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Background: Metabolomics studies to date have described widespread metabolic reprogramming events 
during the development of non-squamous non-small cell lung cancer (NSCLC). Extending far beyond the 
Warburg effect, not only is carbohydrate metabolism affected, but also metabolism of amino acids, cofactors, 
lipids, and nucleotides. 
Methods: We evaluated the clinical impact of metabolic reprogramming. We performed comparative 
analysis of publicly available data on non-squamous NSCLC, to identify concensus altered metabolic 
pathways. We investigated whether alterations of metabolic genes controlling those consensus metabolic 
pathways impacted clinical outcome. Using the clinically annotated lung adenocarcinoma (LUAD) cohort 
from The Cancer Genome Atlas, we surveyed the distribution and frequency of function-altering mutations 
in metabolic genes and their impact on overall survival (OS).
Results: We identified 42 metabolic genes of clinical significance, the majority of which (37 of 42) 
clustered across three metabolic superpathways (carbohydrates, amino acids, and nucleotides) and most 
functions (40 of 42) were associated with shorter OS. Multivariate analyses showed that dysfunction of 
carbohydrate metabolism had the most profound impact on OS [hazard ratio (HR) =5.208; 95% confidence 
interval (CI): 3.272 to 8.291], false discovery rate (FDR)-P≤0.0001, followed by amino acid metabolism (HR 
=3.346; 95% CI: 2.129 to 5.258), FDR-P≤0.0001 and nucleotide metabolism (HR =2.578; 95% CI: 1.598 to 
4.159), FDR-P=0.0001. The deleterious effect of metabolic reprogramming on non-squamous NSCLC was 
observed independently of disease stage and across treatments groups.
Conclusions: By providing a detailed landscape of metabolic alterations in non-squamous NSCLC, our 
findings offer new insights in the biology of the disease and metabolic adaptation mechanisms of clinical 
significance. 
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Introduction

Cancer-associated metabolic reprogramming, a hallmark 
of tumorigenesis, refers to the biochemical processes that 
allow cells to retain energy, balance oxidation-reduction, 
and synthesize the extra building blocks required for 
cancer cell development, proliferation, and survival (1). In 
non-small cell lung cancer (NSCLC), several metabolic 
alterations have been shown to support cancer progression. 
Driver mutations such as EGFR, ALK, and KRAS have 
been found in 30–40% of patients with NSCLC (2,3). 
Mutations in EGFR can promote metabolic remodeling in 
NSCLC by increasing glycolysis and alterating pyrimidine 
biosynthesis (4). ALK rearrangements lead to upregulation 
of glucose metabolism, which is usually associated with 
more aggressive cancer phenotypes (5). Mutations in KRAS 
have been associated with upregulation of glucose uptake 
and the Warburg effect (6). Metabolic reprogramming is 
also a therapeutic target in non-squamous NSCLC. The 
clinical utility of antimetabolites such as pemetrexed and 
fluoropyrimidines is partly attributable to their ability to 
interfere with the increased metabolic demands of cancer 
cells for nucleotide biosynthesis and DNA replication (7-9).

Several groups have explored metabolic reprogramming 
role in non-squamous NSCLC by using mass spectrometry 
(10-12) and produced comprehensive maps of altered 
metabolites for different disease stages, demonstrating clear 
differences between malignant and benign tissues. Wikoff 
et al. (10), analyzed cellular metabolites from tissue samples 
of patients with stages IA-B lung adenocarcinoma (LUAD) 
using gas chromatography-time-of flight mass spectrometry 
(GC-TOF-MS) and Moreno et al. (11) analyzed cellular 
metabolites from tissue samples of patients with stages I-III 
LUAD using ultra performance liquid chromatography 
tandem mass spectrometry (UPLC/MS/MS) with gas 
chromatography mass spectrometry (GC-MS). Results from 
both studies showed broad metabolic alterations between 
malignant and non-malignant LUAD tissue, which affected 
40% of metabolic functions that were investigated.

However, one key question remains: Do all metabolic 
alterations associated with LUAD equally impact clinical 
outcome or are some merely bystander events resulting 
from rapid cell growth? To answer this question, we applied 
a systems biology approach to (I) define consensus altered 
metabolic functions in non-squamous NSCLC, (II) identify 
the pool of genes directly controlling those metabolic 
functions using Kyoto Encyclopedia of Genes and Genomes 
(KEGG), and (III) interrogate The Cancer Genome Atlas 
(TCGA) to identify the metabolic alterations associated 

with overall survival (OS) in LUAD. Among consensus 
metabolic alterations, we identified 42 metabolic genes of 
clinical significance. The majority of them clustered within 
three metabolic superpathways (carbohydrates, amino acids, 
and nucleotides) and were associated with shorter OS. We 
present the following article in accordance with the STARD 
reporting checklist (available at https://tlcr.amegroups.com/
article/view/10.21037/tlcr-22-377/rc).

Methods

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). 

Metabolic data normalization and comparison 

Quantitative data from two independent retrospective 
studies by Wikoff et al. (10) and Moreno et al. (11), that 
compared metabolic differences between malignant and 
benign NSCLC tissues, were compared. The Wikoff study 
surveyed 39 stages IA-B LUAD tumors and identified 
183 altered metabolites; the Moreno study surveyed 33 
stages IA-IIIB LUAD tumors and identified 851 altered 
metabolites (Table S1). To compare metabolic alterations 
between these two studies, we compiled the reported data, 
normalized the cellular metabolite nomenclature across 
studies using the KEGG ENZYME database (13), and 
calculated (or compiled when such data was available) 
log2 fold changes between malignant and benign NSCLC 
tissues. Cellular metabolites with log2 fold-change ranging 
from −1.52 to +3.20 and a false discovery rate (FDR)-
adjusted P value <0.05 in at least one of the studies were 
considered significantly altered in non-squamous NSCLC. 

