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Epigenetic modifications including histone modifications and DNA and RNAmodifications are
involved in multiple biological processes and human diseases. One disease, kidney cancer,
includes a common type of tumor, accounts for about 2% of all cancers, and usually has poor
prognosis. The molecular mechanisms and therapeutic strategy of kidney cancer are still
under intensive study. Understanding the roles of epigenetic modifications and underlying
mechanisms in kidney cancer is critical to its diagnosis and clinical therapy. Recently, the
function of DNA and RNA modifications has been uncovered in kidney tumor. In the present
review, we summarize recent findings about the roles of epigenetic modifications (particularly
DNA and RNA modifications) in the incidence, progression, and metastasis of kidney cancer,
especially the renal cell carcinomas.
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INTRODUCTION

Kidney cancer presents about 2% of all cancers and is the seventh most common cancer worldwide
with 295,000 new cases being diagnosed annually (1). The most prevalent solid tumor of the kidney
in adults is renal cell carcinoma (RCC), which accounts for about 90% of adult kidney cancer (2–4).
RCC is a heterogeneous malignant tumor with more than ten histological subtypes, although it
mainly stems from renal tubular epithelial cells. In addition to the high prevalence of kidney cancer
in adults, this disease can also be diagnosed in children, where the main form is Wilms tumor (5).
Because of the high malignancy rate and the unclear mechanisms of kidney cancer, current
treatments, which include surgery, chemotherapy and radiation, cannot significantly inhibit tumor
progression. In the past few years, targeted therapy has been shown to prolong survival of patients,
but the overall survival rate still remains very low (4).

Epigenetic modifications including histone modifications, DNA and RNA modifications, and
non-coding RNAs regulate gene expression at transcriptional, translational and posttranslational
levels and therefore are involved in human diseases (6). DNA methylation at the 5’ position of
cytosine (5-methylcytosine, 5mC) is an intensively studied type of epigenetic modification, and it
plays a critical role in development and diseases (7). In addition, more than one hundred types of
RNA modifications have been identified on mRNA, tRNA, etc. Among all RNA modifications, N6-
methyladenosine (m6A) is the most common modification in eukaryotic mRNAs (8). RNA
modification has been shown to play important roles in multiple biological processes and in
diseases, as well as in DNA methylation (9). The dysfunction of epigenetic modifications leads to
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global changes in genomic structure and thus affects the
expression of genes involved in cancer progression (10, 11).

During the past decade the important roles of epigenetic
modifications have been revealed in kidney cancer (especially in
RCC). Epigenetic alterations have been suggested as promising
biomarkers for RCC diagnosis and potential therapeutic targets
(3, 4, 11–14). In this review we summarize the landscape of main
epigenetic modifications with a focus on DNA methylation and
RNA methylation. We then discuss the function and underlying
mechanisms of aberrant DNA and RNA modifications in
kidney cancer.
DNA Modifications and Kidney Cancer
Diverse Modifications of DNA
DNA methylation mainly occurs at the fifth carbon atom of
cytosine (5mC) in mammalian DNA and is catalyzed by DNA
methyltransferases (DNMTs), which use S-adenosyl methionine
(SAM) as a methyl group donor. Currently, there are five members
of the DNMT family, which includes DNMT1, DNMT3a, and
DNMT3b. DNMT1 displays a preference for hemi-methylated
DNA at the CpG islands during DNA replication, whereas
DNMT3a and DNMT3b are de novo methyltransferases. DNA
methylation exhibits dynamic features of expression during
embryonic and postnatal development, and the dysregulation of
DNA methylation has been shown to result in changes in gene
expression (15). In general, hypomethylation activates or increases
gene expression, whereas hypermethylation leads to gene silencing
or decreased gene expression (Figure 1).
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For quite some time, 5mC has been considered as a stable
epigenetic marker of DNA that cannot be further modified.
However, in 2009 researchers found that 5mC can be oxidized to
5-hydroxymethylcytosine (5hmC) under the catalysis of ten-eleven-
translocation (TET) family proteins (16–18). The TET family
proteins consist of three members, TET1, TET2, and TET3,
which share common typical characteristics of 2-oxoglutarate
(2OG)- and Fell(II)-dependent dioxygenases (2OGFeDO) (19–
21). TET enzymes can further oxidize 5-hmC to 5-
carboxylcytosine (5caC) and 5-formylcytosine (5fC) (22, 23).
Thymine-DNA glycosylase (TDG) is in charge of recognition and
excision of 5caC and 5fC in mammals (22, 23). Under the catalysis
of activation-induced cytidine deaminase (AID), 5mC can be
transformed to 5-hydroxymethyluracil (5hmU) with a
deamination reaction. In addition, previous studies have
demonstrated that IDH1/2 can catalyze isocitrate to a-KG and
can participate in the regulation of TETs and 5hmC (24). However,
mutant IDH1/2 has been found to catalyze isocitrate to 2-
hydroxyglutarate (2-HG), which is a competitive inhibitor of a-
KG. IDH1/2 also can inhibit the transformation of 5mC to 5hmC by
TETs; therefore, it plays a pivotal role in the regulation of
5hmC (24).

