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Abstract
Introduction: Large-scale brain networks are disrupted in the early stages of 
Alzheimer's disease (AD). Electroencephalography microstate analysis, a promising 
method for studying brain networks, parses EEG signals into topographies represent-
ing discrete, sequential network activations. Prior studies indicate that patients with 
AD show a pattern of global microstate disorganization. We investigated whether 
any specific microstate changes could be found in patients with AD and mild cogni-
tive impairment (MCI) compared to healthy controls (HC).
Materials and methods: Standard EEGs were obtained from 135 HC, 117 patients 
with MCI, and 117 patients with AD from six Nordic memory clinics. We parsed the 
data into four archetypal microstates.
Results: There was significantly increased duration, occurrence, and coverage of 
microstate A in patients with AD and MCI compared to HC. When looking at micro-
states in specific frequency bands, we found that microstate A was affected in delta 
(1–4 Hz), theta (4–8 Hz), and beta (13–30 Hz), while microstate D was affected only 

www.wileyonlinelibrary.com/journal/brb3
mailto:﻿
https://orcid.org/0000-0002-6442-2910
https://orcid.org/0000-0002-6533-7427
http://creativecommons.org/licenses/by/4.0/
https://publons.com/publon/10.1002/brb3.1630
mailto:christian.sandoee.musaeus@regionh.dk


2 of 15  |     MUSAEUS et al.

1  | INTRODUC TION

Large-scale functional brain networks are altered in patients with 
Alzheimer's disease (AD) (Dickerson & Sperling, 2009), even in a 
very early stage of the disease (Cummings, 2004; Selkoe, 2002). 
Such alterations are considered crucial elements of the neuropatho-
logical cascade characterizing AD (Palop & Mucke, 2016). Multiple 
methods to investigate such brain networks have been proposed, 
the most common being functional magnetic resonance imaging 
(fMRI) (Buckner et al., 2005; Greicius, Srivastava, Srivastava, Reiss, 
& Menon, 2004). However, cortical network dynamics occur at a 
timescale order of magnitude faster than the blood oxygen level-de-
pendent signal used in fMRI. The fine temporal resolution of elec-
troencephalography (EEG) indicates that this method may be better 
suited for studying the fine temporal dynamics of distributed corti-
cal network activity.

One technique for studying distributed brain networks using 
EEG is microstate analysis, which involves dividing the EEG signal 
into a number of distinct states (Lehmann, Ozaki, Ozaki, & Pal, 1987) 
defined by spatial topographies of electric potentials recorded at 
scalp level. Such parcellation in functional states has been shown 
to be reliable over multiple recordings (Khanna, Pascual-Leone, 
Pascual-Leone, & Farzan, 2014) and correlated with cognitive abili-
ties (Santarnecchi et al., 2017). It is suggested that spontaneous EEG 
microstates reflect the activity of resting-state networks (Van de 
Ville, Britz, & Michel, 2010; Yuan, Zotev, Zotev, Phillips, Drevets, & 
Bodurka, 2012), and alterations in the structure and temporal repre-
sentation of microstates have been documented in other diseases, 
such as frontotemporal dementia (Nishida et al., 2013) and schizo-
phrenia (Andreou et al., 2014; Lehmann et al., 2005), underpinning it 
as a potential novel classifier of disease in neurological and psychi-
atric disorders.

The studies investigating the alterations in microstates in pa-
tients with AD (Dierks et al., 1997; Ihl, Dierks, Dierks, Froelich, 
Martin, & Maurer, 1993; Musaeus, Nielsen, Nielsen, & Hogh, 2019; 
Nishida et al., 2013; Stevens & Kircher, 1998; Strik et al., 1997) have 
generated varied and, to some extent, conflicting results. Most stud-
ies of AD and healthy controls (HC) find a shorter average duration 
of microstates in patients with AD (Dierks et al., 1997; Stevens & 

Kircher, 1998; Strik et al., 1997), although some studies report a lon-
ger duration (Ihl et al., 1993; Musaeus, Nielsen, et al., 2019) and one 
study did not find any significant differences (Nishida et al., 2013). 
Although examined inconsistently, the microstate syntax may be 
temporally disorganized in patients with AD (Koenig, Studer, Studer, 
Hubl, Melie, & Strik, 2005; Nishida et al., 2013). The various and con-
flicting findings in previous studies are likely due to methodological 
differences (Dierks et al., 1997; Ihl et al., 1993; Stevens & Kircher, 
1998; Strik et al., 1997) and a low number of study participants. 
Furthermore, in patients with AD, the changes in spectral power 
have previously been shown to be most prominent in the lower fre-
quencies (Musaeus, Engedal, et al., 2018). However, studies have to 
our knowledge not investigated the frequency-specific microstates 
in patients with AD.

In the current study, we employed a standardized, validated ap-
proach to EEG microstate analysis in a large prospectively recruited 
cohort to investigate changes in microstates in patients with AD 
and mild cognitive impairment (MCI) compared to healthy aging. 
Furthermore, we investigated the frequency-specific microstate 
changes in patients with AD. In addition, we sought to determine 
whether microstates could be used as a diagnostic tool for AD and 
MCI using the same type of classification method as previously de-
scribed (Musaeus, Engedal, et al., 2018; Musaeus, Engedal, Hogh, 
et al., 2019). Lastly, we wanted to examine whether microstates cor-
related with clinical scores or cerebrospinal fluid biomarkers.