Metabolic pathways annotation and gene ontology 

To group cellular metabolites into metabolic pathways and 
superpathways, based on the biosynthesis or metabolism 
of related compounds, we used the KEGG PATHWAY 
database (RRID: SCR_012773) (14). We used the KEGG 
ENZYME database to identify each catabolic and anabolic 
enzyme associated with those metabolic pathways and the 
genes coding them (13), thereby converting the altered 
metabolic pathways and superpathways into gene signatures.

Whole exome sequencing (WES) data were used to 
identify function-altering mutations of metabolic enzyme 
coding genes. Transcriptomic (RNAseq) data were used to 

https://tlcr.amegroups.com/article/view/10.21037/tlcr-22-377/rc
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confirm and quantify metabolic gene expression. WES and 
RNAseq data from non-squamous NSCLC (LUAD cohort) 
were obtained from TCGA v21.0 (RRID: SCR_003193) 
(https://portal.gdc.cancer.gov/). Function-altering 
mutations were defined as non-synonymous mutations with 
an allele frequency >10%, a SIFT score <1, and a PolyPhen 
score >0. Included in the list of non-synonymous mutations 
were mutations modifying upstream or downstream 
genes, as well as splice region, frameshifts, mutations in 
introns, and 3' and 5' untranslated regions. Metabolic 
gene transcript abundance estimates calculated by the 
Cancer Genome Analysis group at the Broad Institute 
using RNA-Seq by Expectation Maximization (RSEM) (15)  
were compiled from GDAC Firehose (gdac_rnaseqv2_
genes_RSEM_normalized_Level_3, 2016-02-18). Relative 
expression of metabolic genes are reported as number of 
transcripts per million mapped reads.

Clinical annotation of metabolomic and genomic non-
squamous NSCLC cohorts

For each metabolomic cohort, we compiled demographic 
and clinical data from the 39 patients surveyed in the 
Wikoff study and 33 in the Moreno study (10,11). For 
the genomic cohort, demographic, clinical, and treatment 
information were compiled using GDAC Firehose 
(http://gdac.broadinstitute.org/), a TCGA data analysis 
infrastructure developed by the Broad Institute. The TCGA 
LUAD cohort contained 585 patients; however, clinical 
information was missing for 63 patients and thus were 
removed from the analyses; 522 TCGA LUAD patients 
were included in the final analyses (Table S1). All patients 
from both metabolomic cohorts and TCGA were treatment 
naïve.

Statistical analysis

Descriptive statistical analysis was performed with 
Graphpad Prism 9. ANOVA and pair-wise comparison 
analysis was performed using JMP15 software (RRID: 
SCR_014242) (SAS Institute, Cary, NC, USA). One-
way ANOVA was used to test the frequency of function-
altering mutations between metabolic pathways, and pair-
wise comparison was used to compare differences between 
each metabolic pathway. Pair-wise comparison was also 
used to compare differences in metabolic genes expression 
between mutated vs. non-mutated genes. Fisher’s exact test 
was applied to determine whether demographic or clinical 

factors affect the frequency of mutations in genes of clinical 
significance in OS. Differences were considered significant 
at P<0.05.

Cox proportional hazards model was used to identify 
genes associated with survival in LUAD patients. The 
Benjamini-Hochberg procedure was used to control the 
FDR. Genes associated with survival (raw P value <0.1) 
were selected and grouped into their respective biochemical 
pathways. 

For each patient, if a mutation was detected in at least 
one gene on the pathway, the patient was considered to 
have a mutation in this pathway. Cox proportional hazards 
model was then used to study the association between 
mutation on each pathway and survival time. Age, gender, 
smoking status, tumor stage, and therapy (chemo- or 
radiation therapy) were adjusted in the model. Hazard 
ratios and confidence intervals were calculated. Pathways 
with FDR-P<0.05 were considered statistically significant. 
To determine whether the effect of pathway mutations on 
OS varies by cancer stages or treatment type, pathway × 
stage interaction and treatment × stage interaction effect 
were also included in the initial Cox regression model. 
Interaction terms with P>0.2 were removed from the final 
model.

Results

Conserved patterns of metabolic alterations in non-
squamous NSCLC across metabolomics studies

We compared quantitative analyses data from two 
retrospective studies by Wikoff et al. and Moreno et al. (10,11), 
comparing metabolic differences between malignant and 
benign NSCLC tissues. To account for methodological 
differences, we restricted our analyses to metabolites 
quantified in both studies. To compare data between these 
two studies, we normalized nomenclature of metabolites of 
reported data, compiled (or calculated) log2 fold changes 
and FDR-adjusted P values for each cellular metabolite 
detected in both studies. Thirty one of 183 tested (16.9%) 
in the Wikoff study and 49 of 581 tested (8.4%) in the 
Moreno study (Figure 1, FDR-P<0.05) were detected at 
significantly different levels between normal tissue and 
LUAD tissue, while 27 significantly altered metabolites 
were shared by both studies. 

