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Abstract

Helicobacter (H.) suis colonizes the stomach of the majority of pigs as well as a minority of humans worldwide.
Infection causes chronic inflammation in the stomach of the host, however without an effective clearance of the
bacteria. Currently, no information is available about possible mechanisms H. suis utilizes to interfere with the host
immune response. This study describes the effect on various lymphocytes of the γ-glutamyl transpeptidase (GGT)
from H. suis. Compared to whole cell lysate from wild-type H. suis, lysate from a H. suis ggt mutant strain showed a
decrease of the capacity to inhibit Jurkat T cell proliferation. Incubation of Jurkat T cells with recombinantly
expressed H. suis GGT resulted in an impaired proliferation, and cell death was shown to be involved. A similar but
more pronounced inhibitory effect was also seen on primary murine CD4+ T cells, CD8+ T cells, and CD19+ B cells.
Supplementation with known GGT substrates was able to modulate the observed effects. Glutamine restored normal
proliferation of the cells, whereas supplementation with reduced glutathione strengthened the H. suis GGT-mediated
inhibition of proliferation. H. suis GGT treatment abolished secretion of IL-4 and IL-17 by CD4+ T cells, without
affecting secretion of IFN-γ. Finally, H. suis outer membrane vesicles (OMV) were identified as a possible delivery
route of H. suis GGT to lymphocytes residing in the deeper mucosal layers. Thus far, this study is the first to report
that the effects on lymphocytes of this enzyme, not only important for H. suis metabolism but also for that of other
Helicobacter species, depend on the degradation of two specific substrates: glutamine and reduced glutatione. This
will provide new insights into the pathogenic mechanisms of H. suis infection in particular and infection with gastric
helicobacters in general.
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Introduction

Helicobacter pylori can cause gastritis, peptic ulcer disease,
gastric adenocarcinoma and mucosa-associated lymphoid
tissue (MALT) lymphoma in humans [1,2]. It is, however, not
the only bacterial pathogen capable of colonizing the human
gastric mucosa. Indeed, gastric non-H. pylori helicobacters
(NHPH) have also been detected in humans and these bacteria
are capable of causing disease in both humans and animals
[3-11]. H. suis has been shown to be the most prevalent gastric

NHPH in humans [3]. Similar to H. pylori, H. suis generally
causes a life-long infection, suggesting that the bacterium
possesses immune suppressing properties.

Lymphocyte responses are involved in a wide range of
immunoregulatory activities, both in vivo and in vitro [12]. So
far, no information is available on the influence of H. suis
virulence determinants on the function of lymphocytes. For H.
pylori, several factors have been described having an effect on
the host lymphocyte response, including the vacuolating
cytotoxin (VacA) and H. pylori GGT [13-15]. The former is
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absent in H. suis [16]. The latter enzyme, synthesized as a
precursor enzyme with a molecular weight (MW) of ~60 kDa,
followed by processing into a large (~40 kDa ) and small (~20
kDa ) subunit [17], is also produced by a number of other
Helicobacter species, including H. suis, and the enzyme has
been shown to play an important role during the metabolism of
extracellular L-glutamine (L-Gln) and reduced glutathione
(GSH) [17,18]. Degradation of GSH, an important antioxidant,
by GGT results in the development of extracellular oxygen
radicals, leading to oxidative damage of epithelial cells, or
inhibition of cellular proliferation [17,19,20]. In contrast, Gln,
another substrate of GGT, is a major metabolic fuel for rapidly
dividing cells, including enterocytes and immunologically
challenged lymphocytes [21,22]. In addition, regulation of L-Gln
utilization seems to be an important component of T cell
activation and the development of an immune response and
Gln is also a key regulator of gene expression and cell
signalling pathways [23,24]. Currently, no information exists
regarding a possible regulatory effect of L-Gln or GSH
(supplementation) on the proliferation of lymphocytes affected
by the GGT of gastric helicobacters.

It has been demonstrated that the GGT secreted from gastric
helicobacters as well as other secreted factors such as the
VacA from H. pylori can access the lymphocytes in the lamina
propria. These secreted factors may affect the lymphocyte
function in a direct and indirect manner, for instance by
inflicting damage to epithelial cells, resulting in small epithelial
defects [3,17,25,26]. Interestingly, H. pylori outer membrane
vesicles (OMV) have been shown to contain the H. pylori GGT
[27] and they have been shown to be internalized by epithelial
cells [28]. In general, OMV are released by Gram-negative
bacteria under natural conditions in vitro or in infected tissue in
vivo, and they can act as a delivery vehicle of virulence factors
to reach a distant target [29-32]. Thus far, no information is
available on the formation of H. suis OMV, the content thereof,
their internalization by epithelial cells and the putative delivery
of bacterial components, such as the H. suis GGT, to the
deeper mucosal layers.

In the present study, Jurkat T cells as well as murine
splenocyte subsets (CD4+ T cell, CD8+ T cell, CD19+ B cell)
were used as cell models to investigate the
immunosuppressive effect of H. suis GGT through the action
on its substrates. AGS cells, intestinal porcine epithelial (IPEC-
J2) cells, and human Caco-2 cells were used to investigate the
putative translocation of GGT, present in H. suis OMV, across
an epithelial cell monolayer.

Materials and Methods

Animals
For isolation of splenic lymphocytes, female specific-

pathogen-free (SPF) 4-6-week-old BALB/c mice were
purchased from Harlan NL (Horst, The Netherlands). Housing
and euthanasia of experimental animals were approved by the
Ethical Committee of the Faculty of Veterinary Medicine, Ghent
University, Belgium (EC2012/156).

