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Abstract
Introduction: Large-scale	 brain	 networks	 are	 disrupted	 in	 the	 early	 stages	 of	
Alzheimer's	disease	 (AD).	Electroencephalography	microstate	analysis,	 a	promising	
method for studying brain networks, parses EEG signals into topographies represent-
ing discrete, sequential network activations. Prior studies indicate that patients with 
AD	show	a	pattern	of	global	microstate	disorganization.	We	 investigated	whether	
any	specific	microstate	changes	could	be	found	in	patients	with	AD	and	mild	cogni-
tive	impairment	(MCI)	compared	to	healthy	controls	(HC).
Materials and methods: Standard	EEGs	were	obtained	from	135	HC,	117	patients	
with	MCI,	and	117	patients	with	AD	from	six	Nordic	memory	clinics.	We	parsed	the	
data into four archetypal microstates.
Results: There	 was	 significantly	 increased	 duration,	 occurrence,	 and	 coverage	 of	
microstate	A	in	patients	with	AD	and	MCI	compared	to	HC.	When	looking	at	micro-
states	in	specific	frequency	bands,	we	found	that	microstate	A	was	affected	in	delta	
(1–4	Hz),	theta	(4–8	Hz),	and	beta	(13–30	Hz),	while	microstate	D	was	affected	only	
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1  | INTRODUC TION

Large-scale	 functional	 brain	 networks	 are	 altered	 in	 patients	with	
Alzheimer's	 disease	 (AD)	 (Dickerson	 &	 Sperling,	 2009),	 even	 in	 a	
very early stage of the disease (Cummings, 2004; Selkoe, 2002). 
Such alterations are considered crucial elements of the neuropatho-
logical	cascade	characterizing	AD	(Palop	&	Mucke,	2016).	Multiple	
methods to investigate such brain networks have been proposed, 
the most common being functional magnetic resonance imaging 
(fMRI)	(Buckner	et	al.,	2005;	Greicius,	Srivastava,	Srivastava,	Reiss,	
&	Menon,	 2004).	 However,	 cortical	 network	 dynamics	 occur	 at	 a	
timescale	order	of	magnitude	faster	than	the	blood	oxygen	level-de-
pendent	signal	used	 in	fMRI.	The	fine	temporal	 resolution	of	elec-
troencephalography (EEG) indicates that this method may be better 
suited for studying the fine temporal dynamics of distributed corti-
cal network activity.

One technique for studying distributed brain networks using 
EEG is microstate analysis, which involves dividing the EEG signal 
into	a	number	of	distinct	states	(Lehmann,	Ozaki,	Ozaki,	&	Pal,	1987)	
defined by spatial topographies of electric potentials recorded at 
scalp level. Such parcellation in functional states has been shown 
to	 be	 reliable	 over	 multiple	 recordings	 (Khanna,	 Pascual-Leone,	
Pascual-Leone,	&	Farzan,	2014)	and	correlated	with	cognitive	abili-
ties (Santarnecchi et al., 2017). It is suggested that spontaneous EEG 
microstates	 reflect	 the	 activity	 of	 resting-state	 networks	 (Van	 de	
Ville,	Britz,	&	Michel,	2010;	Yuan,	Zotev,	Zotev,	Phillips,	Drevets,	&	
Bodurka,	2012),	and	alterations	in	the	structure	and	temporal	repre-
sentation of microstates have been documented in other diseases, 
such	as	frontotemporal	dementia	 (Nishida	et	al.,	2013)	and	schizo-
phrenia	(Andreou	et	al.,	2014;	Lehmann	et	al.,	2005),	underpinning	it	
as a potential novel classifier of disease in neurological and psychi-
atric disorders.

The	 studies	 investigating	 the	 alterations	 in	 microstates	 in	 pa-
tients	 with	 AD	 (Dierks	 et	 al.,	 1997;	 Ihl,	 Dierks,	 Dierks,	 Froelich,	
Martin,	&	Maurer,	1993;	Musaeus,	Nielsen,	Nielsen,	&	Hogh,	2019;	
Nishida	et	al.,	2013;	Stevens	&	Kircher,	1998;	Strik	et	al.,	1997)	have	
generated	varied	and,	to	some	extent,	conflicting	results.	Most	stud-
ies	of	AD	and	healthy	controls	(HC)	find	a	shorter	average	duration	
of	microstates	 in	patients	with	AD	 (Dierks	 et	 al.,	 1997;	 Stevens	&	

Kircher, 1998; Strik et al., 1997), although some studies report a lon-
ger	duration	(Ihl	et	al.,	1993;	Musaeus,	Nielsen,	et	al.,	2019)	and	one	
study did not find any significant differences (Nishida et al., 2013). 
Although	 examined	 inconsistently,	 the	 microstate	 syntax	 may	 be	
temporally	disorganized	in	patients	with	AD	(Koenig,	Studer,	Studer,	
Hubl,	Melie,	&	Strik,	2005;	Nishida	et	al.,	2013).	The	various	and	con-
flicting findings in previous studies are likely due to methodological 
differences	 (Dierks	et	al.,	1997;	 Ihl	et	al.,	1993;	Stevens	&	Kircher,	
1998; Strik et al., 1997) and a low number of study participants. 
Furthermore,	 in	 patients	 with	 AD,	 the	 changes	 in	 spectral	 power	
have previously been shown to be most prominent in the lower fre-
quencies	(Musaeus,	Engedal,	et	al.,	2018).	However,	studies	have	to	
our	knowledge	not	investigated	the	frequency-specific	microstates	
in	patients	with	AD.

In	the	current	study,	we	employed	a	standardized,	validated	ap-
proach to EEG microstate analysis in a large prospectively recruited 
cohort	 to	 investigate	 changes	 in	 microstates	 in	 patients	 with	 AD	
and	 mild	 cognitive	 impairment	 (MCI)	 compared	 to	 healthy	 aging.	
Furthermore,	 we	 investigated	 the	 frequency-specific	 microstate	
changes	 in	 patients	with	AD.	 In	 addition,	we	 sought	 to	determine	
whether	microstates	could	be	used	as	a	diagnostic	tool	for	AD	and	
MCI	using	the	same	type	of	classification	method	as	previously	de-
scribed	 (Musaeus,	 Engedal,	 et	 al.,	 2018;	Musaeus,	 Engedal,	Hogh,	
et	al.,	2019).	Lastly,	we	wanted	to	examine	whether	microstates	cor-
related with clinical scores or cerebrospinal fluid biomarkers.