2  | MATERIAL S AND METHODS

2.1 | Participants

The cohort used in the current study was recruited as part of a vali-
dation study (Engedal et al., 2015). Spectral power and connectivity 
analyses are presented elsewhere (Musaeus, Engedal, et al., 2018; 
Musaeus, Engedal, Hogh, et al., 2019). Participants were recruited 
from six Nordic memory clinics, and each clinic had to include a mini-
mum of 60 patients and 20 HC who were elderly. In most clinics, all 
the included patients (n = 365) were recruited during their first as-
sessment using the following three predefined exclusion criteria: (a) 

in the delta and theta bands. Microstate features were able to separate HC from AD 
with an accuracy of 69.8% and HC from MCI with an accuracy of 58.7%.
Conclusions: Further studies are needed to evaluate whether microstates represent 
a valuable disease classifier. Overall, patients with AD and MCI, as compared to HC, 
show specific microstate alterations, which are limited to specific frequency bands. 
These alterations suggest disruption of large-scale cortical networks in AD and MCI, 
which may be limited to specific frequency bands.
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neurological disorders with dementia other than AD, Parkinson's dis-
ease dementia, and Lewy body dementia; (b) major psychiatric disor-
ders; and (c) alcohol or drug abuse. The HC (n = 146) were recruited 
from among family members of the patients, through advertising, 
or were employees at the recruiting hospitals. All participants gave 
written informed consent to participate in the study. The study was 
approved by the ethic committees from Norway, Sweden, Iceland, 
and Denmark.

The cohort was collected as part of a validation study where pa-
tients with other types of dementias were recruited (Engedal et al., 
2015). In the current study, the following groups were excluded 
from analysis due to the low number of patients: vascular dementia 
(n = 15), Lewy body dementia (n = 10), Parkinson's disease dementia 
(n  = 5), frontotemporal dementia (n  = 4), mixed dementias (n  = 8), 
and mixed AD and vascular dementia (n = 5). In addition, patients 
with subjective cognitive decline (n = 64) were also excluded since 
no follow-up data on progression were available. Since some of the 
EEGs were of poor quality or lost, we had to exclude eight EEGs from 
HC, eight from patients with MCI, and 15 from patients with AD. In 

addition, three HC were excluded due to use of either antidepres-
sants or antipsychotics, since the underlying condition and/or sever-
ity was unknown (see Figure 1). Table 1 presents a full description of 
the final sample.

2.2 | Clinical diagnostic assessment

All patients underwent a clinical diagnostic assessment comprised of 
(a) history from the patient and an informant; (b) physical examina-
tion focusing on neurological and cardiology status; (c) blood tests to 
screen for disorders that could be associated with cognitive impair-
ment, such as B12 vitamin deficiency or low thyroid hormone levels; 
and (d) CT or MRI of the brain to evaluate white matter changes, 
general atrophy, and atrophy of the medial temporal lobes. Some of 
the patients underwent neuropsychological tests covering various 
cognitive domains, and some underwent a lumbar puncture to ex-
amine amyloid beta-42, total tau, and phosphorylated tau protein in 
the cerebrospinal fluid, when indicated (see Table 1). Some patients 

F I G U R E  1  Low diagram of the number of included participants in the current study and of the excluded participants after preprocessing
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were assessed with fluorodeoxyglucose PET or Tc-HMPAO SPECT. 
A previously published paper contains the details of the clinical as-
sessments (Braekhus, Ulstein, Ulstein, Wyller, & Engedal, 2011) out-
lined above.

The clinical diagnoses, which applied the Diagnostic and 
Statistical Manual of Mental Disorders, Fourth Edition, Text 
Revision, and the McKhann criteria, were made at consensus confer-
ences at each memory clinic, or by at least two experienced physi-
cians (McKhann et al., 1984). Winblad criteria were used to diagnose 
MCI (Winblad et al., 2004). All diagnoses were made blinded to the 
EEG results.

All HC were interviewed, and previous and present disorders and 
drug use were recorded. Any individual with a cognitive test score 
one standard deviation below the mean for age on the Mini-Mental 
State Examination (MMSE), the clock-drawing test (CDT), or the 
Consortium to Establish a Registry for Alzheimer's Disease (CERAD) 
score was excluded (see below).