Construction of a H. suis ggt isogenic mutant strain
Deletion of H. suis ggt was introduced by allelic exchange

using pBluescript II SK (+) phagemid vector (Agilent
Technologies, California, USA) in which ~650 bp of the 5′ –end
and ~750 bp of the 3′ –end of the target gene and the
chloramphenicol resistance gene from pUOA14 [18,33] were
ligated through a PCR-mediated strategy [34,35]. All primers
used for PCR-mediated construction of the recombinant
plasmid are shown in table 1. The resultant plasmid was
amplified in XL1-Blue MRF′ E. coli (Agilent Technologies) and
used as a suicide plasmid in H. suis strain HS5, isolated from
the stomach of a sow. Transformation of H. suis strain HS5
was perfomed by electroporation as described for H. felis [36]
with some modifications. Briefly, 1.5 µg suicide plasmid was
used for electroporation. Then, the H. suis 5 ggt mutant strain
(HS5Δggt) was first cultured for 2 days on biphasic Brucella
culture plates without chloramphenicol, as described previously
[37]. Subsequently, bacteria were transferred onto biphasic
Brucella culture plates supplemented with chloramphenicol (20
µg/mL) for 4 days, after which they were finally selected on
biphasic Brucella plates supplemented with chloramphenicol
(30 µg/mL) for 7-14 days. The site of recombination was
verified by a GGT activity assay [17], PCR and nucleotide
sequencing.

Recombinant expression and purification of H. suis γ-
glutamyl transpeptidase

The expression and subsequent purification of recombinant
Helicobacter suis γ-glutamyl transpeptidase (GGT) were
performed as described previously [17]. Briefly, the enzyme
was expressed in E. coli strain BL21-AITM. Subsequently, the
protein was purified to homogeneity by immobilized metal
affinity chromatography (IMAC) on a Ni-sepharose column (His
GraviTrap; GE Healthcare Bio-Sciences AB, Uppsala, Sweden)
and gel filtration using a SuperdexTM 75 gel filtration column
(GE Healthcare Bio-Sciences AB). The purified protein was
stored at -80°C until further use.

Preparation of H. suis outer membrane vesicles (OMV)
72-hour-old cultures of H. suis were harvested, and the

bacteria were removed by centrifugation (12000 × g, 15
minutes, 4 °C). The supernatant fluid was subjected to
ultracentrifugation (200000 × g, 2 hours, 4 °C) to recover the
OMV. After two washing steps in Hank’s Balanced Salt
Solution (HBSS), the OMV were stored at -70 °C until further
use. The obtained OMV were visualized by a negative staining
technique. Hereby a copper grid with formvar membrane was
placed on top of a drop of OMV suspension for 10 seconds and
counterstained with uranylacetate for 1 minute. After rinsing
and drying the grids were analysed by Transmission Electron
Microscopy (TEM). The presence of GGT activity in H. suis
OMV was validated with a GGT activity assay as described
previously [17].

Cell cultures
Jurkat E6.1 cells (Human leukaemic T cell line; ECACC;

Salisbury, UK) were cultured in RPMI 1640 with 5% (v/v) heat-
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inactivated fetal bovine serum (FBS; HyClone, Logan, UT,
USA), 2 millimolar (mM) L-Gln (Invitrogen, Carlsbad, CA, USA)
and penicillin (50 units/mL) and streptomycin (50 µg/mL)
(Invitrogen) at 37°C with 5% CO2.

CD4+ and CD8+ T cells, as well as CD19+ B lymphocytes
were isolated from mouse spleens using EasySep™ Mouse
CD4+ and CD8+ T cell, and CD19+ B cell Enrichment Kits
(StemCell Technologies, Grenoble, France). Culture was
performed in RPMI 1640 containing 10% (v/v) FBS, 1 mM L-
Gln, 50 micromolar (µM) 2-mercaptoethanol (Sigma-Aldrich St.
Louis, MO, USA), penicillin (50 units/mL) and streptomycin (50
µg/mL) at 37°C with 5% CO2.

The culture conditions of AGS cells (a human gastric
adenocarcinoma cell line), IPEC-J2 cells, and Caco-2 cells
have been described elsewhere [17,38,39]. Briefly, AGS cells
were cultured in Ham’s F12 (Invitrogen; 1 mM glutamine)
supplemented with 10% (v/v) FBS, penicillin (50 units/mL) and
streptomycin (50 µg/mL). IPEC-J2 cells were cultured in
Dulbecco’s Modified Eagle’s medium (DMEM; Gibco, Life
Technologies, Paisley, Scotland) supplemented with 47% (v/v)
Ham’s F12 medium (Gibco), 5% (v/v) FBS, 1% (v/v) insulin-
transferrin-selenium-A supplement (ITS, Gibco), penicillin (50
units/mL), and streptomycin (50 µg/mL). Caco-2 cells were
cultured in DMEM (Gibco) supplemented with 10% (v/v) FBS, 1
mM glutamine, 1% (v/v) non-essential amino acids (Gibco),
penicillin (50 units/mL) and streptomycin (50 µg/mL).

Internalization of H. suis OMV by AGS, IPEC-J2 and
Caco-2 cells

AGS, IPEC-J2 and Caco-2 cells were used to examine the
putative internalization of H. suis OMV. AGS cells labeled with
green CellTrackerTM (Invitrogen) were incubated for 4 hours
with H. suis OMV labeled with red fluorescent Vybrant® DiD
(Invitrogen). AGS cells were fixed with 4% paraformaldehyde
for 15 minutes, washed 5 times extensively with HBSS and
analysed by confocal laser scanning microscopy for uptake of
H. suis OMV. IPEC-J2 and Caco-2 cells were labeled with red
fluorescent CellTracker Red CMTPX (Invitrogen) and incubated
for 8 hours with H. suis OMV labeled with green fluorescent

Vybrant® DiO (Invitrogen). Subsequently, cells were fixed with
4% paraformaldehyde for 15 minutes, washed 5 times
extensively with HBSS and analysed by confocal laser
scanning microscopy for uptake of H. suis OMV.

Translocation across a differentiated IPEC-J2
monolayer of active GGT present in H. suis OMV

In order to examine the putative translocation ability of active
H. suis GGT contained in H. suis OMV across an epithelial cell
monolayer, a translocation assay was performed as described
elsewhere [40]. IPEC-J2 cells (1 × 104 cells/250 µl/insert) were
seeded on the apical side of the Transwell® polycarbonate
membrane inserts with a pore size of 3.0 μm and a membrane
diameter of 6.5 mm (Corning Costar Corp., Cambridge, MA,
USA), and the basolateral side was filled with 1 mL fresh
culture medium. Cell medium was refreshed every 2 to 3 days
and cells were cultured for 3 to 4 weeks in order to allow
differentiation to a complete monolayer as described elsewhere
[39,40]. When differentiated, 100 µg (based on the total protein
content) H. suis OMV were added to the apical compartment.
After incubation for up to 48 hours (37°C; 5% CO2), the
presence of GGT activity in the basolateral compartment was
determined with a GGT activity assay [17]. The transepithelial
electrical resistance (TEER) was measured before and after
the incubation with H. suis OMV to assess the barrier integrity
of the differentiatedepithelial cell monolayer as described
previously [40].