2  | MATERIAL S AND METHODS

2.1 | Participants

The	cohort	used	in	the	current	study	was	recruited	as	part	of	a	vali-
dation study (Engedal et al., 2015). Spectral power and connectivity 
analyses	are	presented	elsewhere	 (Musaeus,	Engedal,	et	al.,	2018;	
Musaeus,	Engedal,	Hogh,	et	al.,	2019).	Participants	were	 recruited	
from	six	Nordic	memory	clinics,	and	each	clinic	had	to	include	a	mini-
mum	of	60	patients	and	20	HC	who	were	elderly.	In	most	clinics,	all	
the included patients (n = 365) were recruited during their first as-
sessment	using	the	following	three	predefined	exclusion	criteria:	(a)	

in	the	delta	and	theta	bands.	Microstate	features	were	able	to	separate	HC	from	AD	
with	an	accuracy	of	69.8%	and	HC	from	MCI	with	an	accuracy	of	58.7%.
Conclusions: Further	studies	are	needed	to	evaluate	whether	microstates	represent	
a	valuable	disease	classifier.	Overall,	patients	with	AD	and	MCI,	as	compared	to	HC,	
show specific microstate alterations, which are limited to specific frequency bands. 
These	alterations	suggest	disruption	of	large-scale	cortical	networks	in	AD	and	MCI,	
which may be limited to specific frequency bands.

K E Y W O R D S

Alzheimer's	disease,	EEG,	microstate,	mild	cognitive	impairment,	network
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neurological	disorders	with	dementia	other	than	AD,	Parkinson's	dis-
ease	dementia,	and	Lewy	body	dementia;	(b)	major	psychiatric	disor-
ders;	and	(c)	alcohol	or	drug	abuse.	The	HC	(n = 146) were recruited 
from among family members of the patients, through advertising, 
or	were	employees	at	the	recruiting	hospitals.	All	participants	gave	
written	informed	consent	to	participate	in	the	study.	The	study	was	
approved by the ethic committees from Norway, Sweden, Iceland, 
and Denmark.

The	cohort	was	collected	as	part	of	a	validation	study	where	pa-
tients with other types of dementias were recruited (Engedal et al., 
2015).	 In	 the	 current	 study,	 the	 following	 groups	 were	 excluded	
from analysis due to the low number of patients: vascular dementia 
(n	=	15),	Lewy	body	dementia	(n	=	10),	Parkinson's	disease	dementia	
(n = 5), frontotemporal dementia (n	 =	4),	mixed	dementias	 (n = 8), 
and	mixed	AD	and	vascular	dementia	 (n = 5). In addition, patients 
with subjective cognitive decline (n	=	64)	were	also	excluded	since	
no	follow-up	data	on	progression	were	available.	Since	some	of	the	
EEGs	were	of	poor	quality	or	lost,	we	had	to	exclude	eight	EEGs	from	
HC,	eight	from	patients	with	MCI,	and	15	from	patients	with	AD.	In	

addition,	three	HC	were	excluded	due	to	use	of	either	antidepres-
sants or antipsychotics, since the underlying condition and/or sever-
ity	was	unknown	(see	Figure	1).	Table	1	presents	a	full	description	of	
the final sample.

2.2 | Clinical diagnostic assessment

All	patients	underwent	a	clinical	diagnostic	assessment	comprised	of	
(a)	history	from	the	patient	and	an	informant;	(b)	physical	examina-
tion focusing on neurological and cardiology status; (c) blood tests to 
screen for disorders that could be associated with cognitive impair-
ment,	such	as	B12	vitamin	deficiency	or	low	thyroid	hormone	levels;	
and	 (d)	CT	or	MRI	of	 the	brain	 to	 evaluate	white	matter	 changes,	
general atrophy, and atrophy of the medial temporal lobes. Some of 
the patients underwent neuropsychological tests covering various 
cognitive	domains,	and	some	underwent	a	 lumbar	puncture	 to	ex-
amine	amyloid	beta-42,	total	tau,	and	phosphorylated	tau	protein	in	
the	cerebrospinal	fluid,	when	indicated	(see	Table	1).	Some	patients	

F I G U R E  1  Low	diagram	of	the	number	of	included	participants	in	the	current	study	and	of	the	excluded	participants	after	preprocessing
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were	assessed	with	fluorodeoxyglucose	PET	or	Tc-HMPAO	SPECT.	
A	previously	published	paper	contains	the	details	of	the	clinical	as-
sessments	(Braekhus,	Ulstein,	Ulstein,	Wyller,	&	Engedal,	2011)	out-
lined above.

The	 clinical	 diagnoses,	 which	 applied	 the	 Diagnostic	 and	
Statistical	 Manual	 of	 Mental	 Disorders,	 Fourth	 Edition,	 Text	
Revision,	and	the	McKhann	criteria,	were	made	at	consensus	confer-
ences	at	each	memory	clinic,	or	by	at	least	two	experienced	physi-
cians	(McKhann	et	al.,	1984).	Winblad	criteria	were	used	to	diagnose	
MCI	(Winblad	et	al.,	2004).	All	diagnoses	were	made	blinded	to	the	
EEG results.

All	HC	were	interviewed,	and	previous	and	present	disorders	and	
drug	use	were	recorded.	Any	individual	with	a	cognitive	test	score	
one	standard	deviation	below	the	mean	for	age	on	the	Mini-Mental	
State	 Examination	 (MMSE),	 the	 clock-drawing	 test	 (CDT),	 or	 the	
Consortium	to	Establish	a	Registry	for	Alzheimer's	Disease	(CERAD)	
score	was	excluded	(see	below).

2.3 | Cognitive tests

For	 each	 patient,	 we	 conducted	 the	 MMSE	 (Engedal,	 Haugen,	
Haugen,	Gilje,	&	Laake,	1988;	Folstein,	Folstein,	Folstein,	&	McHugh,	
1975), which is a measure of overall cognitive function consisting 
of	20	items	with	a	minimum	score	of	0	and	a	maximum	score	of	30,	
with lower scores indicating more severe cognitive impairment; the 
clock-drawing	test	(Shulman,	2000),	which	is	a	short	screening	test	
of cognition and visuospatial function with a minimum score of 0 
and	a	maximum	score	of	5,	with	lower	scores	indicating	poorer	func-
tion,	 and	 the	 CERAD	 ten-word	 list)	 (Morris,	Mohs,	Mohs,	 Rogers,	
Fillenbaum,	&	Heyman,	 1988),	which	 tests	 the	 ability	 to	 learn	 ten	
words	with	three	repetitions	(CERAD	learning	max.	score	=	30),	to	re-
call	the	ten	words	after	ten	minutes	(CERAD	recall	max.	score	=	10),	
and	to	recognize	the	ten	words	among	another	ten	different	words	
(CERAD	recognition	max.	score	=	20).	We	used	a	modified	version	of	
the	Montgomery	Åsberg	Depression	Rating	Scale	to	assess	whether	
the	patients	had	any	depressive	symptoms	(Montgomery	&	Asberg,	