Current findings indicate that 5-hmC modification not only
serves as an intermediate product, but also plays a pivotal role in
development, aging, and diseases. Tissue/cell-specific distribution
features and the content of 5hmC have been observed among
varied tissues and organs. 5hmC is the most abundant in neuronal
cells compared to other types of cells. In addition, 5hmC is mainly
enriched at gene bodies, promoters, and distal regulatory regions
A B

FIGURE 1 | Dynamic modifications in kidney cancer. (A) Dynamic DNA and RNA modifications. DNA methyltransferases (DNMTs) including de novo
methyltransferases DNMT3A, DNMT3B and maintenance methyltransferase DNMT1 convert unmodified cytosine (C) to 5‑methylcytosine (5mC). 5mC can be
converted to 5‑hydroxymethylcytosine (5hmC) by ten-eleven translocation (TET) proteins‑mediated oxidation. TET proteins also catalyze the oxidation of 5hmC to
5‑formylcytosine (5fC) and 5‑carboxylcytosine (5caC). 5fC and 5caC can be further excised by thymine DNA glycosylase (TDG) coupled with base excision repair
(BER) to generate unmodified cytosine. N6-methyladenosine (m6A) in mRNA is installed by methyltransferase-like protein 3 (METTL3) and METTL14, and erased by
fat mass and obesity-associated protein (FTO) and a‑ketoglutarate-dependent dioxygenase alkB homologue 5 (ALKBH5). m6A can be further oxidized to N6-
hydroxymethyladenosine (hm6A) and N6-formyladenosine (f6A) sequentially by FTO. (B) Epigenetic modifications involve in kidney cancer. Epigenetic modifications
regulate diverse signaling pathways including HIF and PI3K-AKT and involve in kidney cancer.
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of the genome. The enrichment of 5hmC at distinct genomic
regions is correlated with gene expression, which can also be
regulated by histone modifications (25). Abnormal distribution
and/or level of 5hmCmodification can induce disease. All of these
findings suggest several important functions for dynamic
DNA modifications.

The Function of DNA Methylation in Kidney Cancer
The aberrant level and distribution of DNA methylation have been
revealed in various types of cancer including liver, colon, lung, and
prostate cancer. These cancers are associated with the severity and
metastatic potential of diseases (26). For example, DNA
hypermethylation in cancer cells may be an alternative
complementary mechanism, which triggers the silence of tumor-
inhibiting genes and consequently results in tumorigenesis and
metastasis (10, 27). In general, the global level of DNA methylation
is decreased, while the acquisition of DNA methylation is observed
at the promoter regions of some specific genes.

In studies of kidney cancer, Chen et al. applied the bisulfite
sequencing method to map 5mC and found that the global level
of 5mC is not changed (28). However, Mendoza-Pérez J et al.
performed the analysis of 899 RCC cases and found that a low
level of genomic DNA methylation (measured as 5mC%) in
peripheral blood could significantly increase the risk of RCC
(29). One possibility for these inconsistent results could be the
ability of the methods used to distinguish DNA methylation
and demethylation.