In total, we found that 53 cellular metabolites were 
detected at different levels between malignant and benign 
LUAD tissues in at least one of the studies (Figure 1, 

https://cdn.amegroups.cn/static/public/TLCR-22-377-Supplementary.pdf
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Metabolite Superpathway Pathway Lung Adenocarcinoma_Wikoff
log2 fold change

Lung Adenocarcinoma_Moreno
log2 fold change

alanine

Amino acids

Alanine, aspartate and glutamate 
metabolism

0.26* 0.29*
asparagine 0.26 0.89*
aspartate 1,2 0.00 -0.27*
glutamate 1,3,4 0.49* 0.31*
citrulline

Arginine biosynthesis
-0.58* -0.21

glutamine 5,6,7 0.14 0.14*
urea 5,6,7 0.00 0.21*
creatine

Arginine and proline metabolism

0.49* 0.52*
ornithine 1,4 -0.93* -0.16
proline 0.49* 0.38*
putrescine 4 0.14 1.71*
spermidine 4 -0.49* 0.41*
trans-4-hydroxyproline 0.38* 0.41*
ascorbate

Glutathione metabolism

0.68 3.20*
cysteine 0.68* 1.01*
glycine 5 0.14 0.27*
5-oxoproline 0.14* 0.00
fucose 8

Carbohydrates

Amino sugar metabolism 0.58* 1.21*
citrate 7

Citrate cycle
-0.68* -0.68*

malate 0.38* 0.71*
fructose

Fructose and mannose metabolism
0.26 0.54*

mannitol -0.49 0.37*
sorbitol 0.49 1.16*
3-phosphoglycerate 9,10

Glycolysis, gluconeogenesis -1.14* -1.52*
glucose 9,11 -1.00* -0.64*
ribose Pentose phosphate cycle 0.00 1.06*
nicotinamide

Cofactors 
Nicotinate and nicotinamide metabolism 0.49* 0.49*

flavin adenine dinucleotide Riboflavin metabolism 0.26* 0.39*
ribitol 0.85* 1.06*
1-monopalmitin

Lipids

Fatty Acid biosynthesis 0.14* 0.32*
2-monopalmitin 0.26 0.68*
glycerate 9

Glycerolipid metabolism
0.49* -0.92*

glycerol 0.26* 0.42*
glycerol 3-phosphate 0.26 0.31*
dihydrosphingosine

Sphingolipid metabolism
-0.58* -0.47

phosphoethanolamine 0.49 0.64*
serine 0.14 0.23*
adenine

Nucleotides

Purine metabolism

0.58* 0.34*
adenosine 0.38* 0.43*
guanosine 0.00 0.63*
hypoxanthine 0.14 0.17*
inosine 0.14 0.64*
inosine 5'-monophosphate 1.81* 0.10*
urate 0.49* 0.24*
xanthine 1.43* 0.59*
xanthosine 0.14 1.03*
5,6-dihydrouracil

Pyrimidine metabolism

1.26* 1.64*
beta-alanine 0.14 0.34*
orotate 0.26 0.62*
thymine 0.26 1.08*
uracil 0.49* 0.60*
uridine 0.49* 0.15*
uridine monophosphate (5' or 3') 0.14 1.06*

log2 fold change
≤-1.5

≥1.5

Figure 1 Metabolic alterations in non-squamous NSCLC detected by mass spectrometry across metabolomic studies. Log2 fold changes 
in metabolites between malignant and non-malignant non-squamous NSCLC tissues were calculated in a comparative analysis of publicly 
available data from Wikoff et al. (10) and Moreno et al. (11). Red indicates metabolite concentrations with log2 fold changes between −1.52 
and 0 in tumor tissues; green indicates metabolite concentrations with log2 fold changes between 0.1 and +1.82 in tumor tissues. Asterisk 
(*) indicates values that were significantly altered between malignant and non-malignant tissues (FDR-adjusted P values <0.05). Numbered 
annotations identify metabolites that belong to the following metabolic pathways, as determined by the KEGG annotation tool: 1, arginine 
biosynthesis; 2, nicotinate and nicotinamide metabolism; 3, arginine and proline metabolism; 4, glutathione metabolism; 5, purine metabolism; 
6, pyrimidine metabolism; 7, alanine, aspartate and glutamate metabolism; 8, fructose and mannose metabolism; 9, pentose metabolism; 10, 
glycerolipid metabolism; 11, amino sugar metabolism. NSCLC, non-small cell lung cancer; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; FDR, false discovery rate.
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FDR-P<0.05). Across both data sets, 43 of those cellular 
metabolites (81.2%) were at higher concentrations in 
LUAD tumor tissue than in normal tissue, and 4 (7.5%) 
were at lower concentrations; 6 (11.3%) had discrepant 
results between studies. The magnitude of metabolic 
alterations was also very similar between the two studies 
(median log2 fold-change: 0.26, range −1.14 to +1.81 vs. 
0.46, range −1.52 to + 3.20; P=0.912). Using the KEGG 
PATHWAY database, we categorized the 53 metabolites 
associated with LUAD into their respective 16 metabolic 
pathways, which clustered into 5 superpathways: amino acid, 
carbohydrate, cofactor, lipid, and nucleotide metabolism 
(Figure S1).