 

HC MCI AD p-value

(n = 135) (n = 117) (n = 117)

AD versus 
MCI versus 
HC

Mean	age	(SD), years 66.44 (7.64) 70.15 (8.13) 75.49 (7.65) <.001

Sex	(female),	% 60.7 53 60.7 .377

Education, years (SD) 13.89 (3.61) 11.57 (3.92) 10.07 (3.39) <.001

Antipsychotics 0 1 4  

Antidepressants 0 25 18  

Tranquilizers/
hypnotics

3 12 6  

Antidementia	drugs 0 2 18  

Painkillers 4 6 4  

Lumbar	punctures	
performed

 38 32  

Amyloid	beta	42,	
mean (SD)

 876.16 
(354.92)

516.34 
(114.52)

<.001

Total	tau,	mean	(SD)  420.98 
(230.51)

532.31 
(273.85)

.069

Phosphorylated tau, 
mean (SD)

 63.16 (26.72) 106.33 
(114.52)

.027

MMSE,	mean	(SD) 28.91 (1.34) 27.11 (2.16) 23.52 (3.79) <.001

Word list memory, 
mean (SD)

20.49 (3.99) 15.25 (4.29) 11.06 (3.83) <.001

Word list recall, 
mean(SD)

7.39 (1.69) 3.66 (2.34) 1.52 (1.64) <.001

Word list recognition, 
mean (SD)

19.47 (1.44) 17.92 (2.01) 15.84 (2.62) <.001

Number	of	one-
second epochs

113.93 (55.49) 119.64 (48.23) 130.82 (53.14) .038

Abbreviations:	AD,	Alzheimer's	disease;	HC,	healthy	controls;	MCI,	mild	cognitive	impairment;	
MMSE,	mini-mental	state	examination;	SD, standard deviation. p-values	show	the	differences	when	
comparing	patients	with	AD,	patients	with	MCI,	and	HC.

TA B L E  1   Characteristics of study 
participants
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1979). Each of the ten items was assessed as present or not, yielding 
a	minimum	score	of	0	and	a	maximum	score	of	10.

The	 controls	were	 tested	with	 the	MMSE,	 clock-drawing	 test,	
and	 the	 CERAD	 ten-word	 tests	 (all	 three	 parts),	 while	 depression	
was	rated	with	the	modified	Montgomery	Åsberg	Depression	Rating	
Scale in the same way as the patients.

2.4 | EEG recording

The	EEGs	were	recorded	using	a	19-channel	NicoletOne	EEG	System	
(Natus®).	The	sampling	rate	was	different	between	the	six	sites	rang-
ing	from	250	to	1,000	Hz.	Electrodes	were	placed	according	to	the	
international	10–20	system	of	electrode	placement	(Fp1,	Fp2,	F7,	F3,	
Fz,	F4,	F8,	T3,	T5,	T4,	T6,	C3,	Cz,	C4,	P3,	Pz,	P4,	O1,	O2).	Data	were	
recorded	using	the	average	reference.	Two	bipolar	electro-oculog-
raphy channels and one electrocardiogram channel were recorded 
to	monitor	artifacts.	The	EEGs	were	recorded,	alternating	between	
3-min	periods	 each	of	 eyes	 closed	 and	eyes	open,	 except	 for	 one	
center,	where	only	continuous	eyes-closed	segments	were	recorded.	
The	participants	were	alerted	if	they	became	visibly	drowsy.

2.5 | Preprocessing EEG

The	 data	 were	 imported	 to	 MATLAB	 (Mathworks,	 v2016a)	 using	
the	 EEGLAB	 toolbox	 (Delorme	&	Makeig,	 2004).	 The	 eyes-closed	
segments	 were	 selected	 from	 the	 three-minute,	 eyes-open,	 and	
eyes-closed	 periods.	 If	 the	 EEG	 only	 contained	 eyes	 closed,	 then	
the segments were selected from the first 10 min of the record-
ing	to	prevent	inclusion	of	segments	with	drowsiness	or	sleep.	The	
electrodes were computationally located on the scalp by means of 
the	DIPFIT	 toolbox	 (Oostenveld,	 Fries,	 Fries,	Maris,	 &	 Schoffelen,	
2011).	 The	 auxiliary	 channels	 (electrocardiogram	 and	 reference	
electrodes)	 were	 removed,	 and	 the	 data	 were	 bandpass-filtered	
from	1–70	Hz	and	subsequently	band-stop	filtered	from	45–55	Hz	
using the pop_firws	 function	 in	EEGLab	with	 a	 filter	 order	of	 two.	
The	 Kaiser	 window	 parameter	 beta	 was	 estimated	 using	 a	 maxi-
mum	passband	 ripple	 of	 .001.	 The	data	were	 then	down-sampled	
to	 200	 Hz.	 Next,	 the	 data	 were	 divided	 into	 one-second	 epochs	
that	were	visually	inspected	to	remove	epochs	containing	excessive	

noise	or	artifacts.	Channels	with	excessive	noise,	drift,	or	reduced	
connection were rejected and interpolated using spherical interpo-
lation.	Recordings	with	 four	or	more	electrodes	with	excessive	ar-
tifacts	were	excluded	from	the	analysis.	Afterward,	 the	data	were	
rereferenced to the average reference and independent component 
analysis	was	performed	using	the	extended	infomax	algorithm	(Lee,	
Girolami,	 Girolami,	 &	 Sejnowski,	 1999),	 extracting	 up	 to	 nineteen	
components	based	on	the	data	rank.	This	was	done	for	each	file,	and	
components containing eye blinks, eye movement, ECG artifacts, or 
specific	 line-noise	 artifacts	were	 removed.	 Finally,	 the	 EEGs	were	
visually	inspected	again,	and	epochs	with	excessive	noise	or	artifacts	
were	removed.	The	additional	step	of	epoch	removal	was	performed	
to assure that any artifacts, which could not be removed using inde-
pendent	component	analysis,	were	 removed.	The	 investigator	was	
blinded to diagnosis.