Cell proliferation assays
Jurkat T cells (4 × 104/well), CD4+ and CD8+ T, and CD19+ B

lymphocytes (1.5 × 105/well) were cultured in 24-well or 96-well
flat-bottom cell-culture plates (Greiner Bio One, Frickenhausen,
Germany) as described above.

CD4+ and CD8+ T cells were stimulated by incubating the
cells in wells of a microtiter plate that had been precoated with
an anti-CD3 antibody (4 µg/mL and 8 µg/mL respectively, clone
145-2C11; eBioscience, Vienna, Austria) and in the presence
of a soluble anti-CD28 antibody (2 µg/mL, clone 37-51;
eBioscience). CD19+ B cells were stimulated by F(ab’)2 Goat

Table 1. Primers used for construction of a H. suis ggt isogenic mutant strain (HS5Δggt).

Primer name Sequence (5′ - 3′) Primer use
pBlue linear Fwd 1 GGGGATCCACTAGTTCTAGAGCG Linearization of plasmid
pBlue linear Rev1 CGGGCTGCAGGAATTCGATATCAAG Linearization of plasmid

HsGGT_flank_fusion1F CTTGATATCGAATTCCTGCAGCCCGGAGGCGTTGCACAATAGCTTTAGGG
Amplification H. suis ggt and partial up- and downstream
flanking genes

HsGGT_flank_fusion1R GCCGCTCTAGAACTAGTGGATCCCCATAAAACCAGTTAGGCTGGGCAAAG
Amplification H. suis ggt and partial up- and downstream
flanking genes

pBluelinear_Hsggtflank1F CCACGCAAGGAATTTTAAATGCAAC Linearization of the recombinant plasmid
pBluelinear_Hsggtflank1R GATCTCCTCAAATTTTAAAAAATACGC Linearization of the recombinant plasmid
Hschloram_fusion_1F GCGTATTTTTTAAAATTTGAGGAGATCTATCAACAAATCGGAATTTACGG Amplification chloramphenicol resistance gene
Hschloram_fusion_1R GCATTTAAAATTCCTTGCGTGGTTATTTATTCAGCAAGTCTTGTAA Amplification chloramphenicol resistance gene
T7 prom3 TAATACGACTCACTATAGGG Sequencing
M13R CAGGAAACAGCTATGAC Sequencing

doi: 10.1371/journal.pone.0077966.t001
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anti-mouse IgM (12 µg/mL, Jackson Immunoresearch, West
Grove PA, USA) and recombinant mouse IL-2 (100 U/mL,
eBioscience).

All cells were incubated in the presence or absence of
whole-cell lysate from wild-type H. suis strain HS5 and mutant
H. suis strain HS5Δggt, as well as different concentrations of
recombinant H. suis GGT for 24 - 72 hours, depending on the
experiment and cell type. Cellular proliferation was determined
by incorporation of [3H]-thymidine (Amersham ICN, Bucks, UK).
In brief, all cells were pulse-labeled with 1 µCi [3H]-thymidine
during the final 18 hours of experimental incubation, and then
harvested onto glass fiber filters (Perkin-Elmer, Life Science,
Brussels, Belgium). The incorporated radioactivity was
detected using a β-scintillation counter (Perkin-Elmer).

Evaluation of cell death (apoptosis and necrosis) by
flow cytometry

Jurkat T cells (4 × 104/well) were treated with 2 µg/mL
recombinant H. suis GGT for 24 - 72 hours. Controls consisted
of HBSS-treated Jurkat T cells. All samples were subjected to
flow cytometric analysis (FCM) on a BD FACSCanto II flow
cytometer with FACSDiva software (Becton Dickinson,
Erembodegem, Belgium).

Propidium iodide (PI) staining was used to detect loss of
plasma membrane integrity as a marker for necrosis. Briefly,
cells were washed with HBSS, incubated with 1 µg/mL PI in
HBSS for 15 minutes on ice, followed by FCM analysis.
Staining for activated caspase-3 was performed to detect
apoptosis. Briefly, cells were washed with HBSS, fixed with 4%
paraformaldehyde for 10 minutes, and permeabilized with 0.1%
Triton X-100 in HBSS for 2 minutes. Subsequently, cells were
incubated with a primary rabbit antibody directed against
activated caspase-3 (R&D Systems Europe) for 1 hour at 37°C,
followed by an Alexa Fluor 488-conjugated goat anti-rabbit
secondary antibody (Invitrogen). Cells treated with 0.5 µM
staurosporine (Sigma-Aldrich) for 20 hours served as positive
controls for apoptosis.

Ammonia assay
Two µg/milliliter H. suis GGT was added to HBSS

supplemented with 2 mM L-Gln and incubated at 37°C for 2
hours, after which the concentration of released ammonia was
determined by the Ammonia Assay Kit (Sigma-Aldrich)
according to the manufacturer’s instructions.

Supplementation of cell cultures with L-Gln and GSH
Jurkat T cells (4 × 104/well) were incubated in medium

supplemented with L-Gln (0 - 10 mM; Sigma-Aldrich) or GSH (0
- 5 mM; Sigma-Aldrich) and treated with HBSS or 2 µg/mL
recombinant H. suis GGT for 48 or 72 hours. CD4+ and CD8+ T
cells (1.2 × 105/well) were incubated in medium supplemented
with L-Gln (0 - 5 mM) or GSH (0 - 2 mM) and treated with
HBSS or 1 µg/mL recombinant H. suis GGT for 68 hours.
Cellular proliferation was determined by [3H]-thymidine
incorporation as mentioned above.