2.3 | Cognitive tests

For each patient, we conducted the MMSE (Engedal, Haugen, 
Haugen, Gilje, & Laake, 1988; Folstein, Folstein, Folstein, & McHugh, 
1975), which is a measure of overall cognitive function consisting 
of 20 items with a minimum score of 0 and a maximum score of 30, 
with lower scores indicating more severe cognitive impairment; the 
clock-drawing test (Shulman, 2000), which is a short screening test 
of cognition and visuospatial function with a minimum score of 0 
and a maximum score of 5, with lower scores indicating poorer func-
tion, and the CERAD ten-word list) (Morris, Mohs, Mohs, Rogers, 
Fillenbaum, & Heyman, 1988), which tests the ability to learn ten 
words with three repetitions (CERAD learning max. score = 30), to re-
call the ten words after ten minutes (CERAD recall max. score = 10), 
and to recognize the ten words among another ten different words 
(CERAD recognition max. score = 20). We used a modified version of 
the Montgomery Åsberg Depression Rating Scale to assess whether 
the patients had any depressive symptoms (Montgomery & Asberg, 

 

HC MCI AD p-value

(n = 135) (n = 117) (n = 117)

AD versus 
MCI versus 
HC

Mean age (SD), years 66.44 (7.64) 70.15 (8.13) 75.49 (7.65) <.001

Sex (female), % 60.7 53 60.7 .377

Education, years (SD) 13.89 (3.61) 11.57 (3.92) 10.07 (3.39) <.001

Antipsychotics 0 1 4  

Antidepressants 0 25 18  

Tranquilizers/
hypnotics

3 12 6  

Antidementia drugs 0 2 18  

Painkillers 4 6 4  

Lumbar punctures 
performed

  38 32  

Amyloid beta 42, 
mean (SD)

  876.16 
(354.92)

516.34 
(114.52)

<.001

Total tau, mean (SD)   420.98 
(230.51)

532.31 
(273.85)

.069

Phosphorylated tau, 
mean (SD)

  63.16 (26.72) 106.33 
(114.52)

.027

MMSE, mean (SD) 28.91 (1.34) 27.11 (2.16) 23.52 (3.79) <.001

Word list memory, 
mean (SD)

20.49 (3.99) 15.25 (4.29) 11.06 (3.83) <.001

Word list recall, 
mean(SD)

7.39 (1.69) 3.66 (2.34) 1.52 (1.64) <.001

Word list recognition, 
mean (SD)

19.47 (1.44) 17.92 (2.01) 15.84 (2.62) <.001

Number of one-
second epochs

113.93 (55.49) 119.64 (48.23) 130.82 (53.14) .038

Abbreviations: AD, Alzheimer's disease; HC, healthy controls; MCI, mild cognitive impairment; 
MMSE, mini-mental state examination; SD, standard deviation. p-values show the differences when 
comparing patients with AD, patients with MCI, and HC.

TA B L E  1   Characteristics of study 
participants
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1979). Each of the ten items was assessed as present or not, yielding 
a minimum score of 0 and a maximum score of 10.

The controls were tested with the MMSE, clock-drawing test, 
and the CERAD ten-word tests (all three parts), while depression 
was rated with the modified Montgomery Åsberg Depression Rating 
Scale in the same way as the patients.

2.4 | EEG recording

The EEGs were recorded using a 19-channel NicoletOne EEG System 
(Natus®). The sampling rate was different between the six sites rang-
ing from 250 to 1,000 Hz. Electrodes were placed according to the 
international 10–20 system of electrode placement (Fp1, Fp2, F7, F3, 
Fz, F4, F8, T3, T5, T4, T6, C3, Cz, C4, P3, Pz, P4, O1, O2). Data were 
recorded using the average reference. Two bipolar electro-oculog-
raphy channels and one electrocardiogram channel were recorded 
to monitor artifacts. The EEGs were recorded, alternating between 
3-min periods each of eyes closed and eyes open, except for one 
center, where only continuous eyes-closed segments were recorded. 
The participants were alerted if they became visibly drowsy.

2.5 | Preprocessing EEG

The data were imported to MATLAB (Mathworks, v2016a) using 
the EEGLAB toolbox (Delorme & Makeig, 2004). The eyes-closed 
segments were selected from the three-minute, eyes-open, and 
eyes-closed periods. If the EEG only contained eyes closed, then 
the segments were selected from the first 10  min of the record-
ing to prevent inclusion of segments with drowsiness or sleep. The 
electrodes were computationally located on the scalp by means of 
the DIPFIT toolbox (Oostenveld, Fries, Fries, Maris, & Schoffelen, 
2011). The auxiliary channels (electrocardiogram and reference 
electrodes) were removed, and the data were bandpass-filtered 
from 1–70 Hz and subsequently band-stop filtered from 45–55 Hz 
using the pop_firws function in EEGLab with a filter order of two. 
The Kaiser window parameter beta was estimated using a maxi-
mum passband ripple of .001. The data were then down-sampled 
to 200  Hz. Next, the data were divided into one-second epochs 
that were visually inspected to remove epochs containing excessive 

noise or artifacts. Channels with excessive noise, drift, or reduced 
connection were rejected and interpolated using spherical interpo-
lation. Recordings with four or more electrodes with excessive ar-
tifacts were excluded from the analysis. Afterward, the data were 
rereferenced to the average reference and independent component 
analysis was performed using the extended infomax algorithm (Lee, 
Girolami, Girolami, & Sejnowski, 1999), extracting up to nineteen 
components based on the data rank. This was done for each file, and 
components containing eye blinks, eye movement, ECG artifacts, or 
specific line-noise artifacts were removed. Finally, the EEGs were 
visually inspected again, and epochs with excessive noise or artifacts 
were removed. The additional step of epoch removal was performed 
to assure that any artifacts, which could not be removed using inde-
pendent component analysis, were removed. The investigator was 
blinded to diagnosis.