Evenly distributed cellular metabolism alterations in  
non-squamous NSCLC across metabolic superpathways

Given the similarities in metabolic alterations between the 
two LUAD cohorts, we hypothesized that gene mutations 
in those 16 metabolic pathways may be responsible for the 
alterations in the corresponding metabolites. Using KEGG 
ENZYME database, we catalogued 736 genes coding for 
the 490 enzymes that control the 16 metabolic pathways  

(Table 1). One hundred seventy six of 736 genes (23.9%) coded 
for enzymes directly controlling anabolism or catabolism 
of the 53 cellular metabolites altered in non-squamous 
NSCLC, the remaining 560 genes more broadly controlling 
the 16 metabolic pathways of interest. The number of genes 
that control each metabolic pathway varied between 8 for 
riboflavin metabolism and 133 for purine metabolism, with a 
median of 42.5 genes per pathway (Figure S1).

We analyzed the WES data of the 522 patients 
represented in TCGA with LUAD for function-altering 
mutations in those 736 genes controlling cellular 
metabolism, and we identified 4,608 unique variants. 
The incidence of metabolic gene mutations was low 
(6.29%±0.25%), and the frequency of function-altering 
mutations was evenly distributed across superpathways 
(Figure 2A). However, pair-wise comparisons of pathway 
mutation frequencies did show some significant differences. 
The glutathione metabolism pathway (GSH), part of the 
amino acids superpathway, had a lowest mutation frequency 
than other pathways of amino acids superpathway (0.74% 
vs. 1.66% or 1.83%, P=0.0034 or P=0.0302 for alanine, 
aspartate and glutamate metabolism or arginine and 
proline metabolism, respectively). Mutation frequency 

Table 1 Genes regulating metabolic pathways altered in non-squamous non-small cell lung cancer

Metabolic superpathway Metabolic pathway Number of enzymes Number of enzyme-encoding genes

Amino acids Alanine, aspartate & glutamate metabolism 35 37

Glutathione metabolism 31 57

Arginine biosynthesis 13 22

Arginine and proline metabolism 43 51

Carbohydrates Amino sugar 44 48

Citrate cycle 20 30

Fructose and mannose metabolism 23 33

Glycolysis, gluconeogenesis 43 67

Pentose metabolism 25 30

Cofactors Nicotinate and nicotinamide metabolism 24 35

Riboflavin metabolism 9 8

Lipids Fatty acid biosynthesis 15 18

Glycerolipid metabolism 33 61

Sphingolipid metabolism 32 49

Nucleotides Purine metabolism 66 133

Pyrimidine metabolism 34 57

https://cdn.amegroups.cn/static/public/TLCR-22-377-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-22-377-Supplementary.pdf
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0.698

0.010

0.727
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0.023

0.971

0.896

0.029

0.0320.037

A B

Figure 2 Frequency of metabolic gene mutations in non-squamous non-small cell lung cancer. (A) Frequency of metabolic gene mutations 
in lung adenocarcinoma TCGA cohort. Each point represents the frequency (%) of function-altering mutations in individual metabolic 
genes classified by metabolic superpathway. (B) Heatmap of pair-wise comparisons of the mutation frequency of genes among the metabolic 
pathways to which they belong. Values in bold are significantly different (P<0.05). ANOVA, analysis of variance; Ala, Asp, Glu: alanine, 
aspartate and glutamate metabolism; GSH, glutathione biosynthesis; Arg biosyn, arginine biosynthesis; Arg and Pro, arginine and proline 
metabolism; Amino sugar, amino sugar metabolism; Citrate cycle, citric acid cycle; Fruct., Mann., fructose and mannose metabolism; 
glycolysis, glycolysis and gluconeogenesis; PPP, pentose metabolism; NADH, nicotinate and nicotinamide metabolism; Riboflavin, riboflavin 
metabolism; FAS, fatty acid biosynthesis; Glycerolipid, glycerolipid metabolism; Sphingolipid, sphingolipid metabolism; Purine, purine 
metabolism; Pyrimidine, pyrimidine metabolism; TCGA, The Cancer Genome Atlas.

of GSH was significantly lower than metabolic pathways 
of carbohydrates (0.74% vs. 1.05%; 1.30%; 1.13% and 
1.26%; P=0.0305, P=0.0143, P=0.0131, P=0.0015 for amino 
sugar metabolism; citrate cycle, fructose and mannose 
metabolism or glycolysis, respectively), lower than fatty 
acid synthesis and glycerolipid metabolism (0.74% vs. 
1.61% and 1.46%, P=0.0003 and P=0.0015 for fatty acid 
synthesis and glycerolipid metabolism, respectively). The 
frequency of mutations in GSH was also lower than the 
purine metabolism pathway (0.74% vs. 1.45%, P=0.0015)  
(Figure 2B). Only one gene was found mutated in more 
than 10% of patients—the gene encoding CPS1, part of the 
alanine, aspartate and glutamate metabolic pathway (amino 

acids superpathway). CPS1 is a mitochondrial enzyme 
catalyzing synthesis of carbamoyl phosphate from ammonia 
and bicarbonate.

Metabolic gene mutations associated with OS in non-
squamous NSCLC

We estimated the median follow up time to be 23.93 months  
for the 522 patients using the reverse Kaplan-Meier 
approach (16) (Table S1). Using clinical outcome data for 
these patients available through TCGA, we performed 
univariable analyses to determine whether any function-
altering mutations in the 736 metabolic genes were 

https://cdn.amegroups.cn/static/public/TLCR-22-377-Supplementary.pdf
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associated with OS from TCGA LUAD cohort. Each 
gene was analyzed using a separate Cox regression model. 
Mutations in 42 genes were associated with OS (raw P<0.1) 
(Figure S2); 40 were associated with shorter OS (average 
HR =9.46, median HR =3.74, min–max 1.80–141.83), 
and two genes were associated with longer OS (PDE10A: 
HR =0.37, P=0.0866; GAD2: HR =0.30, P=0.0901). The 
mutation frequency for genes associated with OS was not 
significantly different from that of other metabolic genes 
(P=0.71; Figure S3).