Measurement of cytokine release
CD4+ T cells (1.5 × 105/well), activated by CD3/CD28 mAbs,

were incubated in medium supplemented with 0.1 µg/mL or 0.5
µg/mL recombinant H. suis GGT for 68 hours. Secretion levels
of IFN-γ, IL-4, and IL-17A were determined in cell supernatant
by enzyme-linked immunosorbent assay (ELISA)
(eBioscience).

Statistical analysis
All experiments were repeated at least 3 times with at least 3

replications for each treatment. Combined data from these
experiments are used for statistical analysis, and all data were
expressed as mean + SD. A Student t test was used for
statistical analysis between two groups, and one-way ANOVA
was performed for comparison of control cells with multiple
treatments. For both statistical analyses methods, P values
less than 0.05 were considered statistically significant.

Results

H. suis OMV contain GGT activity and can be
internalized by AGS, IPEC-J2, and Caco-2 cells

Ultrastructural examination revealed that most OMV isolated
from H. suis culture supernatant ranged from 20 - 200 nm in
size (Figure 1). A GGT activity level up to 4.5 - 9.5 mU/mg was
detected in the OMV, confirming that GGT is one of the
components of H. suis OMV. In order to further examine if H.
suis OMV carrying GGT can be internalized by gastric or
intestinal epithelial cells, AGS, IPEC-J2, and Caco-2 cells were
incubated with H. suis OMV for 4 hours or 8 hours. Our results
reveal that H. suis OMV can be internalized by all three types
of epithelial cell lines (Figure 2 A - F).

Active H. suis GGT from H. suis OMV translocates
across a differentiated IPEC-J2 cell monolayer

After 3 - 4 weeks culture, a differentiated IPEC-J2 cell
monolayer was established, indicated by a stable TEER value
of approximately 2400 Ohm/insert. Compared to the IPEC-J2
cells treated with HBSS, incubation of a differentiated IPEC-J2
cell monolayer with 100 µg H. suis OMV for 48 hours resulted
in the detection of higher GGT activity in the basolateral
compartment (Figure 3, p=0.058) without disrupting the
integrity of IPEC-J2 cell monolayer, as shown by a stable
TEER: an average value of 2421 Ohm/insert was detected at
the onset of the experiment and an average value of 2361
Ohm/insert was detected at the end of the experiment (p=0.72,
Student t test). This translocation may constitute one of the
routes by which GGT from H. suis can access lymphocytes
residing in the lamina propria underneath the lining epithelium.

Effect of H. suis whole-cell lysate on Jurkat T cells
Cellular proliferation of Jurkat T cells was inhibited after

incubation with whole cell lysate of wild-type H. suis strain HS5
for 48 or 72 hours in a dose-dependent manner (data not
shown). Concentrations of 250 µg/mL of this lysate almost
completely inhibited cellular proliferation of Jurkat T cells
(Figure 4A). Compared to treatment with whole-cell lysate from
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wild-type H. suis strain HS5, treatment of Jurkat T cells with
lysate (48 h; 62.5 to 250 µg/mL) from strain HS5Δggt resulted
in a marked decrease (minus 15.3 - 49.3%) of the inhibitory
effect on T cell proliferation (Figure 4A).

Inhibitory effect of H. suis GGT on Jurkat T cells and
mouse splenocyte subsets

Treatment of Jurkat T cells for 72 hours with up to 2 µg/mL
recombinant H. suis GGT resulted in an inhibition of cellular
proliferation (Figure 5A). Treatment for 48 hours showed
similar results (data not shown). Further increasing the
concentration of the enzyme, however, did not cause a
significant increase of the inhibitory effect. Subsequently, we
investigated the effect of recombinant H. suis GGT on primary
immune cells, including CD4+ and CD8+ T cells and CD19+ B
lymphocytes. A concentration of 1 µg/mL recombinant H. suis
GGT inhibited the proliferation of CD4+ and CD8+ T splenocytes
by about 80% (Figure 5B) and the proliferation of the CD19+ B
cells by more than 95% (Figure 5C). A concentration of 2
µg/mL recombinant H. suis GGT almost completely inhibited
the proliferation of all three lymphocyte subsets.

The role of cell death (apoptosis and necrosis) during
H. suis GGT-mediated inhibition of T cell proliferation

Compared to treatment with whole-cell lysate from wild-type
H. suis strain HS5, treatment of Jurkat T cells with lysate (48 h;
62.5 to 250 µg/mL) from strain HS5Δggt resulted in a
considerably lower (1.3 - 19.6%) cell death-inducing capacity
(Figure 4B).

Compared to the HBSS-treated cells, incubating Jurkat T
cells with 2 µg/mL recombinant H. suis GGT for 24, 48 or 72
hours resulted in an increase (+3 - 7%) of the number of active
caspase-3 positive cells (Figure 6A). PI staining demonstrated
a higher increase (+26%, compared to HBSS-treated cells) of
the number of Jurkat T cells showing loss of plasma membrane
integrity, as a marker for necrosis, after treatment with H. suis
GGT for 72 hours (Figure 6B).

Identification of catalytic activity of H. suis GGT on L-
Gln

L-Gln and reduced glutathione (GSH) are 2 putative
substrates of H. suis GGT. In a previous report, we indeed
showed that H. suis GGT catalyzes the degradation of GSH [9].
To investigate whether also L-Gln can serve as a substrate for
H. suis GGT, 2 mM Gln was incubated in HBSS with or without

Figure 1.  Ultrastructural examination of purified H. suis outer membrane vesicles (OMV).  Shown are transmission electron
microscopic images of H. suis OMV purified by repeated ultracentrifugation.
doi: 10.1371/journal.pone.0077966.g001
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2 µg/mL H. suis GGT at 37°C. After 2 hours of incubation the
concentration of ammonia was determined. Data showed that
H. suis GGT indeed hydrolyses Gln in vitro, with the formation
of ammonia as by-product (Figure 7). Compared to HBSS-
treated Gln, 2 mM Gln treated with 2 µg/mL H. suis GGT
released 5.3 µg/mL ammonia after incubation for 2 hours,
showing that >15% of Gln was degraded by 2 µg/mL H. suis
GGT under these conditions. More than 70% of Gln was
degraded by using a higher concentration of H. suis GGT (10
µg/mL), after incubation under the same conditions as
described above (data not shown).