2.6 | Microstate analysis

Before	 performing	 the	 microstate	 analysis	 using	 the	 Microstate	
EEGlab	 Toolbox,	 we	 lowpass-filtered	 the	 data	 at	 40	 Hz	 with	 the	
same	 settings	 as	 mentioned	 above	 (Poulsen,	 Pedroni,	 Langer,	 &	
Hansen,	2018).	For	each	subject,	we	began	by	extracting	 the	 first	
1,000	electric	field	montages	at	global	field	power	(GFP)	peaks	with	
a	minimum	peak	distance	of	10	ms.	GFP	peaks	that	exceeded	two	
times	the	standard	deviation	of	the	GFPs	of	all	maps	were	excluded.	
To	 identify	 topographic	 clusters	 within	 these	 data,	 we	 submitted	
all n	×	1,000	electric	potential	topographies	to	a	modified	K-means	
clustering	 algorithm	 (Pascual-Marqui,	Michel,	Michel,	 &	 Lehmann,	
1995).	Polarity	of	the	EEG	topography	was	ignored	(Lehmann,	1971;	
Pascual-Marqui	 et	 al.,	 1995;	 Wackermann,	 Lehmann,	 Lehmann,	
Michel,	&	Strik,	1993).	We	chose	 to	predefine	 the	 sought	number	
of microstates as four to remain consistent with the majority of 
prior studies of EEG microstates (Khanna et al., 2014) and because 
four have been confirmed to generate reproducible maps (Khanna, 
Pascual-Leone,	Pascual-Leone,	Michel,	&	Farzan,	2015).	The	number	
of	 repetitions	was	 set	at	50,	while	 the	maximum	number	of	 itera-
tions	was	set	at	1,000.	To	test	whether	the	algorithm	was	affected	
by local minima issues, we repeated the entire analysis three times 
and found that the main findings can be robustly recovered (see 
Supplementary	material,	pp.	3–7;	Figure	S2;	and	Tables	S1–S3).	A	set	

F I G U R E  2  Global	maps	calculated	based	on	the	aggregated	dataset	from	all	participants	and	back-fitted	to	each	EEG	recording.	(A)	to	(D)	
assigned according to previous literature
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of	four	global	maps	was	generated	(see	Figure	2)	and	back-fitted	to	
the	whole	EEG.	To	reduce	noise,	we	rejected	microstate	segments	
shorter	than	30	ms,	which	is	the	default	in	the	toolbox	(Poulsen	et	al.,	
2018).	This	was	done	to	assure	that	the	short	segments,	which	may	
have	been	due	to	noise,	did	not	affect	the	results.	After	back-fitting	
the	global	maps,	we	calculated	global	explained	variance	(GEV),	du-
ration,	occurrence,	coverage,	and	the	syntax	for	EEG	files.	Here,	the	
duration is defined as the average time for each map to be present 
before transitioning to another map. Occurrence is defined as the 
average number of times a microstate occurred during the entire 
EEG. Coverage is defined as the total percent of the EEG for which 
a	microstate	was	accounted	for.	GEV	 is	defined	as	the	variance	of	
EEG	activity	explained	by	all	 four	microstates.	See	Figure	3	for	an	
overview of the microstate analysis pipeline.

However,	if	transitions	from	one	state	to	the	next	occurred	ran-
domly, observed transition values would be proportional to the rela-
tive	occurrence	of	the	microstate	classes.	To	test	this,	we	performed	
syntax	analyses	based	on	the	same	analysis	as	previously	described	
in	detail	(Lehmann	et	al.,	2005;	Nishida	et	al.,	2013).	We	calculated	
the	observed	transitions	based	on	all	transitions,	and	then,	the	ex-
pected transitions based on the occurrence of the microstates for 
each	 subject	 separately.	 Afterward,	 these	 values	 were	 averaged	
across subjects for each group, and the difference was assessed 
using	the	chi-square	distance.	To	statistically	test	the	difference,	we	
performed a permutation test with 5,000 repetitions and randomly 
assigned	the	labels	“expected”	and	“observed”	to	the	subjects’	sets	
of	 twelve	 transition	 probabilities,	 after	 which	 the	 chi-square	 dis-
tance was computed.

The	 majority	 of	 studies	 have	 used	 four	 microstates	 (Michel	
&	Koenig,	 2018).	 This	 type	of	 parcellation	 of	 the	 dataset	 leaves	 a	
large	part	of	 the	GEV	unexplained,	which	 is	why	we	 repeated	 the	
analyses	 described	 above	 for	 three,	 five,	 and	 six	microstates	 (see	
Supplementary material, pp. 8–14).

To	investigate	whether	the	microstate	changes	were	located	to	
specific frequency bands, we performed microstate calculations 
for	the	following	frequency	bands:	delta	(1–4	Hz),	theta	(4–8	Hz),	
alpha	(8–13	Hz),	and	beta	(13–30	Hz),	see	Figure	4	for	global	maps.	

For	the	delta	band,	we	low-pass	filtered	the	data	below	4	Hz,	while	
bandpass filtering was performed for the other frequency bands 
using	the	same	filter	settings	as	mentioned	above.	For	the	subse-
quent microstate analysis, we performed the same analysis as men-
tioned above.

Finally,	we	noted	that	the	average	age	of	subjects	in	the	HC	co-
hort	was	less	than	that	of	the	AD	and	MCI	groups.	To	explore	what	

F I G U R E  3   General schema for EEG microstate analysis. (a) 
The	global	field	power	(GFP)	of	the	multichannel	EEG	signal	is	
calculated	at	each	time	point.	Local	maxima	of	the	GFP	curve	
represent	points	of	greatest	topographic	signal-to-noise	ratio.	
These	points	are	sampled	and	re-expressed	as	a	topography	of	
electric potentials at each of the n electrodes in the electrode 
array.	(b)	These	topographies	are	subjected	to	a	modified	k-means	
clustering	analysis.	Each	topography	is	plotted	in	n-dimensional	
space,	and	the	modified	k-means	algorithm	is	applied	to	partition	
the	resulting	n-dimensional	space	into	optimal	clusters.	An	arbitrary	
label,	A,	B,	C,	and	D,	is	assigned	to	each	cluster.	(c)	Each	topography	
at	local	maxima	of	the	GFP	curve	is	assigned	a	label,	A,	B,	C,	or	D,	
according	to	the	cluster	it	belongs	to.	The	multichannel	EEG	signal	
is	re-expressed	as	a	sequence	of	alternating	labels.	From	this	data	
re-representation,	values	such	as	the	average	microstate	class	
duration, frequency of unique occurrences of microstates, and 
microstate transition probabilities can be calculated
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effect this age difference may have had on microstate results, we 
conducted	an	additional	analysis	removing	the	18	youngest	HC	sub-
jects (thereby including 117 participants in each group) and repeated 
the microstate analysis as described above.