2.6 | Microstate analysis

Before performing the microstate analysis using the Microstate 
EEGlab Toolbox, we lowpass-filtered the data at 40  Hz with the 
same settings as mentioned above (Poulsen, Pedroni, Langer, & 
Hansen, 2018). For each subject, we began by extracting the first 
1,000 electric field montages at global field power (GFP) peaks with 
a minimum peak distance of 10 ms. GFP peaks that exceeded two 
times the standard deviation of the GFPs of all maps were excluded. 
To identify topographic clusters within these data, we submitted 
all n × 1,000 electric potential topographies to a modified K-means 
clustering algorithm (Pascual-Marqui, Michel, Michel, & Lehmann, 
1995). Polarity of the EEG topography was ignored (Lehmann, 1971; 
Pascual-Marqui et al., 1995; Wackermann, Lehmann, Lehmann, 
Michel, & Strik, 1993). We chose to predefine the sought number 
of microstates as four to remain consistent with the majority of 
prior studies of EEG microstates (Khanna et al., 2014) and because 
four have been confirmed to generate reproducible maps (Khanna, 
Pascual-Leone, Pascual-Leone, Michel, & Farzan, 2015). The number 
of repetitions was set at 50, while the maximum number of itera-
tions was set at 1,000. To test whether the algorithm was affected 
by local minima issues, we repeated the entire analysis three times 
and found that the main findings can be robustly recovered (see 
Supplementary material, pp. 3–7; Figure S2; and Tables S1–S3). A set 

F I G U R E  2  Global maps calculated based on the aggregated dataset from all participants and back-fitted to each EEG recording. (A) to (D) 
assigned according to previous literature
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of four global maps was generated (see Figure 2) and back-fitted to 
the whole EEG. To reduce noise, we rejected microstate segments 
shorter than 30 ms, which is the default in the toolbox (Poulsen et al., 
2018). This was done to assure that the short segments, which may 
have been due to noise, did not affect the results. After back-fitting 
the global maps, we calculated global explained variance (GEV), du-
ration, occurrence, coverage, and the syntax for EEG files. Here, the 
duration is defined as the average time for each map to be present 
before transitioning to another map. Occurrence is defined as the 
average number of times a microstate occurred during the entire 
EEG. Coverage is defined as the total percent of the EEG for which 
a microstate was accounted for. GEV is defined as the variance of 
EEG activity explained by all four microstates. See Figure 3 for an 
overview of the microstate analysis pipeline.

However, if transitions from one state to the next occurred ran-
domly, observed transition values would be proportional to the rela-
tive occurrence of the microstate classes. To test this, we performed 
syntax analyses based on the same analysis as previously described 
in detail (Lehmann et al., 2005; Nishida et al., 2013). We calculated 
the observed transitions based on all transitions, and then, the ex-
pected transitions based on the occurrence of the microstates for 
each subject separately. Afterward, these values were averaged 
across subjects for each group, and the difference was assessed 
using the chi-square distance. To statistically test the difference, we 
performed a permutation test with 5,000 repetitions and randomly 
assigned the labels “expected” and “observed” to the subjects’ sets 
of twelve transition probabilities, after which the chi-square dis-
tance was computed.

The majority of studies have used four microstates (Michel 
& Koenig, 2018). This type of parcellation of the dataset leaves a 
large part of the GEV unexplained, which is why we repeated the 
analyses described above for three, five, and six microstates (see 
Supplementary material, pp. 8–14).

To investigate whether the microstate changes were located to 
specific frequency bands, we performed microstate calculations 
for the following frequency bands: delta (1–4 Hz), theta (4–8 Hz), 
alpha (8–13 Hz), and beta (13–30 Hz), see Figure 4 for global maps. 

For the delta band, we low-pass filtered the data below 4 Hz, while 
bandpass filtering was performed for the other frequency bands 
using the same filter settings as mentioned above. For the subse-
quent microstate analysis, we performed the same analysis as men-
tioned above.

Finally, we noted that the average age of subjects in the HC co-
hort was less than that of the AD and MCI groups. To explore what 

F I G U R E  3   General schema for EEG microstate analysis. (a) 
The global field power (GFP) of the multichannel EEG signal is 
calculated at each time point. Local maxima of the GFP curve 
represent points of greatest topographic signal-to-noise ratio. 
These points are sampled and re-expressed as a topography of 
electric potentials at each of the n electrodes in the electrode 
array. (b) These topographies are subjected to a modified k-means 
clustering analysis. Each topography is plotted in n-dimensional 
space, and the modified k-means algorithm is applied to partition 
the resulting n-dimensional space into optimal clusters. An arbitrary 
label, A, B, C, and D, is assigned to each cluster. (c) Each topography 
at local maxima of the GFP curve is assigned a label, A, B, C, or D, 
according to the cluster it belongs to. The multichannel EEG signal 
is re-expressed as a sequence of alternating labels. From this data 
re-representation, values such as the average microstate class 
duration, frequency of unique occurrences of microstates, and 
microstate transition probabilities can be calculated
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effect this age difference may have had on microstate results, we 
conducted an additional analysis removing the 18 youngest HC sub-
jects (thereby including 117 participants in each group) and repeated 
the microstate analysis as described above.

