their standard errors of DLR and LR estimation

DLR LR

variable estimate SE estimate SE

μ = λ/(1-λ) 0.869 0.385

b0 -2.515 0.361 -2.953 0.248

b(age-50)/10 1.665 0.380 1.157 0.187

b2(age-50)/10 -0.526 0.153 -0.357 0.089

btobacco 0.330 0.093 0.235 0.053

b(alcohol-50)/10 0.306 0.080 0.182 0.025

-2�log(L) 589.23 594.54

doi:10.1371/journal.pone.0140718.t004

Fig 2. Frequency distribution of predicted probabilities of being a case in Example 2.

doi:10.1371/journal.pone.0140718.g002
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logistic regression function, viz. a defective logistic regression function, can take such misclassi-
fication into account. Consistency, bias, and meaningfulness of estimators, however, depend of
the (in)correctness of the underlying logistic discrimination function. Estimates of λmay also
mostly depend on the fraction of observation with z = 0 but P(y = 1|x) close to 1, and small
numbers of those cases might introduce bias. The effects of suspected model misspecification
(i.e. of the logistic function) can be explored, on an ad-hoc basis, e.g. using computer simula-
tions. Our method can easily be extended to other link functions. For example, in serological
surveys to detect past exposure to an infectious agent, the use of a test (e.g. Elisa) with imperfect
sensitivity will lead to zero-inflated complementary log-log link binomial regression.

Standard software should be extended with our proposed procedure.

Supporting Information
S1 File. Esophagus cancer case-control data. Both true case-control status y (1 = case, 0 = con-
trol) and intentionally misclassified (67 cases) status (z) are shown, in addition to the covari-
ables age, tobacco use, and alcohol consumption.
(TXT)
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