We tested whether the 42 genes of clinical significance 
were expressed among tumors containing function altering 
mutations. All but one gene (GAD2) was expressed in non-
squamous NSCLC tumors. Three metabolic genes (7.1%) 
were differentially expressed, each of them had higher 
transcript abundance estimate (i.e., transcripts per million 
estimated reads) in tumors containing function altering 
mutations compared with tumors with non-mutated 
metabolic genes: GBA (2,440±289 vs. 1,849±34); DGKG 
(150±25 vs. 97.1±4.1); GSS (1,653±204 vs. 1,215±20), all 
P<0.05 (Table S2).

To validate our data in a biological context, we further 
investigated whether the 42 clinically significant metabolic 
genes identified using our genomic TCGA cohort (Figure 3), 
were associated with metabolic alterations detected by mass 
spectrometry (MS) in the metabolomic studies (Figure 1). 
Using the KEGG ENZYME database we found that 34 of the 
42 metabolic genes of clinical significance (81%) controlled 
non-squamous NSCLC metabolic alteration that was 
identified by MS (Figure 3, Figure S4). While 23 metabolic 
genes (54.8%) were associated with metabolic alterations 
detected in both metabolomic studies (10,11), there were 
eleven genes (26.2%) with metabolic alterations detected 
only in the Moreno study (11). The remaining 8 metabolic 
genes (19%), coding for 6 metabolic enzymes, did not match 
metabolomic studies findings (Figure 3). Lastly, among the 
53 non-squamous NSCLC metabolic alterations detected by 
MS, 11 showed no association with metabolic genes of clinical 
significance (Figure 1, Figure S4).

Ninety-three percent of the clinically significant 
metabolic genes in LUAD (38 of 42) were concentrated 
across three superpathways: amino acids, carbohydrates and 
nucleotides. Within the amino acids superpathway, non-
silent mutations of genes controlling glutathione catabolism 
or proline levels (Figure S4B,S4D) were associated with 
shorter OS. Similarly, alterations to glucose, fructose 
and mannose metabolism (carbohydrates superpathway, 
Figure S4G-S4H) and uric acid biosynthesis (nucleotides 

superpathway, Figure S4O) were also associated with shorter 
survival. Two metabolic alterations were associated with 
longer OS: glutamate/glutamine biosynthesis (glutamate 
decarboxylase 2, GAD2; Figure S4A) and cAMP/cGMP 
hydrolysis (phosphodiesterase 10A, PDE10A, Figure S4O).  
The fourteen metabolites that were not associated with 
clinical significance were evenly distributed between the five 
superpathways (Figure S4) (11).

Independent association of metabolic alterations in non-
squamous NSCLC with shorter OS

To measure the relative association of each metabolic 
superpathway with OS, we grouped the 40 metabolic genes 
associated with shorter survival (Figure S2) as follows: 
amino acids (14 genes), carbohydrates (15 genes), cofactors 
(two genes), lipids (6 genes) and nucleotides (7 genes). Four 
genes were shared across more than one superpathway 
(Figure 3). 

We first tested the effect of gender (male vs. female), 
smoking status (non-smoking vs. smoking) and disease stage 
(early vs. late stage) on the frequency of mutated metabolic 
genes in the genomic TCGA LUAD cohort, grouping 
clinically significant genes by superpathways. We found that 
smoking status significantly impacted mutation frequency 
of clinically relevant genes controlling amino acid and 
nucleotide metabolic superpathway (Table S3). In both 
superpathways, smokers had almost double the mutation 
frequency of non-smokers: [amino acid 19.2% vs. 10.8% 
(P=0.027)] and [nucleotide 20.9% vs. 10.0% (P=0.004)]. We 
then tested the impact of the aforementioned demographic 
and clinical variables on clinical outcome and found that 
patients presenting with later stage disease had a worse 
overall clinical outcome (P<0.0001). No differences were 
observed among the other variables. On the basis of these 
results, we adjusted our model for gender, age, smoking 
status, disease stage, and therapy modality (chemotherapy 
and radiation therapy). Interaction terms were not considered 
in this analysis. After controlling for confounding factors, we 
found that carbohydrate metabolism had the biggest effect 
on OS (HR =5.21; 95% CI: 3.27 to 8.29; FDR-P<0.0001) 
followed by lipids (HR =4.05; 95% CI: 2.55 to 6.69; 
FDR-P<0.0001), cofactors (HR =4.00; 95% CI: 1.90 to 8.45; 
FDR-P=0.0003), amino acids (HR =3.35; 95% CI: 2.13 to 
5.26; FDR-P<0.0001), and nucleotides (HR =2.58; 95% CI: 
1.60 to 4.16; FDR-P=0.0001; Table 2).

Compared with the two metabolomic cohorts , 
the genomic TCGA LUAD cohort is comprised of a 
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Figure 3 Association between altered metabolites identified by mass-spec and metabolic genes of clinical significance in non-squamous non-
small cell lung cancer. Metabolites in dark blue are those found to be significantly altered by both gas chromatography-time-of flight mass 
spectrometry (GC-TOF-MS) and liquid chromatography tandem mass spectrometry coupled with gas chromatography mass spectrometry 
(UPLC/MS/MS coupled with GC-MS); metabolites in light blue are those to be found significantly altered only by UPLC/MS/MS coupled 
with GC-MS, metabolic functions colored in white were not identified by either technique. Orange indicates non-synonymous alterations 
in metabolic genes associated with shorter OS, and green indicates non-synonymous alterations in metabolic genes associated with longer 
OS. Asterisk (*) indicates metabolite, being present in several metabolic pathways. 1, enzymes, directly catabolize or anabolize metabolite; 2, 
enzymes, catabolize or anabolize of an immediate metabolic precursor or byproduct. UDP-GlcA, uridine 5'-diphosphoglucuronic acid; GC-
MS, gas chromatography mass spectrometry; OS, overall survival.