Modulation of H. suis GGT-mediated inhibition of
lymphocyte proliferation by L-Gln and GSH

To investigate the role of L-Gln and GSH, two important
substrates of GGT, in the above described inhibition of
lymphocyte proliferation, Jurkat T cells and stimulated CD4+ or
CD8+ T cells isolated from mice, were treated with a series of
concentrations of L-Gln or GSH in the presence or absence of
1 or 2 µg/mL recombinant H. suis GGT. Data from HBSS-
treated control cells showed that the presence of L-Gln is

essential for a normal proliferation of Jurkat T cells (Figure 8A).
As described above, treatment of Jurkat T cells with
recombinant H. suis GGT resulted in an inhibition of cellular
proliferation. Interestingly, supplementation of 2 µg/mL H. suis
GGT-treated Jurkat T cells with L-Gln was able to restore the
normal proliferation rate of the cells, incubated for 72 hours
(Figure 8A), in a dose (up to 10 mM L-Gln)-dependent manner.
For primary CD4+ or CD8+ T lymphocytes isolated from mouse
spleens, supplementation with L-Gln showed a similar effect
(Figure 8B, 8C). Supplementation with 5 mM L-Gln was able to
restore the cellular proliferation of 1 µg/mL recombinant H. suis
GGT treated CD4+ and CD8+ T cells to normal levels after
incubation for 68 hours (Figures 8B, 8C).

On the other hand, GSH supplementation induced a slightly
higher stimulation of cellular proliferation of primary T
splenocyte subsets (Figure 9B, P< 0.05), treated with HBSS
(control cells). Interestingly and in contrast, supplementation of
H. suis GGT-treated Jurkat T cells with GSH aggravated the
inhibitory effect of H. suis GGT, both after 48 and 72 hours of
incubation (Figure 9A, P< 0.05). For CD4+ or CD8+ T cells,
however, we did not observe similar effects (Figure 9B, 9C).

Figure 2.  The uptake of H. suis OMV by AGS, IPEC-J2, and Caco-2 cells.  AGS cells labeled with green CellTrackerTM were
incubated for 4 hours with HBSS (Figure 2A) or H. suis OMV labeled with red fluorescent Vybrant® DiD (Figure 2B). IPEC-J2, and
Caco-2 cells labeled with red fluorescent CellTracker Red CMTPX were incubated for 8 hours with HBSS (Figure 2C, 2E,
respectively) or H. suis OMV labeled with green fluorescent Vybrant® DiO (Figure 2D, 2F, respectively). The visualization of OMV
was done by confocal laser scanning microscopy (indicated by arrows). HBSS: Hank’s balanced salt solution; H. suis OMV:
Helicobacter. suis outer membrane vesicles.
doi: 10.1371/journal.pone.0077966.g002
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Effects of H. suis GGT on T helper cytokine secretion
by murine CD4+ T cells

CD4+ T cells are known to play a pivotal role in the immune
response directed against Helicobacter infection [41-43]. The
results described above show that H. suis GGT inhibits the
proliferation of this lymphocyte subset. We investigated
whether this also implies a change in cytokine secretion by
these cells. Murine CD4+ T cells were incubated with 0.1 µg/mL
or 0.5 µg/mL recombinant H. suis GGT for 68 hours. Enzyme-
linked immunosorbent assay (ELISA) for IFN-γ, IL-4 and IL-17A
performed on supernatant fluids of these cells revealed a
significant suppression of IL-4 and IL-17A secretion, a Th2 and
Th17 signature cytokine, respectively, in the presence of 0.5
µg/mL recombinant H. suis GGT (Figure 10B, 10C, P< 0.05).
For IFN-γ secretion by these same cell populations, however,
no effects were observed upon treatment with H. suis GGT
(Figure 10A).

Discussion

To date, limited information is available on the virulence
mechanisms of H. suis [4]. The development, in 2008, of a
method for in vitro isolation and culture of H. suis, facilitated
research on the interactions between H. suis and its hosts [44].
In a previous study, H. suis was shown to cause a chronic
infection, leading to severe gastric lesions in mouse and
Mongolian gerbil models of human gastric disease [3]. For H.

pylori, inhibition of lymphocyte proliferation is considered to
contribute to the immune evasion of H. pylori, enabling the
bacterium to establish a chronic infection [45,46]. Several H.
pylori factors have been described to be involved in inhibition of
T lymphocyte proliferation, including the H. pylori GGT
[13,15,45,46]. Similarly, H. bilis GGT was reported to inhibit T
cell proliferation at a similar level compared to H. pylori, and
both H. bilis and H. pylori GGT possess a similar suppressive
effect on gastric epithelial cell proliferation mediated by an
apoptosis-independent mechanism [18]. In a recent study, we
identified part of the mechanism by which H. pylori and H. suis
GGT cause gastric epithelial cell death [17]. An important role
was attributed to the extracellular cell-independent formation of
prooxidant metabolites through H. suis GGT-mediated
degradation of GSH [17]. In the present study, we investigated
a potential effect of H. suis GGT on the proliferation of
lymphocytes and more importantly demonstrated a possible
role for degradation of its known substrates in this process.

In the present study, recombinantly expressed H. suis GGT,
as well as whole-cell lysate of wild type H. suis strain HS5 had
an inhibitory effect on the proliferation of Jurkat T cells,
whereas this effect was much lower when Jurkat T cells were
incubated with whole-cell lysate of the isogenic H. suis ggt
mutant strain HS5Δggt. Recombinantly expressed H. suis GGT
also inhibited the proliferation of different subsets of primary
mouse lymphocytes and these effects were more pronounced
than those observed in Jurkat T cells, since in primary