2.7 | Statistics

All statistics were performed in MATLAB (vR2016a). To compare 
sex, we performed a chi-square test. For number of one-second ep-
ochs, age, years of education, the MMSE, and the ten-word list of 
the CERAD score and subscores (learning, recognition and recall), we 
performed a one-way ANOVA for the three groups.

When comparing the microstate values, we log-transformed 
the data first due to the non-normal distribution. For comparing 
AD, MCI, and HC, we performed an ANCOVA (Gruner, 2020) using 
age, sex, years of education, and current medications as covariates. 

Current medications were included as binary values for whether the 
person received antipsychotics, antidepressants, hypnotics, antide-
mentia drugs, or painkillers. To correct for multiple comparisons, we 
performed false discovery rate (FDR) correction for 24 comparisons. 
Afterward, we computed post hoc tests using the same covariates 
as described above on the log-transformed data if the group com-
parison was significant after FDR correction using a general linear 
model. The post hoc tests were considered significant at a p < .05. 
The same analyses were performed for the frequency-specific mi-
crostates, and the correction for multiple comparisons was done for 
each frequency band separately.

For correlations, we chose to use the recall score and the learn-
ing score from the CERAD ten-word list since neuropsychological 
studies have demonstrated that learning and recall best discrimi-
nate between HC and AD (Collie & Maruff, 2000; Twamley, Ropacki, 
Ropacki, & Bondi, 2006), with the recall score being the most sen-
sitive in the early phases of AD (Welsh, Butters, Butters, Hughes, 
Mohs, & Heyman, 1991). We performed partial correlation using the 
same covariates as described above between duration, coverage, 
and occurrence (see definition under Microstate analysis) of micro-
state A and the recall and learning scores from the CERAD ten-word 
list, including MMSE, amyloid, total tau, and phosphorylated tau. 
Afterward, we performed FDR correction for all p-values. If the ad-
justed p < .05, it was considered significant.

2.8 | Prediction

The dataset, which consisted of the z-scores of duration, occurrence, 
and coverage for each microstate, as well as analysis of the micro-
state syntax (i.e., frequency of transitions among microstates), was 
compressed using principal component analysis such that 99% of the 
data variance was retained for the subsequent classification analysis. 
For the classification, we used multinomial regression for the three-
class classification of AD, MCI, and HC, implemented using the min-
Func optimization procedure (Schmidt, 2005). Afterward, we used 
logistic regression for the two-class classification, also implemented 
using the MATLAB code for logistic regression, which included HC 
and AD. We quantified the model using leave-one-out cross-valida-
tion. The classification accuracies are reported averaged over the 
number of observations (i.e., subjects) left out one at a time in the 
leave-one-out cross-validation procedure. This procedure was also 
performed using the results from the main analysis (1–40 Hz) and 
the results from the frequency-specific microstates (24 values × 5 
frequency bands). Furthermore, we used the same method using 
multinomial regression for the three-class classification and logis-
tic regression for the two-class classification when removing the 
youngest 18 HC.

In addition, we performed linear discriminant analysis, quadratic 
discriminant analysis, and support vector machine for the three-
class classifications. Here, we did not perform principal component 
analysis when using linear discriminant analysis or support vector 
machine. The support vector machine for the three-class problem 

F I G U R E  4  Global maps from the frequency-specific microstates 
for delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta 
(13–30 Hz). The maps were calculated based on the aggregated 
dataset from all participants and back-fitted to each EEG recording. 
(A) to (D) assigned according to previous literature
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was implemented using the default settings in MATLAB specified 
to use hyperparameter optimization of all parameters as defined in 
the code.

3  | RESULTS

3.1 | Demographics, cognitive tests, and AD 
biomarkers

Table  1 provides a full overview of demographics, cognitive test 
scores, AD biomarkers, and number of 1-s epochs for the three 
groups: AD, MCI, and HC. We found significant difference in both 
age and education for patients with AD and MCI as compared with 
HC (p < .05).

3.2 | Microstate results

There was no significant difference in the total GEV between the 
three diagnostic groups (p = .970, F = 0.031, df = 366), with an aver-
age GEV across groups of 49.51%.

We found a significant difference between AD, MCI, and HC 
for the duration of microstate A, with post hoc test using a gen-
eral linear model showing a significant difference between AD 
and HC (p  =  .002, t-value  =  9.748, df  =  250), and between MCI 
and HC (p  =  .004, t-value  =  8.633, df  =  253). Furthermore, sig-
nificant differences were found between AD, MCI, and HC for 
coverage of microstate A, with a significant difference between 
AD and HC (p  <  .001, t-value = 15.111, df  =  250), and between 
MCI and HC (p =  .003, t-value = 8.985, df = 250). We also found 
a significant difference in occurrence for microstate A, and the 
post hoc t tests showed significant difference between AD and 
HC (p  <  .001, t  =  12.364, df  =  250), and between MCI and HC 
(p = .012, t = 6.466, df = 250), see Table 2.