2.7 | Statistics

All	 statistics	 were	 performed	 in	MATLAB	 (vR2016a).	 To	 compare	
sex,	we	performed	a	chi-square	test.	For	number	of	one-second	ep-
ochs,	age,	years	of	education,	 the	MMSE,	and	the	ten-word	 list	of	
the	CERAD	score	and	subscores	(learning,	recognition	and	recall),	we	
performed	a	one-way	ANOVA	for	the	three	groups.

When	 comparing	 the	 microstate	 values,	 we	 log-transformed	
the	 data	 first	 due	 to	 the	 non-normal	 distribution.	 For	 comparing	
AD,	MCI,	and	HC,	we	performed	an	ANCOVA	(Gruner,	2020)	using	
age,	sex,	years	of	education,	and	current	medications	as	covariates.	

Current medications were included as binary values for whether the 
person received antipsychotics, antidepressants, hypnotics, antide-
mentia	drugs,	or	painkillers.	To	correct	for	multiple	comparisons,	we	
performed	false	discovery	rate	(FDR)	correction	for	24	comparisons.	
Afterward,	we	computed	post	hoc	tests	using	the	same	covariates	
as	described	above	on	the	 log-transformed	data	 if	 the	group	com-
parison	was	significant	after	FDR	correction	using	a	general	 linear	
model.	The	post	hoc	tests	were	considered	significant	at	a	p < .05. 
The	same	analyses	were	performed	for	 the	frequency-specific	mi-
crostates, and the correction for multiple comparisons was done for 
each frequency band separately.

For	correlations,	we	chose	to	use	the	recall	score	and	the	learn-
ing	 score	 from	 the	CERAD	 ten-word	 list	 since	neuropsychological	
studies have demonstrated that learning and recall best discrimi-
nate	between	HC	and	AD	(Collie	&	Maruff,	2000;	Twamley,	Ropacki,	
Ropacki,	&	Bondi,	2006),	with	the	recall	score	being	the	most	sen-
sitive	 in	 the	early	phases	of	AD	 (Welsh,	Butters,	Butters,	Hughes,	
Mohs,	&	Heyman,	1991).	We	performed	partial	correlation	using	the	
same covariates as described above between duration, coverage, 
and occurrence (see definition under Microstate analysis) of micro-
state	A	and	the	recall	and	learning	scores	from	the	CERAD	ten-word	
list,	 including	MMSE,	 amyloid,	 total	 tau,	 and	 phosphorylated	 tau.	
Afterward,	we	performed	FDR	correction	for	all	p-values.	If	the	ad-
justed p < .05, it was considered significant.

2.8 | Prediction

The	dataset,	which	consisted	of	the	z-scores	of	duration,	occurrence,	
and coverage for each microstate, as well as analysis of the micro-
state	syntax	(i.e.,	frequency	of	transitions	among	microstates),	was	
compressed using principal component analysis such that 99% of the 
data variance was retained for the subsequent classification analysis. 
For	the	classification,	we	used	multinomial	regression	for	the	three-
class	classification	of	AD,	MCI,	and	HC,	implemented	using	the	min-
Func	optimization	procedure	 (Schmidt,	2005).	Afterward,	we	used	
logistic	regression	for	the	two-class	classification,	also	implemented	
using	the	MATLAB	code	for	logistic	regression,	which	included	HC	
and	AD.	We	quantified	the	model	using	leave-one-out	cross-valida-
tion.	 The	 classification	 accuracies	 are	 reported	 averaged	 over	 the	
number of observations (i.e., subjects) left out one at a time in the 
leave-one-out	cross-validation	procedure.	This	procedure	was	also	
performed	using	 the	 results	 from	 the	main	analysis	 (1–40	Hz)	and	
the	results	 from	the	frequency-specific	microstates	 (24	values	×	5	
frequency	 bands).	 Furthermore,	 we	 used	 the	 same	 method	 using	
multinomial	 regression	 for	 the	 three-class	 classification	 and	 logis-
tic	 regression	 for	 the	 two-class	 classification	 when	 removing	 the	
youngest	18	HC.

In addition, we performed linear discriminant analysis, quadratic 
discriminant	 analysis,	 and	 support	 vector	 machine	 for	 the	 three-
class	classifications.	Here,	we	did	not	perform	principal	component	
analysis when using linear discriminant analysis or support vector 
machine.	The	 support	vector	machine	 for	 the	 three-class	problem	

F I G U R E  4  Global	maps	from	the	frequency-specific	microstates	
for	delta	(1–4	Hz),	theta	(4–8	Hz),	alpha	(8–13	Hz),	and	beta	
(13–30	Hz).	The	maps	were	calculated	based	on	the	aggregated	
dataset	from	all	participants	and	back-fitted	to	each	EEG	recording.	
(A)	to	(D)	assigned	according	to	previous	literature
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was	 implemented	 using	 the	 default	 settings	 in	MATLAB	 specified	
to	use	hyperparameter	optimization	of	all	parameters	as	defined	in	
the code.

3  | RESULTS

3.1 | Demographics, cognitive tests, and AD 
biomarkers

Table	 1	 provides	 a	 full	 overview	 of	 demographics,	 cognitive	 test	
scores,	 AD	 biomarkers,	 and	 number	 of	 1-s	 epochs	 for	 the	 three	
groups:	AD,	MCI,	and	HC.	We	found	significant	difference	 in	both	
age	and	education	for	patients	with	AD	and	MCI	as	compared	with	
HC	(p < .05).

3.2 | Microstate results

There	was	no	 significant	difference	 in	 the	 total	GEV	between	 the	
three diagnostic groups (p = .970, F = 0.031, df = 366), with an aver-
age	GEV	across	groups	of	49.51%.

We	found	a	significant	difference	between	AD,	MCI,	and	HC	
for	the	duration	of	microstate	A,	with	post	hoc	test	using	a	gen-
eral	 linear	 model	 showing	 a	 significant	 difference	 between	 AD	
and	HC	 (p = .002, t-value	 =	 9.748,	df	 =	 250),	 and	 between	MCI	
and	HC	 (p = .004, t-value	 =	 8.633,	 df	 =	 253).	 Furthermore,	 sig-
nificant	 differences	 were	 found	 between	 AD,	 MCI,	 and	 HC	 for	
coverage	 of	microstate	A,	with	 a	 significant	 difference	 between	
AD	and	HC	 (p < .001, t-value	=	15.111,	df = 250), and between 
MCI	and	HC	(p = .003, t-value	=	8.985,	df = 250). We also found 
a	 significant	 difference	 in	 occurrence	 for	microstate	 A,	 and	 the	
post hoc t	 tests	 showed	 significant	 difference	 between	AD	 and	
HC	 (p < .001, t = 12.364, df	 =	 250),	 and	 between	MCI	 and	HC	
(p = .012, t = 6.466, df	=	250),	see	Table	2.