Figure 3.  Translocation of active H. suis GGT through a differentiated IPEC-J2 cell monolayer.  IPEC-J2 cells were seeded
on the insert (with a pore size of 3.0 μm and a membrane diameter of 6.5 mm) for 3 - 4 weeks until the cells were differentiatd to a
complete cell monolayer. The cells were treated with HBSS or 100 µg H. suis OMV for 48 hours, and the presence of GGT in the
baselateral compartment was determined by a GGT activity assay as described before. Results are presented as the relative GGT
activity level compared to control cells treated with HBSS. Shown are the mean values (± SD) of 3 independent experiments (n=9).
Student t test was used for analysis of statistically significant difference. HBSS: Hank’s balanced salt solution; H. suis OMV:
Helicobacter. suis outer membrane vesicles.
doi: 10.1371/journal.pone.0077966.g003
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Figure 4.  Effect of H. suis whole-cell lysate on cell proliferation and viability of Jurkat T cells.  (A) Jurkat T cells were
incubated in medium supplemented with whole-cell lysate (62.5 to 250 µg/mL) from wild-type H. suis strain HS5 and strain HS5Δggt
for 48 hours, and cell proliferation levels are determined by cpm (counts per minute), as a measure of [3H]-thymidine uptake. Shown
are the rates of proliferation inhibition, relative to Jurkat T cells treated with HBSS instead of whole-cell lysate. Both whole-cell lysate
from H. suis strain HS5 and strain HS5Δggt induced a statistically significant inhibition of T cell proliferation, although this was far
less pronounced for the mutant strain (one-way ANOVA). (B) Jurkat T cells were incubated in medium supplemented with whole-cell
lysate (62.5 to 250 µg/mL) from H. suis strain HS5 and strain HS5Δggt for 48 hours, and loss of plasma membrane integrity (as a
marker for necrosis) was determined by PI staining. Both whole-cell lysate from H. suis strain HS5 and strain HS5Δggt induced a
statistically significant increase of PI-positive cells (one-way ANOVA), although this was far less pronounced for the mutant strain.
Shown in A and B are the mean values (± SD) of 3 independent experiments (n=9). An * represents a statistically significant
difference (p < 0.05) between HS lysate- and HS Δggt lysate-treated cells. Control: Jurkat T cell treated by Hank’s balanced salt
solution. HS lysate: H. suis strain 5 lysate. HS Δggt lysate: H. suis strain HS5Δggt lysate.
doi: 10.1371/journal.pone.0077966.g004
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splenocytes, 0.1 µg/mL H. suis GGT already caused a
detectable inhibitory effect. However, using different
concentrations of whole-cell lysate from strain HS5Δggt did not
completely abolish the inhibitory effect on Jurkat T cell
proliferation, suggesting that other factors are also involved.
Putative virulence factors of H. suis other than GGT
contributing to the inhibition of lymphocyte proliferation need to
be further investigated in future experiments.

In Jurkat T cells, H. suis GGT-mediated inhibition of
proliferation was correlated with an increase of both apoptosis
and necrosis. Apparently, this is in contrast to what has been
described for H. pylori GGT, which does not seem to induce
apoptosis in Jurkat T cells, although it has to be mentioned that
no other types of cell death were investigated in the study by
Schmees et al. [15]. On the other hand, in a previous study, we
demonstrated that H. suis GGT can induce death of gastric
epithelial cells, both by necrosis/oncosis and apoptosis,

depending on the amount of extracellular reactive oxygen
species, generated by GSH degradation[17]. Most likely, these
increased concentrations of reactive oxygen species in the
extracellular environment are also involved in causing death of
Jurkat T cells.

In the supernatant of a 24-hour-old to 48-hour-old H. suis
culture (containing 1 - 4 x 108 bacteria/mL with a viability of
>99%), approximately 2 - 5 mU/mL GGT activity can be
detected [17]. Currently, no exact data are available on the
colonization density of H. suis in human stomachs. Average
numbers of H. suis colonizing the stomach of experimentally
infected mice can reach approximately 108 - 109/g tissue [37]
and 108/g tissue in the stomach of experimentally as well as
naturally infected pigs, with colonization densities as high as
1010 - 1011/g tissue in some cases [unpublished results]. These
values thus correspond in general to the numbers of bacteria
per mL in in vitro cultures, as mentioned above. Extrapolation

Figure 5.  Inhibitory effect of H. suis γ-glutamyl transpeptidase (GGT) on Jurkat T cells and mouse splenocyte subsets.  (A)
Jurkat T cells were incubated in medium supplemented with recombinant H. suis GGT (1 to 8 µg/mL) for 72 hours, and cell
proliferation levels are determined by cpm (counts per minute), as a measure of [3H]-thymidine uptake. (B) CD4+ or CD8+ splenic T
lymphocytes were purified, stimulated by CD3/CD28 mAbs, and incubated with recombinant H. suis GGT (0.1 µg/mL to 2 µg/mL) for
68 hours, resulting in a dose-dependent inhibition of proliferation. (C) CD19+ B splenocytes were purified, stimulated by anti-IgM (12
µg/mL) and recombinant mouse IL-2 (100 U/mL), followed by treatment with recombinant H. suis GGT (0.1 µg/mL to 2 µg/mL) for 44
hours. Shown are the rates of proliferation inhibition, relative to stimulated splenocytes treated with HBSS instead of recombinant H.
suis GGT. Shown are the mean values (± SD) of 3 independent experiments or one representative experiment (out of 3 performed
in total). An * represents a statistically significant difference (p < 0.05) compared to HBSS-treated control cells. HSGGT:
recombinant H. suis GGT.
doi: 10.1371/journal.pone.0077966.g005

Effects of GGT and its Substrates on Lymphocytes

PLOS ONE | www.plosone.org 9 October 2013 | Volume 8 | Issue 10 | e77966



clearly shows that the amounts of H. suis lysate or GGT used
in the current study most likely are similar to what can be
expected to be present in vivo. Indeed, H. suis lysate
(containing 25 mU GGT activity/mg total protein) [17] was
added to the Jurkat T cells at a final concentration of 62.5 to
250 µg/mL to reach a final concentration of 1.5 to 6.25 mU/mL
GGT activity. Recombinant H. suis GGT (containing 8 mU GGT
activity/µg purified H. suis GGT) was added to Jurkat T cells
and murine splenocyte subset cultures at a final concentration
of 0.1 to 2 µg/mL to reach similar levels of GGT activity (0.8 to
16 mU/mL) in the supernatant fluid of the cells.