Metabolite
Metabolic enzyme of clinical significance

Superpathway Pathway
Direct metabolizing enzyme (1) Indirect metabolizing enzyme (2)

Glutamate*
GAD2 (4.1.1.15)

Amino acids

Alanine, aspartate and glutamate meta
GLS2 (3.5.1.2)

Cysteine
LAP3 (3.4.11.1)

Glutathione metabolism

GGT5 (2.3.2.2)
GGT5 (3.4.19.13)

5-oxoproline GGT5 (2.3.2.2)

Glycine

LAP3 (3.4.11.1)
GSS (6.3.2.3)

GGT5 (3.4.19.13)
GGT5 (2.3.2.2)

Glutamate*

GGT5 (2.3.2.2)
MGST3 (2.5.1.18) 
GSTA1 (2.5.1.18)
GSTM5 (2.5.1.18)

Glutathione (GSH)

MGST3 (2.5.1.18)
GSTA1 (2.5.1.18)
GSTM5 (2.5.1.18)
GGT5 (3.4.19.13)
GGT5 (2.3.2.2)

LAP3 (3.4.11.1)
Glutamine GLS2 (3.5.1.2) Arginine biosynthesis

Proline
PYCR2 (1.5.1.2)

Arginine and proline metabolism

P4HA2 (1.14.11.2)
LAP3 (3.4.11.5)

Putrescine
AOC1 (1.4.3.22)

ALDH1B1 (1.2.1.3)
Spermidine SMS (2.5.1.22)

Trans-4-hydroxyproline
P4HA2 (1.14.11.2)
PYCR2 (1.5.1.2)

Canosine synthesis CARNS1 (6.3.2.11)
UDP-GlcA UGDH (1.1.1.22)

Carbohydrates

Amino sugar metabolism
N-acetyl-D-mannosamine

GNE (3.2.1.183)
UAPL1 (2.7.7.23)

N-acetylneuraminate
CMAS (2.7.7.43)

CYB5RL (1.6.2.2)
Citrate CS (2.3.3.1)

Citrate cycleMalate CS (2.3.3.1)
2-oxoglutarate to succinyl-CoA conversion DLST (2.3.1.61)
Fructose AKR1B1 (1.1.1.21)

Fructose and mannose metabolis
Mannitol AKR1B1 (1.1.1.21)
Sorbitol AKR1B1 (1.1.1.21)

Mannose-6P
PMM1 (5.4.2.8)

GMPPA (2.7.7.13)

3-phosphoglycerate
BPGM (5.4.2.11)

Glycolysis, gluconeogenesis

BPGM (5.4.2.4)
Glucose PGM2 (5.4.2.2)

Acetyl-CoA
ACSS2 (6.2.1.1)

ALDH3A1 (1.2.1.5)
L-lactate LDHAL6A (1.1.1.27)

Ribose
RBKS (2.7.1.15)

Pentose phosphate cycle
PGM2 (5.4.2.7)

NAD+ to nicotinamide mononucleotideconversion
NMNAT3 (2.7.7.1)

Cofactors
Nicotinate and nicotinamide metabolism

ENPP3 (3.6.1.9)
Flavin adenine dinucleotide ENPP3 (3.6.1.9) Riboflavin metabolism
Glycerate ALDH1B1 (1.1.1.3)

Lipids
Glycerolipid metabolism

Glycerol
AKR1B1 (1.1.1.21)

ALDH1B1 (1.1.1.3)
Glycerol 3 phosphate AKR1B1 (1.1.1.21)

Ethanolamine
DGKG (2.7.1.107)
LPL (3.1.1.34)

Cerarnide formation
ENPP7 (3.1.4.12)

Sphingolipid metabolism
GBA (3.2.1.45)

Adenine ADA (3.5.4.4)

Nucleotides
Purine metabolism

Adenosine ADA (3.5.4.4)
Guanosine ENPP3 (3.6.1.9)
2'-deoxyguanosine DGUOK (2.7.1.113)
Hypoxanthine ADA (3.5.4.4)
Inosine ADA (3.5.4.4)
Inosine 5'-monophosphate ADA (3.5.4.4)

Cyclic nucleotides concentration regulation
ADCY2 (4.6.1.1.)
GUCY2C (4.6.1.2)
PDE10 (3.1.4.35)

CAMPconcentration regulation
PDE10 (3.1.4.17)
ADCY2 (4.6.1.1)

Thymine TK1 (2.7.1.21)
Pyrimidine metabolism

Uridine monophosphate (5' or 3') ENPP3 (3.6.1.9)
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heterogeneous NSCLC patient population (Table S1). 
Most patients (77%) had early-stage disease (I–II). Fifty-
four percent received chemotherapy only and 31% patients 
received radiation therapy only. For both treatment groups, 
patients with early-stage disease had more favorable clinical 
outcomes than those with later stage disease. For patients 
treated with chemotherapy only, the median survival time 
for early stage disease was 103.9 months, and for later stage 
disease was 41.5 months. For patients treated with radiation 
therapy only, the median survival time for early stage disease 
was 76.0 months, and for later stage disease was 15.0 months.