The Function of DNA Demethylation in
Kidney Cancer
Mounting evidence has demonstrated that 5hmC plays an
important function in a variety of tumors, such as acute
myeloid leukemia, liver cancer, and melanoma (30, 31).
Although the level of global 5mC is not altered, Chen et al.
observed the decreased level of global 5hmC as well as the
hypermethylation at gene body regions in kidney tumors (28).
Their results also suggested that decreased 5hmC is correlated
with the prognosis and survival. It has also been found that
5hmC is closely related with capsule invasion, vein invasion and
clinical progress of RCC (32). RCC patients with high level of
5hmC show increased survival; therefore, 5hmC may serve as an
independent prognostic and progression marker for RCC (32).
Consistently, 5hmC hydroxymethylase TET1 can promote cell
apoptosis and can inhibit cell proliferation and invasion,
therefore inhibiting tumor growth in RCC (33). The inhibited
expression of TET1 reduces 5hmC level at the promoter region
of CCNY/CDK16 and consequently results in cell cycle arrest
and inhibits self-renewal of renal cancer stem cells (34)
(Figure 1).

The oxidation reaction of 5mC to 5hmC requires 2-
ketoglutarate (2-KG) as co-substrates, which is generated by
isocitrate dehydrogenase 1 (IDHs) during the tricarboxylic acid
cycle (TCA). The down-regulated expression of IDH1 in kidney
cancer contributes to the global loss of 5hmC in RCC (28).
Consistently, ectopic expression of IDH1 and pharmacologically
increasing intracellular 2-KG can restore the global levels of
5hmC, and consequently, can inhibit tumor growth (28, 35).
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IDH1 mutation leads to the increase of 2-hydroxyglutarate (2-
HG), and the loss of 5hmC is partly mediated by the decrease 2-
HG dehydrogenase (L2-HGDH), which has tumor inhibitory
effects (36). The loss of L2HGDH is correlated with a worse
prognosis, whereas the restoration of L2HGDH can increase 2-
HG and can promote the accumulation of 5hmC in RCC cells
(37). Ascorbic acid (AA), a cofactor for TET, can enhance the
activities of TET enzymes and can restore the level of genomic
5hmC, thus reversing epigenetic aberrancy (38, 39). These
findings suggest an interplay between DNA demethylation and
metabolites that has an important role in kidney cancer (39, 40).
RNA METHYLATION AND
KIDNEY CANCER

Diverse Modifications of RNA and
Molecular Mechanism of m6A Modification
To date, more than 110 types of RNA modifications have been
identified, such asN1-methyladenosine (m1A),N6-methyladenosine
(m6A), N6-methyl-2′-O-methyladenosine (m6Am), 5-
methylcytosine (m5C), 5-hydroxymethylcytosine (hm5C) in
messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA
(rRNA), long non-coding RNAs (lncRNAs), etc (41). Among these
modifications, m6A is the most abundant internal chemical
modification in eukaryotic mRNA. In mammals, 0.1%–0.4% of
adenosines (~3–5 m6A sites per mRNA) are modified by m6A,
accounting for nearly half of total methylated ribonucleotides (42).
m6A mainly enriches at the 3′ untranslated regions (3′UTRs),
around the termination codons and the internal long exons (43).

m6A modification is mediated by three key elements called
“writers”, “erasers”, and “readers” (44, 45). m6A modification is
mainly catalyzed by the RNA methyltransferase complex (writers),
including methyltransferase-like 3 and 4 (METTL3 and METTL14)
and Wilms’ tumor 1-associated protein (WTAP) (46). METTL3 is
in charge of m6A installation, while METTL14 participates in the
interacting with target mRNA, and WTAP is responsible for the
localization in the nuclear speckle (47). m6A modifications can be
removed by RNA demethylases (erasers), including alkB homolog 5
(ALKBH5) and fat mass and obesity-associated protein (FTO,
alpha-ketoglutarate dependent dioxygenase) (48). Both ALKBH5
and FTO belong to the alpha-ketoglutarate dependent dioxygenase
family, which catalyze m6A demethylation in a Fe(II)-and alpha-
ketoglutarate dependent manner. Similar to ALKBH5, alkB
homolog 3 (ALKBH3) has been shown the demethylase activity
for 1-methyladenine and 5-methylcytosine (49). m6A readers
include the YTH domain family (YTHDF), insulin-like growth
factor 2 mRNA binding protein 2 (IGF2BP), and HNRNPA2B1
(50). YTHDF proteins act as m6A readers, which can maintain the
stability of m6A transcripts (51, 52) (Figure 1).