For the syntax analysis, we found a significant difference be-
tween the transition rate between AD, MCI, and HC from microstate 
D to C (p-valueuncorr = .006, p-valuecorr = .024, F = 5.244, df = 357), D 
to A (p-valueuncorr = .020, p-valuecorr = .002, F = 6.117, df = 357), C to 
A (p-valueuncorr = .005, p-valuecorr = .024, F = 5.419, df = 357), and B 
to A (p-valueuncorr = .012, p-valuecorr = .040, F = 4.500, df = 357), see 
Figure 5. However, no significant differences in the expected and 
observed transition probabilities were found for any of the groups 
(p > .05).

The  microstate results for the comparisons between AD, 
MCI, and HC after removing the youngest 18 HC can be found in 
Supplementary material, pp. 15–16 (Figure S6 for global maps).

3.3 | Frequency-specific microstates

When investigating the frequency-specific microstates, we found 
that both AD, and MCI showed significant increased duration and 

coverage of microstate A and decreased duration and coverage of 
microstate D in the delta band (p < .05). In the theta band, we found 
significantly increased duration of microstate A/B in patients and 
significantly decreased occurrence and coverage in microstate D 
(p < .05). Lastly, we found significantly decreased duration of micro-
state B and decreased occurrence and coverage of microstate A in 
the beta band. No significant differences were found in the alpha 
band. See Figure  4 and Table  3. When examining transitions, we 
found that B is significantly more likely to transition to A in AD as 
compared with both MCI and HC (p = .043, F = 6.233). No significant 
differences in the expected and observed transition probabilities 
were found for any of the groups (p > .05).

3.4 | Correlation

When performing partial correlation analysis adjusting for covari-
ates, we did not find any significant correlation between the features 
of microstate A and the recall and learning scores from the CERAD 
ten-word list, MMSE, amyloid, total tau, or phosphorylated tau when 
correcting for multiple comparisons using FDR. However, the largest 
rho obtained was between coverage of microstate A and recall from 
the CERAD (p = .018, ρ = −0.129). See Figure S1 for scatterplot of the 
correlation between coverage of microstate A and the recall score 
from the CERAD.

3.5 | Prediction

For prediction analysis, we first used multinomial regression be-
tween AD, MCI, and HC and found an accuracy of 40.4% (sensitivi-
tyMCI = 22.2%, sensitivityAD = 38.5%, specificity = 57.8%). Since it 
was not possible for the classifier to distinguish well between MCI 
and the two other groups, we then compared HC and AD, where we 
found an accuracy of 62.7% (sensitivity = 57.3%, specificity = 67.4%) 
and HC and MCI, where we found an accuracy of 55.2% (sensitiv-
ity = 44.4%, specificity = 64.4%).

When applying linear discriminant analysis, we found almost the 
same accuracy between the three groups with an accuracy of 43.6% 
(sensitivityMCI = 32.5%, sensitivityAD = 35.9%, specificity = 60.0%). 
The same pattern was found using quadratic discriminant analysis 
for the three-class classification with an accuracy of 39.8% (sensi-
tivityMCI = 12.8%, sensitivityAD = 49.6%, specificity = 54.8%) and for 
support vector machine we found an accuracy of 41.2% (sensitivi-
tyMCI = 18.8%, sensitivityAD = 29.1%, specificity = 71.1%).

We also performed the multinomial regression using the results 
from the main analysis (1–40 Hz) and the results from the frequen-
cy-specific microstates together. Here, we found an accuracy of 42.0% 
(sensitivityMCI  =  27.4%, sensitivityAD  =  37.6%, specificity  =  58.5%) 
between all three groups. When using logistic regression, we found 
an accuracy of 69.8% (sensitivity = 68.4%, specificity = 71.1%) be-
tween HC and AD, and between HC and MCI, we found an accuracy 
of 58.7% (sensitivity = 52.1%, specificity = 64.4%).
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For the analysis of the groups when removing the 18 youngest 
HC, we found an accuracy of 36.5% (sensitivityMCI  =  22.2%, sen-
sitivityAD  =  36.8%, specificity  =  50.4%). When investigating two 
classes, we found an accuracy of 62.8% (sensitivity = 66.7%, speci-
ficity = 59.0%) between AD and HC and an accuracy of 56.0% (sensi-
tivity = 53.8%, specificity = 58.1%) between MCI and HC.

4  | DISCUSSION

In the current study, we found significantly increased duration, oc-
currence, and coverage of microstate A in patients with AD and MCI 
compared to HC. When examining frequency-specific microstates, 
we found that microstate A was affected in delta (1–4 Hz), theta 

(4–8 Hz), and beta (13–30 Hz), while microstate D was affected only 
in the delta and theta bands. Specific syntax alterations (the fre-
quency of transitions from microstate D, C, and B to microstate A) 
in both patients with AD and MCI compared to HC were found, but 
no significant differences in expected or observed transition prob-
abilities were found. Furthermore, we found a diagnostic accuracy 
between HC and AD of 69.8%. Together, we find that microstate 
features show poor diagnostic accuracy in patients with AD, but we 
find significant changes in microstate A features, which previously 
has been associated with temporal lobe function.