As shown in the present and previous studies, L-Gln and
GSH are two important substrates of GGT enzymes, including
that of H. suis [17,18,47]. The present report is the first one
describing that the effects induced by H. suis GGT on the
function of lymphocytes can be largely attributed to its catalytic
activity on extracellular L-Gln and GSH. As GGT activity and
function are considered to be conserved among the genus
Helicobacter [18], similar effects can be expected for GGT from
other helicobacters.

L-Gln is the most abundant free amino acid in the blood, and
is in fact a major fuel for immune cells, especially lymphocytes
[48-50]. Sufficient L-Gln is essential for both a complete
proliferation capacity and normal immune functions of T
lymphocytes [51,52]. In addition, several reports indicate that L-
Gln supplementation has a general protective effect on
eukaryotic cells, especially lymphocytes [53-55]. Treatment of
lymphocytes with H. suis GGT, as in the present study, causes
a depletion of extracellular L-Gln, due to the deamidation of L-
Gln to L-glutamate (L-Glu), with formation of ammonia as a by-
product [19,56]. Results of the present in vitro study also show
that supplementation of H. suis GGT-treated lymphocyte
cultures with a series of concentrations of L-Gln strongly

counterbalances the inhibitory effect of H. suis GGT, stressing
the importance of this amino acid for the proliferation of
lymphocytes.

It has been extensively studied and accepted that the
mammalian intestine can absorb and utilize L-Gln both from the
bloodstream as well as the intestinal lumen [21,57-60]. Little
information is available on the L-Gln transport or utilization by
epithelial cells or other cell types in the gastric mucosa [61,62].
Transcripts from several amino acid transporter systems for L-
Gln have been shown to be expressed in murine and human
stomach tissue, including amino acid transporter systems N, A,
and L [60,63-66]. In any case, when Gln is partially delivered to
lymphocytes from the gastrointestinal lumen, the link between
Gln depletion and the GGT from H. suis (as well as other
gastric Helicobacter species), is obvious, since the GGT can
easily access the free Gln in the lumen. On the other hand, it is
believed by many researchers that the GGT from gastric
helicobacters as well as other secreted factors such as the
VacA from H. pylori can access the lymphocytes in the lamina
propria, in this way affecting the lymphocyte function in a direct
and indirect manner. This can be achieved by inflicting damage
to epithelial cells, causing local defects in the epithelial barrier
[3,17,25,26,67]. In the present study, we have also provided
data supporting our hypothesis that the active GGT enzyme
from H. suis can cross a differentiated epithelial cell layer, in
this way reaching the Gln (and GSH) provided to lymphocytes
residing in the lamina propria. We were able to show that the
active GGT is one of the components of OMV of H. suis, and
that the OMV can be internalized, resulting in a translocation of
the active H. suis GGT from the apical to the basolateral side of
epithelial cells, enabling the GGT to locally access the nutrients
(eg. Gln) provided from the arterial blood flow.

Figure 6.  Cell death analysis of Jurkat T cells treated with recombinant H. suis γ-glutamyl transpeptidase (GGT) evaluated
by flow cytometry.  Jurkat T cells were incubated in medium supplemented with 2 µg/mL recombinant H. suis GGT for 24, 48, or
72 hours and (A) cell apoptosis and (B) loss of plasma membrane integrity (as a marker for necrosis) were determined by staining
for activated caspase-3 and PI staining, respectively. Jurkat T cells treated with 0.5 µM staurosporine for 20 hours served as
positive control for apoptosis. Shown are the mean values (± SD) of one representative experiment (n=3) or 3 independent
experiments (n=9). An * represents a statistically significant difference (p < 0.05) between HSGGT- and HBSS-treated cells (Student
t test). HBSS: Hank’s balanced salt solution; HSGGT: recombinant H. suis GGT; PI: propidium iodide.
doi: 10.1371/journal.pone.0077966.g006
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In vivo, gastric helicobacters induce a deamidation of
extracellular L-Gln to L-Glu, after which the latter can be taken
up by the bacteria [56], depriving host epithelial and immune
cells from both amino acids [26]. In the present study, no viable
bacteria were used, capable of using extracellular L-Glu.
Therefore, no depletion of L-Glu is instilled under the
experimental conditions described in this study. In theory, L-
Glu could thus serve as an alternative cellular fuel, replacing L-
Gln, since both amino acids have been described to be able to
serve as a cellular fuel for lymphocytes and gastrointestinal
epithelial cells [51,68-70]. The fact that L-Glu can not simply
replace L-Gln with respect to cellular proliferation, most likely
depends on the wider array of functions of L-Gln. For instance,
L-Gln, but not L-Glu, can be used for purine and pyrimidine
synthesis [68], and L-Gln is involved in regulation of protein
turnover [57]. Possibly, some relevant pathways mentioned
above are also involved in T cell proliferation modulated by H.
suis GGT and L-Gln.

GSH, another substrate for H. suis GGT, is considered to be
the most important free thiol in animal cells, playing an
important role in antioxidant defense, nutrient metabolism, and
regulation of cellular events [71,72]. However, several groups

have also described pro-oxidative reactions associated with the
metabolism of extracellular GSH, initiated by GGT, which may
lead to the production of reactive oxygen species and lipid
peroxidation, followed by cell death or inhibition of cellular
proliferation [17,20,72,73]. Large amounts of intracellular and
extracellular GSH, indeed available in the stomach [17], may
act as a substrate to GGT during H. suis infection. In the
present study, we showed that supplementation with GSH
could enhance the proliferation of untreated control Jurkat T
cells and murine T lymphocytes to a certain extent. In sharp
contrast, when supplementing GSH to H. suis GGT-treated
Jurkat lymphocytes, this even aggravated H. suis GGT-induced
inhibition of cell proliferation, possibly due to the pro-oxidative
effect of GSH metabolites. However, supplementing GSH to H.
suis GGT-treated primary mouse lymphocytes, caused no
aggravation of H. suis GGT-induced inhibition of cell
proliferation. Possibly, primary mouse lymphocytes are less
sensitive to pro-oxidative products formed under the current
experimental conditions, compared to the human-derived
Jurkat cell line. Most likely, the balance between
concentrations of the antioxidant GSH and its pro-oxidative
degradation products is important. Further investigation in

Figure 7.  Determination of catalytic activity of H. suis GGT on.  L-Gln. Two mM Gln was incubated with HBSS or 2 µg/mL H.
suis GGT at 37°C for 2 hours, after which the concentration of released ammonia was determined using the Ammonia Assay Kit.
The mean data (± SD) of one representative experiment are shown (n=3). An * represents a statistically significant difference (p <
0.05) compared to HBSS-treated L-Gln (Student t test). HSGGT: recombinant H. suis GGT; HBSS: Hank’s balanced salt solution.
doi: 10.1371/journal.pone.0077966.g007
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primary mouse lymphocytes, using different concentrations of
H. suis GGT and/or GSH, will allow us to determine whether an
effect similar to that seen in Jurkat cells occurs.