The dynamic and reversible m6A modification regulates
various aspects of RNAs fate, such as nuclear exit, splicing,
stability, efficiency of translation (41, 53); therefore, this
modification has crucial roles in embryonic development, sex
determination, neurogenesis, stress responses, and tumorigenesis
in mammals (54, 55). Previous studies have shown that the
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dysregulation of m6A was induced, but was not limited to, the
aberrant expression of its writers, erasers and readers. These
result in profound outcomes in multiple biological processes,
such as cell proliferation and fate determination, DNA damage
response, embryogenesis, and heat shock responses, and
therefore are involved in diseases (56–59). In addition,
emerging evidence indicates that m6A modification plays a
significant role in tumorigenesis and progression of a variety of
cancers including breast cancer, gastric cancer, and pancreatic
cancer (49, 55, 60–62).

The Function of m6A in Renal
Cell Carcinoma
Although the function of m6A has been shown in several types of
tumors, the important roles of m6A in RCC are still not
completely known. Recent findings show that the level of
global m6A decreases in RCC compared with adjacent non-
tumor tissues (63), suggesting that the expression of m6A
regulatory genes may be a biomarker for RCC. The protein
level of m6A eraser FTO displays a significant decrease in RCC
compared with normal tissues (64). Lower levels of m6A
modification eraser FTO are usually associated with malignant
prognosis whereas higher levels of FTO are associated with
benign prognosis, suggesting that FTO may serve as a
protective factor in RCC (65). Published findings about the
role of ALKBH5 in RCC are controversial. Both increased and
decreased expression of ALKBH5 in RCC have been reported
(64, 66). In a retrospective study using TCGA database, Zhou
et al. examined the alteration of m6A regulatory genes in clear
cell renal cell carcinoma (ccRCC) and found that these m6A
regulatory genes are significantly correlated with von Hippel-
Lindau (VHL) and TP53, two key suppressors for RCC. This
result suggests a relationship between m6A regulatory genes and
the pathologic stage (63); however, it still lacks solid evidence
about the roles of m6A writers METTL3 and METTL14 in RCC
(Figure 1).

In human RCC t i s sues , mi tochondr ia l enzyme
methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is highly
expressed, and the knockdown of MTHFD2 inhibits cell migration
and invasion (67). High level of MTHFD2 is positively correlated
with RCC grade, clinical stage, progression, and poor prognosis
(68). Interestingly, MTHFD2 knockdown leads to a decrease of
global m6A, and a hypomethylation of HIF-2amRNA increases the
Frontiers in Oncology | www.frontiersin.org 4
translation of HIF-2a (67, 69), which in turn promotes the aerobic
glycolysis (67). These findings establish a connection between m6A
modification and MTHFD2-mediated one-carbon metabolism
in RCC.
CONCLUSIONS

During the past several decades, significant progress has been
made in understanding the function of epigenetic modifications
in kidney cancer. However, the detailed molecular mechanisms
underlying the kidney cancer carcinogenesis are still not
completely known, and it has been challenging to explore the
accurate diagnosis and effective treatment of kidney cancer. First,
the interactions between DNA modifications, RNA
modifications, and histone modifications in regulating gene
expression in kidney cancer need to be determined. How these
interactions cooperate to regulate diverse signaling pathways
involved in kidney cancer requires further clarification. Second,
the precise map of DNA and RNA modifications should be
established in kidney cancer with high-throughput sequencing
technologies. The identification of therapeutic targets relies on
the analysis of high-throughput sequencing data. The therapeutic
implications of epigenetic hallmarks are to be expected in kidney
cancer considering the successful application of these hallmarks
in other types of cancers.
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