The majority of prior studies found shorter durations of all mi-
crostates in patients suffering from AD (Dierks et al., 1997; Stevens 
& Kircher, 1998; Strik et al., 1997), which has been suggested to in-
dicate a temporal disorganization of global cortical networks in AD 

F I G U R E  5   Significant results for the 
syntax analysis between healthy controls 
(HC), mild cognitive impairment (MCI), 
and Alzheimer's disease (AD). The first 
column is for HC, the second for MCI, and 
the third for AD. The values represent the 
percentage of times when for example 
microstates D transitioned to the other 
microstates. The figure shows that 
microstate B, C, and D were more likely to 
transition to microstate A in patients with 
AD and in patients with MCI
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(Koenig et al., 2005; Nishida et al., 2013). However, these early stud-
ies used adaptive segmentation and did not group the microstates 
into specific classes (Dierks et al., 1997; Ihl et al., 1993; Stevens & 
Kircher, 1998; Strik et al., 1997), which may account for some of the 
differences between the present and earlier findings. A more recent 
study using cluster analysis (Nishida et al., 2013) separating the mi-
crostates into four clusters did not find any significant differences 
between patients with AD and HC but may have been underpow-
ered. Another study using part of the same sample as described here 
found that microstate A was most affected in patients with AD and 
MCI compared to HC (Musaeus, Nielsen, et al., 2019). In the present 
study, overall microstate duration, occurrence, and coverage were 
either increased (microstates A and B) or decreased (microstates 
C and D) in AD and MCI compared to HC, suggesting aberrancy in 
the temporal dynamics of large-scale cortical networks in patients 
with AD and MCI. When comparisons were made by individual mi-
crostate classes, only microstate A was significantly different (see 
Table 2). Furthermore, we also examined the microstates in specific 
frequency bands, which has to our knowledge not been done before 
in patients with AD. Here, we found that microstate A was specifi-
cally altered in delta (1–4 Hz), theta (4–8 Hz), and beta (13–30 Hz), 
while microstate D was affected only in the delta and theta bands 
and microstate B showed decreased duration in the beta band. To 
understand the connection between EEG microstates and the spa-
tial changes, studies have used source localization and found that 
the main sources of microstate A were localized in the left temporal 
lobe (Brechet et al., 2019; Custo et al., 2017). Furthermore, studies 
have also explored the association between microstates and both 
the blood oxygen level-dependent signal and resting-state networks 
measured with fMRI (Britz, Van De Ville, & Michel, 2010; Musso, 
Brinkmeyer, Brinkmeyer, Mobascher, Warbrick, & Winterer, 2010; 
Yuan et al., 2012). One study associated microstate A with activa-
tions in the superior and middle temporal gyri (Britz et al., 2010). In 
patients with AD, other studies have found that the temporal areas, 
and especially the hippocampus, showed decreased activity during 
encoding of new information (Golby et al., 2005; Kato, Knopman, 
Knopman, & Liu, 2001; Machulda et al., 2003). This supports that 
microstate A is associated with areas of the brain that has been 
shown to be affected in patients with AD. This difference in affected 
side has previously been reported in MR studies, which showed that 
atrophy was more pronounced on the left side (Baron et al., 2001; 
Killiany et al., 2000) in patients with AD. Furthermore, the studies 
using source localization showed that microstate A corresponds to 
the left temporal lobe (Brechet et al., 2019; Custo et al., 2017). The 
reason for only finding significant differences in the left side may be 
due unintentional selection bias toward patients referred with lan-
guage affection or evidence that early changes in perfusion as mea-
sured with SPECT in AD are more prominent on the left side (Hogh, 
Madsen Sjo, Madsen Sjo, Gade, & Waldemar, 2004). Alternatively, 
patients with right-hemisphere dominant AD may be more likely to 
lack insight into symptoms, possibly delaying presentation and fur-
ther contributing to referral selection bias. The underlying reason for 
the frequency-specific changes could be associated with the changes TA
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in spectral power. Here, we found that especially the theta band is 
affected in the early stage of the disease (Musaeus, Engedal, et al., 
2018). Due to short EEG recordings, we did not investigate any po-
tential topographical changes. Future studies should include longer 
EEG recordings to investigate whether any topographical changes 
exist. When testing whether there were any differences in expected 
and observed transition probabilities, no significant changes were 
found. Since microstate A is associated with the temporal lobe, the 
changes may be related to the neuropathological findings in AD as 
described by the Braak stages (Braak & Braak, 1991; Thal, Rub, Rub, 
Orantes, & Braak, 2002), which are especially pronounced in the 
temporal lobes in early AD. Furthermore, follow-up studies using 
PiB-PET, which quantifies the beta-amyloid deposition, have found 
that the temporal lobes are one of the first parts of the brain with 
beta-amyloid deposition (Okello et al., 2009; Villemagne et al., 2011). 
Here, we hypothesize that the changes in microstate A may reflect 
the underlying pathological changes in the left temporal lobe.