To examine whether metabolic superpathway dysfunction 
may have differentially impacted clinical outcomes by disease 
stage, we added the pathway × stage interaction effect to the 
multivariable Cox regression model. We conducted three 
separate analyses by patients groups: all patients, patients 
who received chemotherapy only, and patients who received 
radiation therapy only). The pathway × stage interaction 
effect was not significant for any of the superpathways 
in these analyses; P values ranged from 0.23 to 0.99. 
Similarly, pathway × treatment (chemotherapy or radiation 
therapy) interaction effect was also not significant, with 
P values ranging from 0.61 to 0.92. Confidence intervals 
for hazard ratios overlaped between early stages (I–II)  
and late stages (III–IV), and between different treatment 
types (Figure S5). Taken together, dysfunction of individual 
metabolic superpathways (amino acids, carbohydrates, 
nucleotides, lipids or cofactors) was associated with OS 
independently of disease stage and treatment modality. 

Discussion

In this study, we sought to assess whether metabolic 
alterations in non-squamous NSCLC are a byproduct of 
accelerating cell growth or whether they may be a driving 

factor of tumor biology. Building on consensus findings 
from MS-based metabolomics studies, we developed a 
post-genomics research strategy to assess the clinical 
impact of metabolic alterations in non-squamous NSCLC. 
We specifically focused on five metabolic superpathways 
(amino acids, carbohydrates, cofactors, lipids, and 
nucleotides), reproducibly found altered in LUAD across 
metabolomic studies (10,11). Using KEGG PATHWAY 
and KEGG ENZYME databases to identify metabolic 
genes controlling those metabolic superpathways, we 
queried the TCGA LUAD genomic cohort for function-
altering mutations affecting those genes (KEGG-TCGA 
analysis), as a surrogate marker for metabolic alterations. 
While this approach allowed us to probe the association 
between clinical outcomes and specific metabolic functions 
in large and clinically annotated cohorts, it is not without 
limitations. It only provides an indirect assessment of 
metabolic functions in lung cancer and is restricted 
to metabolic genes presenting with function-altering 
mutations. As a result, the overall frequency of metabolic 
gene mutations may introduce a selection bias and 
diminished statistical power. Nonetheless, the metabolic 
genes we identified as clinically relevant did not present 
with a higher frequency of mutations or mutation severity 
score (SIFT and PolyPhen) in studied cohort.

The TCGA LUAD genomic cohort data has several 
important features that we were able to leverage in our 
study. The data represents a large sample size, extensive 
clinical annotation with almost 2 years of clinical follow-
up and includes comprehensive genomic data. While it 
provided us with a valuable hypothesis-generating dataset, 
we also acknowledge that it bears some limitations as it 
lacks extensive proteomic and metabolomic data and a 
matching validation cohort of comparable size, annotations, 
and length of clinical follow-up. In the context of metabolic 

Table 2 The relative association of individual metabolic alterations with overall survival of patients from lung adenocarcinoma cohort

Metabolic superpathway HR 95% CI P value FDR-P value

Amino acids 3.346 2.129–5.258 <0.0001 <0.0001

Carbohydrates 5.208 3.272–8.291 <0.0001 <0.0001

Cofactors 4.003 1.896–8.449 0.0003 0.0003

Lipids 4.054 2.547–6.690 <0.0001 <0.0001

Nucleotides 2.578 1.598–4.159 0.0001 0.0001

Forty genes that were associated with lower OS were grouped into five metabolic superpathways. The HR +/− 95% CI, P value and 
FDR corrected P value (FDR-P value) for each clinically relevant metabolic superpathway in lung adenocarcinoma cohort from the TCGA 
database. HR, hazard ratio; CI, confidence interval; FDR, false discovery rate; OS, overall survival; TCGA, The Cancer Genome Atlas.
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studies, these limitations are compounded by the fact 
that a complex network of endogenous and exogenous 
factors regulates cellular metabolomic activity (17). We 
demonstrated that 41 of 42 metabolic genes of clinical 
significance were indeed expressed in non-squamous 
NSCLC tumors. However, our genomic data do not to 
account for post-translational modification and metabolic 
activity regulation, for example, protein folding or stability, 
protein phosphorylation/acetylation/ubiquitination, 
substrate and cofactor availability, enzymatic activity 
overlap between metabolic enzyme isoforms or interplay 
between anabolic and catabolic enzymes. To overcome 
such limitations, we employed a biological validation 
approach in which we paired genomic data from the TCGA 
LUAD cohort with metabolomic data derived from two 
independent non-squamous NSCLS cohorts (8,9). We 
showed that 81% of clinically relevant genes (34 of 42) 
controlled anabolism or catabolism of altered metabolites in 
non-squamous NSCLC (converging of KEGG-TCGA and 
MS finding). In the context of our analytical input, where 
only 176 out of 736 (23.9%) metabolic genes tested directly 
controlled non-squamous NSCLC metabolic alterations, 
such high level of overlap (81%) between genomic and 
metabolomic findings suggests a non-stochastic distribution 
of metabolic genes of clinical significance. Eleven non-
squamous NSCLC metabolic alterations were unrelated 
to metabolic functions of clinical significance (MS findings 
only) and could be a byproduct of accelerating cell growth.