For	 the	 syntax	 analysis,	 we	 found	 a	 significant	 difference	 be-
tween	the	transition	rate	between	AD,	MCI,	and	HC	from	microstate	
D to C (p-valueuncorr = .006, p-valuecorr = .024, F = 5.244, df = 357), D 
to	A	(p-valueuncorr = .020, p-valuecorr = .002, F = 6.117, df = 357), C to 
A	(p-valueuncorr = .005, p-valuecorr = .024, F = 5.419, df	=	357),	and	B	
to	A	(p-valueuncorr = .012, p-valuecorr = .040, F = 4.500, df = 357), see 
Figure	5.	However,	 no	 significant	differences	 in	 the	expected	 and	
observed transition probabilities were found for any of the groups 
(p > .05).

The	 microstate	 results	 for	 the	 comparisons	 between	 AD,	
MCI,	and	HC	after	 removing	 the	youngest	18	HC	can	be	 found	 in	
Supplementary	material,	pp.	15–16	(Figure	S6	for	global	maps).

3.3 | Frequency-specific microstates

When	 investigating	 the	 frequency-specific	 microstates,	 we	 found	
that	both	AD,	and	MCI	 showed	significant	 increased	duration	and	

coverage	of	microstate	A	and	decreased	duration	and	coverage	of	
microstate D in the delta band (p < .05). In the theta band, we found 
significantly	 increased	 duration	 of	microstate	A/B	 in	 patients	 and	
significantly decreased occurrence and coverage in microstate D 
(p	<	.05).	Lastly,	we	found	significantly	decreased	duration	of	micro-
state	B	and	decreased	occurrence	and	coverage	of	microstate	A	in	
the beta band. No significant differences were found in the alpha 
band.	 See	 Figure	 4	 and	 Table	 3.	When	 examining	 transitions,	 we	
found	that	B	is	significantly	more	likely	to	transition	to	A	in	AD	as	
compared	with	both	MCI	and	HC	(p = .043, F = 6.233). No significant 
differences	 in	 the	 expected	 and	 observed	 transition	 probabilities	
were found for any of the groups (p > .05).

3.4 | Correlation

When performing partial correlation analysis adjusting for covari-
ates, we did not find any significant correlation between the features 
of	microstate	A	and	the	recall	and	learning	scores	from	the	CERAD	
ten-word	list,	MMSE,	amyloid,	total	tau,	or	phosphorylated	tau	when	
correcting	for	multiple	comparisons	using	FDR.	However,	the	largest	
rho	obtained	was	between	coverage	of	microstate	A	and	recall	from	
the	CERAD	(p = .018, ρ	=	−0.129).	See	Figure	S1	for	scatterplot	of	the	
correlation	between	coverage	of	microstate	A	and	the	recall	score	
from	the	CERAD.

3.5 | Prediction

For	 prediction	 analysis,	 we	 first	 used	 multinomial	 regression	 be-
tween	AD,	MCI,	and	HC	and	found	an	accuracy	of	40.4%	(sensitivi-
tyMCI = 22.2%, sensitivityAD = 38.5%, specificity = 57.8%). Since it 
was	not	possible	for	the	classifier	to	distinguish	well	between	MCI	
and	the	two	other	groups,	we	then	compared	HC	and	AD,	where	we	
found an accuracy of 62.7% (sensitivity = 57.3%, specificity = 67.4%) 
and	HC	and	MCI,	where	we	found	an	accuracy	of	55.2%	(sensitiv-
ity = 44.4%, specificity = 64.4%).

When applying linear discriminant analysis, we found almost the 
same accuracy between the three groups with an accuracy of 43.6% 
(sensitivityMCI = 32.5%, sensitivityAD = 35.9%, specificity = 60.0%). 
The	same	pattern	was	 found	using	quadratic	discriminant	analysis	
for	 the	 three-class	classification	with	an	accuracy	of	39.8%	 (sensi-
tivityMCI = 12.8%, sensitivityAD = 49.6%, specificity = 54.8%) and for 
support vector machine we found an accuracy of 41.2% (sensitivi-
tyMCI = 18.8%, sensitivityAD = 29.1%, specificity = 71.1%).

We also performed the multinomial regression using the results 
from	the	main	analysis	(1–40	Hz)	and	the	results	from	the	frequen-
cy-specific	microstates	together.	Here,	we	found	an	accuracy	of	42.0%	
(sensitivityMCI = 27.4%, sensitivityAD = 37.6%, specificity = 58.5%) 
between all three groups. When using logistic regression, we found 
an accuracy of 69.8% (sensitivity = 68.4%, specificity = 71.1%) be-
tween	HC	and	AD,	and	between	HC	and	MCI,	we	found	an	accuracy	
of 58.7% (sensitivity = 52.1%, specificity = 64.4%).
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For	the	analysis	of	the	groups	when	removing	the	18	youngest	
HC,	we	 found	 an	 accuracy	 of	 36.5%	 (sensitivityMCI = 22.2%, sen-
sitivityAD = 36.8%, specificity = 50.4%). When investigating two 
classes, we found an accuracy of 62.8% (sensitivity = 66.7%, speci-
ficity	=	59.0%)	between	AD	and	HC	and	an	accuracy	of	56.0%	(sensi-
tivity	=	53.8%,	specificity	=	58.1%)	between	MCI	and	HC.

4  | DISCUSSION

In the current study, we found significantly increased duration, oc-
currence,	and	coverage	of	microstate	A	in	patients	with	AD	and	MCI	
compared	to	HC.	When	examining	frequency-specific	microstates,	
we	 found	 that	microstate	 A	was	 affected	 in	 delta	 (1–4	Hz),	 theta	

(4–8	Hz),	and	beta	(13–30	Hz),	while	microstate	D	was	affected	only	
in	 the	 delta	 and	 theta	 bands.	 Specific	 syntax	 alterations	 (the	 fre-
quency	of	transitions	from	microstate	D,	C,	and	B	to	microstate	A)	
in	both	patients	with	AD	and	MCI	compared	to	HC	were	found,	but	
no	significant	differences	in	expected	or	observed	transition	prob-
abilities	were	found.	Furthermore,	we	found	a	diagnostic	accuracy	
between	HC	 and	AD	of	 69.8%.	 Together,	we	 find	 that	microstate	
features	show	poor	diagnostic	accuracy	in	patients	with	AD,	but	we	
find	significant	changes	 in	microstate	A	features,	which	previously	
has been associated with temporal lobe function.