We also examined whether microstates could be used as a po-
tential classifier of disease and found that microstate features are 
not satisfactory available to distinguish between three groups (AD, 
MCI, and HC), which probably is due to nonsignificant differences 
between AD and MCI. In fact, many patients with MCI may have 
AD at a subclinical dementia stage, which is supported by the notion 
that over 50% of the included patients with MCI progressed (“con-
verted”) to AD within two years follow-up in the Danish substudy 
(Musaeus, Nielsen, Osterbye, & Hogh, 2018). When comparing HC 
with AD, we found a poor classification rate of 69.8%. This rate is 
lower than between AD and HC using EEG spectral power (Musaeus, 
Engedal, et al., 2018) and lower than the discriminatory power of 
EEG connectivity (Musaeus, Engedal, Hogh, et al., 2019). The un-
derlying reason could be that the changes in EEG microstates may 
not be present before later in the disease stages. The EEG segments 
were also too short to obtain four optimal maps if each participant's 
EEG was segmented as previously described (Koenig et al., 1999). 
We suggest that by recording longer EEGs and using segmentation 
for each person individually, it may be possible to increase the diag-
nostic accuracy.

We chose to extract four microstates since they are the most 
commonly reported ones and have been shown to be reliable 
(Khanna et al., 2014). We found that the algorithm was robust, and 
the main findings could be replicated (see Supplementary material, 
pp. 3–7). When looking at three, five, and six microstates, we found 
that patients with AD and MCI had a global affection of microstates, 
but there was a significant affection of microstate A when extract-
ing both three, five, and six microstates. The results suggest that 
changes in microstate A are the hallmark of EEG microstate changes 
in AD. In addition, the accuracy did not differ markedly from the main 
analysis, which may be due to microstate A being the most import-
ant microstate in patients with AD. Furthermore, even though GEV 
was not significantly different between the three groups, it was low 
(average GEV = 49.51%) compared to what other studies have re-
ported (normally reporting a GEV of >70% (Michel & Koenig, 2018)). 
The increase in GEV was minimal when increasing the number of 

microstates, and this difference may be due to the fact that previous 
studies recorded EEGs on younger participants. In the current analy-
sis, we only included the first 534 GFP peaks in the segmentation to 
equalize contributions from longer EEG files and this may also lead 
to a lower GEV. In addition, the low number of GFP peaks also limits 
our ability to investigate topographical differences in maps between 
groups. Furthermore, in the current study we had only 19 channels, 
which is below the number of channels used in recent microstate 
studies (Michel & Koenig, 2018). As a result, future studies should 
include longer EEG recordings to better determine whether any 
topographical changes exist.

4.1 | Limitations of the study and future directions

The current study has some limitations. Cerebrospinal fluid markers 
were available for only 30% of the included patients, which limited 
the statistical power of the correlations between microstate fea-
tures and cerebrospinal fluid markers. The lack of follow-up data in 
the MCI group prevented us from investigating which patients with 
MCI converted to AD, but we hypothesize that most of them would 
ultimately develop AD, as supported the substudy mentioned above 
where 50% of the MCI progressed to AD (Musaeus, Nielsen, et al., 
2018). Demographically, we found that the HC were younger than 
the AD and MCI patients, which impacts microstate features (Koenig 
et al., 2002). When removing the 18 youngest participants in the HC 
and thereby having a total of 117 participants in all three groups, we 
found similar results. A large proportion of AD and MCI patients were 
treated with medications (34.62%) that may have impacted the EEG, 
as seen in patients with schizophrenia (Merrin, Meek, Meek, Floyd, 
& Callaway, 1990). Furthermore, the HC group had a higher level of 
education than both clinical groups, which may also have played in 
assessing memory function. However, we tried to correct for these 
confounders by including age, use of drugs, and educational level as 
covariates when performing ANCOVA. Future studies investigating 
the changes in EEG microstates in patients with AD should strive to 
do longer EEG recordings in an effort to make it possible to extract 
individual maps for each participant. We hypothesize that this will 
increase GEV for each of the participants and may make EEG micro-
states an applicable diagnostic tool since differences between the 
diagnostic groups become clearer. Moreover, there was a significant 
difference in the number of one-second epochs per subject, which 
may have affected our findings. In addition, future studies should 
investigate the relationship between EEG microstates and changes 
in metabolism as measured with FDG-PET in patients with AD.

5  | CONCLUSION

In the present study, we found evidence of EEG microstate changes 
in patients with AD. Specifically, there was a longer duration, 
larger coverage, and higher frequency of occurrence of microstate 
A among AD and MCI patients compared to HC. Furthermore, we 



     |  13 of 15MUSAEUS et al.

found evidence that the microstates were due to microstate changes 
in specific frequency bands. This microstate has previously been as-
sociated with activity in the left temporal lobe using source localiza-
tion and changes in the blood oxygen level-dependent signal in the 
left temporal region, which is strongly affected by amyloid and tau 
pathology in patients with AD. Together, our results show that EEG 
microstate analysis may be a useful tool in examining dynamic net-
work activity and disruption in AD. Future studies should examine 
the relationship between hypometabolism with FDG-PET and the 
microstate features to understand the applicability of EEG micro-
states as a diagnostic tool.
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