IFN-γ, IL-4 and IL-17A are considered to be signature
cytokines secreted by T helper (Th) 1, Th2 or Th17 cells,
respectively [74]. In the present study, IFN-γ secretion by
activated CD4+ T cells seems unaffected by H. suis GGT

treatment, whereas H. suis GGT treatment did inhibit IL-4 and
IL-17A secretion by activated CD4+ T cells, showing that the
effects of H. suis GGT on the proliferation of CD4+ helper T
lymphocytes also affect the functional secretion of cytokines
involved in the maintenance of an immune response.

In summary, H. suis GGT was found to inhibit the
proliferation of lymphocytes, making it the first discovery of a

Figure 8.  The role of L-Gln supplementation to H. suis γ-glutamyl transpeptidase (GGT)-treated Jurkat T cells and murine
splenocytes.  Jurkat T cells were incubated in medium supplemented with L-Gln (0 mM to 10 mM) for 72 hours (A) in the presence
or absence of 2 µg/mL recombinant H. suis GGT, followed by cell proliferation detection by determining [3H]-thymidine uptake. CD4+

T cells (B) or CD8+ T cells (C) activated by anti-CD3 and anti-CD28 mAbs, were supplemented with L-Gln (0 mM to 10 mM) for 68
hours in the presence or absence of 1 µg/mL recombinant H. suis GGT, followed by cell proliferation detection by measuring [3H]-
thymidine uptake. The mean data (± SD) of one representative experiment (out of 3 performed in total) are shown for A-C (n=3). *
and # represent a statistically significant increase (p < 0.05 ) of cell proliferation by supplementing cells with a given L-Gln
concentration, compared to HBSS- or H. suis GGT-treated cells, respectively, without L-Gln supplementation (0 mM L-Gln) (one-
way ANOVA). An (a) indicates a higher proliferation rate of HBSS-treated cells, compared to H. suis GGT-treated cells for a given L-
Gln concentration (Student t test). *, #, and (a): p < 0.05. kcpm: the number of counts per minute (x1000) determined by β-
scintillation counting, as a measure of cellular proliferation; HSGGT: recombinant H. suis GGT; CD3/CD28 mAbs: anti-mouse CD3/
CD28 monoclonal antibodies; Gln: L-glutamine; -HSGGT: treated without recombinant H. suis GGT; +HSGGT: treated with
recombinant H. suis GGT.
doi: 10.1371/journal.pone.0077966.g008
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virulence factor of H. suis that affects the functions of immune
cells. Cell death plays an important role in this process.
Supplementation of H. suis GGT-treated lymphocytes with L-
Gln or GSH was able to modulate the observed inhibitory
effect, however in opposite ways. L-Gln was able to restore the
normal proliferation of the cells whereas supplementation with

reduced glutathione (GSH) aggravated the inhibition of
lymphocyte proliferation induced by H. suis GGT. In addition,
we demonstrated that the inhibition of T cell proliferation by H.
suis GGT is not identical for different lymphocyte subsets, and
that H. suis GGT also affects the cytokine secretion of CD4+

lymphocytes. Finally, we have generated data supporting our

Figure 9.  The role of GSH supplementation to H. suis γ-glutamyl transpeptidase (GGT)-treated Jurkat T cells and murine
splenocytes.  Jurkat T cells were incubated in medium supplemented with GSH (0 mM to 2 mM) for 72 hours (A) in the presence or
absence of 2 µg/mL recombinant H. suis GGT, followed by cell proliferation detection by measuring [3H]-thymidine uptake. The
mean data (± SD) of one representative experiment are shown (n=3). CD4+ T cells (B) or CD8+ T cells (C) activated by CD3/CD28
mAbs, were incubated in medium supplemented with GSH (0 mM to 2 mM) for 68 hours in the presence or absence of 1µg/mL
recombinant H. suis GGT, followed by cell proliferation detection by measuring [3H]-thymidine uptake, as shown by kcpm (counts
per minute; x1000) values. Shown are the mean values (± SD) of 3 independent experiments (n=9). An * indicates a decrease of
cell proliferation of H. suis GGT-treated cells supplemented by a given GSH concentration, compared to H. suis GGT treated cells
without GSH supplementation (0 mM GSH) (one-way ANOVA). An # indicates an increase of cell proliferation of HBSS-treated cells
supplemented by a given GSH concentration, compared to HBSS-treated cells without GSH supplementation (0 mM GSH) (one-
way ANOVA). An (a) indicates the relative increase of the difference of cell proliferation between HBSS-treated cells and H. suis
GGT-treated cells at an indicated concentration of GSH, compared to 0 mM GSH-treated cells (Student t test). *, #, and (a): p <
0.05. kcpm: the number of counts per minute (x1000) determined by β-scintillation counting, as a measure of cellular proliferation;
HSGGT: recombinant H. suis GGT; CD3/CD28 mAbs: anti-mouse CD3/CD28 monoclonal antibodies; GSH: reduced glutathione; -
HSGGT: treated without recombinant H. suis GGT; +HSGGT: treated with recombinant H. suis GGT.
doi: 10.1371/journal.pone.0077966.g009
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hypothesis that the uptake and processing of H. suis OMV by
epithelial cells may result in the delivery of active H. suis GGT
to lymphocytes residing in the deeper mucosal layers. The
above described findings may explain part of the mechanisms
by which H. suis establishes a chronic infection in its preferred
niche.
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