The	majority	of	prior	studies	found	shorter	durations	of	all	mi-
crostates	in	patients	suffering	from	AD	(Dierks	et	al.,	1997;	Stevens	
&	Kircher,	1998;	Strik	et	al.,	1997),	which	has	been	suggested	to	in-
dicate	a	temporal	disorganization	of	global	cortical	networks	in	AD	

F I G U R E  5   Significant results for the 
syntax	analysis	between	healthy	controls	
(HC),	mild	cognitive	impairment	(MCI),	
and	Alzheimer's	disease	(AD).	The	first	
column	is	for	HC,	the	second	for	MCI,	and	
the	third	for	AD.	The	values	represent	the	
percentage	of	times	when	for	example	
microstates D transitioned to the other 
microstates.	The	figure	shows	that	
microstate	B,	C,	and	D	were	more	likely	to	
transition	to	microstate	A	in	patients	with	
AD	and	in	patients	with	MCI
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(Koenig	et	al.,	2005;	Nishida	et	al.,	2013).	However,	these	early	stud-
ies used adaptive segmentation and did not group the microstates 
into	specific	classes	 (Dierks	et	al.,	1997;	 Ihl	et	al.,	1993;	Stevens	&	
Kircher, 1998; Strik et al., 1997), which may account for some of the 
differences	between	the	present	and	earlier	findings.	A	more	recent	
study using cluster analysis (Nishida et al., 2013) separating the mi-
crostates into four clusters did not find any significant differences 
between	patients	with	AD	and	HC	but	may	have	been	underpow-
ered.	Another	study	using	part	of	the	same	sample	as	described	here	
found	that	microstate	A	was	most	affected	in	patients	with	AD	and	
MCI	compared	to	HC	(Musaeus,	Nielsen,	et	al.,	2019).	In	the	present	
study, overall microstate duration, occurrence, and coverage were 
either	 increased	 (microstates	 A	 and	 B)	 or	 decreased	 (microstates	
C	and	D)	in	AD	and	MCI	compared	to	HC,	suggesting	aberrancy	in	
the	temporal	dynamics	of	 large-scale	cortical	networks	 in	patients	
with	AD	and	MCI.	When	comparisons	were	made	by	individual	mi-
crostate	 classes,	only	microstate	A	was	 significantly	different	 (see	
Table	2).	Furthermore,	we	also	examined	the	microstates	in	specific	
frequency bands, which has to our knowledge not been done before 
in	patients	with	AD.	Here,	we	found	that	microstate	A	was	specifi-
cally	altered	in	delta	(1–4	Hz),	theta	(4–8	Hz),	and	beta	(13–30	Hz),	
while microstate D was affected only in the delta and theta bands 
and	microstate	B	showed	decreased	duration	 in	the	beta	band.	To	
understand the connection between EEG microstates and the spa-
tial	 changes,	 studies	have	used	 source	 localization	and	 found	 that	
the	main	sources	of	microstate	A	were	localized	in	the	left	temporal	
lobe	(Brechet	et	al.,	2019;	Custo	et	al.,	2017).	Furthermore,	studies	
have	 also	 explored	 the	 association	between	microstates	 and	both	
the	blood	oxygen	level-dependent	signal	and	resting-state	networks	
measured	with	 fMRI	 (Britz,	 Van	De	Ville,	 &	Michel,	 2010;	Musso,	
Brinkmeyer,	 Brinkmeyer,	Mobascher,	Warbrick,	 &	Winterer,	 2010;	
Yuan	et	al.,	2012).	One	study	associated	microstate	A	with	activa-
tions	in	the	superior	and	middle	temporal	gyri	(Britz	et	al.,	2010).	In	
patients	with	AD,	other	studies	have	found	that	the	temporal	areas,	
and especially the hippocampus, showed decreased activity during 
encoding of new information (Golby et al., 2005; Kato, Knopman, 
Knopman,	&	Liu,	2001;	Machulda	et	al.,	2003).	This	 supports	 that	
microstate	 A	 is	 associated	 with	 areas	 of	 the	 brain	 that	 has	 been	
shown	to	be	affected	in	patients	with	AD.	This	difference	in	affected	
side	has	previously	been	reported	in	MR	studies,	which	showed	that	
atrophy	was	more	pronounced	on	the	left	side	(Baron	et	al.,	2001;	
Killiany	et	al.,	2000)	 in	patients	with	AD.	Furthermore,	the	studies	
using	source	localization	showed	that	microstate	A	corresponds	to	
the	left	temporal	lobe	(Brechet	et	al.,	2019;	Custo	et	al.,	2017).	The	
reason for only finding significant differences in the left side may be 
due unintentional selection bias toward patients referred with lan-
guage affection or evidence that early changes in perfusion as mea-
sured	with	SPECT	in	AD	are	more	prominent	on	the	left	side	(Hogh,	
Madsen	Sjo,	Madsen	Sjo,	Gade,	&	Waldemar,	2004).	Alternatively,	
patients	with	right-hemisphere	dominant	AD	may	be	more	likely	to	
lack insight into symptoms, possibly delaying presentation and fur-
ther	contributing	to	referral	selection	bias.	The	underlying	reason	for	
the	frequency-specific	changes	could	be	associated	with	the	changes	TA
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in	spectral	power.	Here,	we	found	that	especially	the	theta	band	is	
affected	in	the	early	stage	of	the	disease	(Musaeus,	Engedal,	et	al.,	
2018). Due to short EEG recordings, we did not investigate any po-
tential	topographical	changes.	Future	studies	should	include	longer	
EEG recordings to investigate whether any topographical changes 
exist.	When	testing	whether	there	were	any	differences	in	expected	
and observed transition probabilities, no significant changes were 
found.	Since	microstate	A	is	associated	with	the	temporal	lobe,	the	
changes	may	be	related	to	the	neuropathological	findings	in	AD	as	
described	by	the	Braak	stages	(Braak	&	Braak,	1991;	Thal,	Rub,	Rub,	
Orantes,	 &	 Braak,	 2002),	 which	 are	 especially	 pronounced	 in	 the	
temporal	 lobes	 in	 early	 AD.	 Furthermore,	 follow-up	 studies	 using	
PiB-PET,	which	quantifies	the	beta-amyloid	deposition,	have	found	
that the temporal lobes are one of the first parts of the brain with 
beta-amyloid	deposition	(Okello	et	al.,	2009;	Villemagne	et	al.,	2011).	
Here,	we	hypothesize	that	the	changes	in	microstate	A	may	reflect	
the underlying pathological changes in the left temporal lobe.