We found that clusters of genes controlling key 
metabolic functions of the carbohydrates metabolic 
superpathway had the most profound impact on OS. For 
instance, alterations in genes controlling glucose and 
fructose catabolism, two carbohydrates and key components 
of the Warburg effect, were associated with shorter OS. 
Metabolomic studies and clinical PET-CT examinations 
have previously shown that lung tumors exhibit hyperactive 
glucose metabolism (18,19). Lung tumors are dependent 
on glucose metabolism, and increased expression of 
glycolytic enzymes correlates with poor prognosis (20). In 
an unselected cohort of 342 patients with newly diagnosed 
NSCLC, patients with high levels of glucose in blood 
had shorter OS than those with normal glucose levels, 
independently of other prognostic factors (21). However, 
while hyperglycemia decreases the antiproliferative 
effect of chemotherapy in preclinical models, glycemic 
control interventions have shown inconsistent results 
in clinical trials (20). Beyond the Warburg effect, we 
found that alterations in mannose metabolism, a key 

carbohydrate in glycosylation (22), were also associated 
with shorter OS. Consistent with our results, high 
mannose-type glycans are prevalent in LUAD tissues (23)  
and are associated with disease progression (24).

Alterations to three additional gene clusters that 
control glutathione catabolism, proline synthesis (amino 
acids superpathway), and uric acid anabolism (nucleotides 
superpathway) were also associated with worse OS. The 
frequency of metabolic genes mutations controlling both 
amino acid and nucleotide superpathways was higher among 
smokers than non-smokers. Smoking is a known risk factor 
in NSCLC and is associated with poor clinical outcomes (25).  
In our model that was adjusted for variables such as 
smoking status, alterations in amino acid and nucleotide 
superpathways were independently associated with clinical 
outcome. In a hydrophilic environment, both glutathione 
and uric acid are antioxidants, acting as scavengers of 
free radicals produced by reactive oxygen species. Higher 
glutathione levels have been associated with resistance 
to both chemotherapy and radiation therapy (26,27). 
However, conflicting data in the literature supports the role 
of uric acid in cancer. Results of a study involving 354,110 
participants showed that serum uric acid was cancer-
protective and reduced risk cancer mortality (28), while data 
from another study involving 83,693 patients showed that 
high levels of serum uric acid were associated with a higher 
risk of all cancer mortality (29). In our study, alterations 
to genes controlling uric acid precursors anabolism was 
associated with shorter OS, suggesting that uric acid may 
indeed be harmful in non-squamous NSCLC. Similarly, our 
data showed that alterations to the biosynthesis of proline 
(i.e., PYCR2, P4HA2, and LAP3), a non-essential amino 
acid involved in cancer cell redox homeostasis (30,31) was 
associated with shorter OS. Overexpression of PYCR2 and 
P4HA2 has been described in many malignancies, including 
lung cancer (32,33). Conflicting with our findings, 
preclinical data attributed a pro-tumorigenic role to both 
genes in epithelial cancers (34,35).

While most of the metabolic genes that we identified 
as clinically relevant were associated with shorter OS, 
alterations to two genes were associated with improved 
OS: GAD2 and PDE10. Both metabolic genes are typically 
expressed in the brain and central nervous system but their 
ectopic expression in tumor types such as lung tumors has 
been described (36,37). Only PDE10 ectopic expression 
in non-squamous NSCLC tumors was confirmed in our 
study, GAD2 transcripts were not detected. GAD exists 
as two isoforms, GAD1 and GAD2, that shares enormous 
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sequence homology at the protein level, but have different 
affinity for the cofactor pyridoxal 5’phosphate and distinct 
intracellular localization. Evidence suggest the presence 
of alternative splicing of GAD1 and a functional truncated 
version of GAD2 (38). From analyses of the LUAD TCGA 
data, we observed that GAD1 mRNA expression was a 
5-fold increase in GAD1 mRNA expression within GAD2 
mutated tumor compared with non-mutated (313.2±47.4 vs. 
63.6±5, P<0.0001). GAD1/GAD2 catalyzes decarboxylation 
of glutamate to γ-aminobutyric acid (GABA), and PDE10A 
regulates various neurotransmitter receptors, including 
dopamine D1 and D2 (39,40). While emerging data suggest 
that cancer cells take advantage of the neurotransmitters-
initiated signaling pathway to activate proliferation and 
tumor progression (41), both GABA and dopamine mostly 
activate cancer growth (42,43). In addition to regulating 
transmitter receptors, PDE10 also hydrolyzes cGMP, a 
strong antineoplastic agent across several cancer types (44). 
While our data cannot resolve those contradictory roles 
for GAD1-2/PDE10 in tumor biology, it appeared that 
function-altering mutations of those genes were associated 
with improved clinical outcomes for the cohort of patients 
that we studied. As such, synthetic inhibitors of those 
two metabolic enzymes, some of which are currently in 
development (45,46), may warrant further investigation for 
the treatment of non-squamous NSCLC.

This study presents a novel post-genomic research 
strategy for identifying metabolic alterations associated 
with clinical outcomes in non-squamous NSCLC. We 
identified a strong consensus between cancer metabolism 
data obtained by MS methods and clinically annotated 
genomics data. By providing a detailed map of the landscape 
of metabolic alterations in non-squamous NSCLC, our 
findings may offer valuable insights into the biology of the 
disease and enable the identification of new therapeutic 
targets to overcome resistance to chemotherapy and 
radiation therapy. Additional clinical and functional studies 
will be warranted to validate those finding and determine 
the actionability of those metabolic alterations.
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