We	also	examined	whether	microstates	could	be	used	as	a	po-
tential classifier of disease and found that microstate features are 
not	satisfactory	available	to	distinguish	between	three	groups	(AD,	
MCI,	and	HC),	which	probably	 is	due	to	nonsignificant	differences	
between	AD	and	MCI.	 In	 fact,	many	patients	with	MCI	may	have	
AD	at	a	subclinical	dementia	stage,	which	is	supported	by	the	notion	
that	over	50%	of	the	included	patients	with	MCI	progressed	(“con-
verted”)	 to	AD	within	 two	years	 follow-up	 in	 the	Danish	substudy	
(Musaeus,	Nielsen,	Osterbye,	&	Hogh,	2018).	When	comparing	HC	
with	AD,	we	found	a	poor	classification	rate	of	69.8%.	This	 rate	 is	
lower	than	between	AD	and	HC	using	EEG	spectral	power	(Musaeus,	
Engedal, et al., 2018) and lower than the discriminatory power of 
EEG	 connectivity	 (Musaeus,	 Engedal,	 Hogh,	 et	 al.,	 2019).	 The	 un-
derlying reason could be that the changes in EEG microstates may 
not	be	present	before	later	in	the	disease	stages.	The	EEG	segments	
were	also	too	short	to	obtain	four	optimal	maps	if	each	participant's	
EEG was segmented as previously described (Koenig et al., 1999). 
We suggest that by recording longer EEGs and using segmentation 
for each person individually, it may be possible to increase the diag-
nostic accuracy.

We	chose	 to	 extract	 four	microstates	 since	 they	 are	 the	most	
commonly reported ones and have been shown to be reliable 
(Khanna et al., 2014). We found that the algorithm was robust, and 
the main findings could be replicated (see Supplementary material, 
pp.	3–7).	When	looking	at	three,	five,	and	six	microstates,	we	found	
that	patients	with	AD	and	MCI	had	a	global	affection	of	microstates,	
but	there	was	a	significant	affection	of	microstate	A	when	extract-
ing	 both	 three,	 five,	 and	 six	microstates.	 The	 results	 suggest	 that	
changes	in	microstate	A	are	the	hallmark	of	EEG	microstate	changes	
in	AD.	In	addition,	the	accuracy	did	not	differ	markedly	from	the	main	
analysis,	which	may	be	due	to	microstate	A	being	the	most	import-
ant	microstate	in	patients	with	AD.	Furthermore,	even	though	GEV	
was not significantly different between the three groups, it was low 
(average	GEV	=	49.51%)	compared	 to	what	other	 studies	have	 re-
ported	(normally	reporting	a	GEV	of	>70%	(Michel	&	Koenig,	2018)).	
The	 increase	 in	GEV	was	minimal	when	 increasing	 the	 number	 of	

microstates, and this difference may be due to the fact that previous 
studies recorded EEGs on younger participants. In the current analy-
sis,	we	only	included	the	first	534	GFP	peaks	in	the	segmentation	to	
equalize	contributions	from	longer	EEG	files	and	this	may	also	lead	
to	a	lower	GEV.	In	addition,	the	low	number	of	GFP	peaks	also	limits	
our ability to investigate topographical differences in maps between 
groups.	Furthermore,	in	the	current	study	we	had	only	19	channels,	
which is below the number of channels used in recent microstate 
studies	 (Michel	&	Koenig,	2018).	As	a	result,	 future	studies	should	
include longer EEG recordings to better determine whether any 
topographical	changes	exist.

4.1 | Limitations of the study and future directions

The	current	study	has	some	limitations.	Cerebrospinal	fluid	markers	
were available for only 30% of the included patients, which limited 
the statistical power of the correlations between microstate fea-
tures	and	cerebrospinal	fluid	markers.	The	lack	of	follow-up	data	in	
the	MCI	group	prevented	us	from	investigating	which	patients	with	
MCI	converted	to	AD,	but	we	hypothesize	that	most	of	them	would	
ultimately	develop	AD,	as	supported	the	substudy	mentioned	above	
where	50%	of	the	MCI	progressed	to	AD	(Musaeus,	Nielsen,	et	al.,	
2018).	Demographically,	we	found	that	the	HC	were	younger	than	
the	AD	and	MCI	patients,	which	impacts	microstate	features	(Koenig	
et	al.,	2002).	When	removing	the	18	youngest	participants	in	the	HC	
and thereby having a total of 117 participants in all three groups, we 
found	similar	results.	A	large	proportion	of	AD	and	MCI	patients	were	
treated with medications (34.62%) that may have impacted the EEG, 
as	seen	in	patients	with	schizophrenia	(Merrin,	Meek,	Meek,	Floyd,	
&	Callaway,	1990).	Furthermore,	the	HC	group	had	a	higher	level	of	
education than both clinical groups, which may also have played in 
assessing	memory	function.	However,	we	tried	to	correct	for	these	
confounders by including age, use of drugs, and educational level as 
covariates	when	performing	ANCOVA.	Future	studies	investigating	
the	changes	in	EEG	microstates	in	patients	with	AD	should	strive	to	
do	longer	EEG	recordings	in	an	effort	to	make	it	possible	to	extract	
individual	maps	for	each	participant.	We	hypothesize	that	this	will	
increase	GEV	for	each	of	the	participants	and	may	make	EEG	micro-
states an applicable diagnostic tool since differences between the 
diagnostic	groups	become	clearer.	Moreover,	there	was	a	significant	
difference	in	the	number	of	one-second	epochs	per	subject,	which	
may have affected our findings. In addition, future studies should 
investigate the relationship between EEG microstates and changes 
in	metabolism	as	measured	with	FDG-PET	in	patients	with	AD.

5  | CONCLUSION

In the present study, we found evidence of EEG microstate changes 
in	 patients	 with	 AD.	 Specifically,	 there	 was	 a	 longer	 duration,	
larger coverage, and higher frequency of occurrence of microstate 
A	among	AD	and	MCI	patients	compared	to	HC.	Furthermore,	we	
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found evidence that the microstates were due to microstate changes 
in	specific	frequency	bands.	This	microstate	has	previously	been	as-
sociated	with	activity	in	the	left	temporal	lobe	using	source	localiza-
tion	and	changes	in	the	blood	oxygen	level-dependent	signal	in	the	
left temporal region, which is strongly affected by amyloid and tau 
pathology	in	patients	with	AD.	Together,	our	results	show	that	EEG	
microstate	analysis	may	be	a	useful	tool	in	examining	dynamic	net-
work	activity	and	disruption	in	AD.	Future	studies	should	examine	
the	 relationship	 between	hypometabolism	with	 FDG-PET	 and	 the	
microstate features to understand the applicability of EEG micro-
states as a diagnostic tool.
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