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mirPRo–a novel standalone 
program for differential expression 
and variation analysis of miRNAs
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Katia Del Rio-Tsonis1, & Chun Liang1,3

Being involved in many important biological processes, miRNAs can regulate gene expression by 
targeting mRNAs to facilitate their degradation or translational inhibition. Many miRNA sequencing 
studies reveal that miRNA variations such as isomiRs and “arm switching” are biologically relevant. 
However, existing standalone tools usually do not provide comprehensive, detailed information 
on miRNA variations. To deepen our understanding of miRNA variability, we developed a new 
standalone tool called “mirPRo” to quantify known miRNAs and predict novel miRNAs. Compared 
with the most widely used standalone program, miRDeep2, mirPRo offers several new functions 
including read cataloging based on genome annotation, optional seed region check, miRNA family 
expression quantification, isomiR identification and categorization, and “arm switching” detection. 
Our comparative data analyses using three datasets from mouse, human and chicken demonstrate 
that mirPRo is more accurate than miRDeep2 by avoiding over-counting of sequence reads and by 
implementing different approaches in adapter trimming, mapping and quantification. mirPRo is an 
open-source standalone program (https://sourceforge.net/projects/mirpro/).

MicroRNAs (miRNAs) are short non-coding RNAs (~22 nt in length) that regulate gene expression by 
binding mRNAs to facilitate their degradation or translational inhibition1. In animals, miRNAs target 
mRNAs through a complementary binding between their seed regions (ranging from 2 to 8 nt) and the 
3′ -UTRs of targeted mRNAs; in plants they target mRNAs through near-perfect base pairing1–3. During 
miRNA biogenesis, long primary miRNAs (pri-miRNAs) transcribed from the genome fold into hair-
pins that have two arms (5′  and 3′ ) and undergo cleavage to form shorter, hairpin-containing precursor 
miRNAs (pre-miRNAs, ~70–100 nt in length)1,4. Pre-miRNAs are then cleaved into 22-nt duplexes5. One 
strand of the duplex is selected as the mature miRNA that will be combined with the RNA-induced 
silencing complex (RISC)6 to participate in mRNA degradation and translational inhibition7, whereas 
the other strand called star strand (miRNA*) is degraded8,9. The strand of the duplex with the weaker 
binding at its 5′  end is usually selected as the mature miRNA3,10, but alternative strand selection, known 
as “arm switching”, has been found in different tissues and developmental stages11–14. Due to “arm switch-
ing”, different mature miRNAs can be generated from either the 5′  or 3′  arm of the same precursor 
hairpin (pre-miRNA). Known as miRNA variants, or isomiRs, one mature miRNA species can have 
some distinctive isoforms that vary in length and/or have different 5′  or 3′  ends15. This has been com-
monly reported in deep sequencing studies16,17. IsomiRs are mainly generated due to imprecise cleavage 
of pre-miRNAs, RNA editing and non-templated nucleotide addition at 3′  end of miRNAs1,15,18. Such 
non-templated nucleotide addition was shown to be the common form of miRNA enzymatic modifica-
tion19, and could influence miRNA stability20 and target repression21.
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miRNAs can regulate different biological processes such as cell proliferation, apoptosis, organismal 
development, tissue differentiation and regeneration1,18,22–24. miRNAs have been found to be the crucial 
regulators in the oncogenic pathways25 and are involved in many diseases26–29. Clearly, miRNA expression 
profiling analysis in experimental data is important for studying cellular functions and disease mecha-
nisms. Many miRNA analysis tools use miRNA sequencing data to identify known and novel miRNAs 
and detect their differential expression profiles, e.g., miRDeep230,31, omiRas32, miRanalyzer33 and miREx-
press34. Among them, miRDeep2 (i.e., the second version of miRDeep35) appears to be the most popular 
program and widely used for quantifying known miRNAs and predicting novel miRNAs31,36–39. However, 
we have discovered that miRDeep2 has the disadvantage of over-counting sequence reads and the ina-
bility to deal with mapped reads containing indels, affecting the detection of genetic variants. Moreover, 
miRDeep2 does not allow close examination of miRNA variations like isomiRs and “arm switching”, 
which appear to be indispensable to fully understand the biogenesis and biological functions of miRNAs.

In order to accurately quantify miRNAs and their variations, we developed a new standalone program 
named “mirPRo”, which is implemented in C+ +  for fast performance and adopts different approaches 
in adapter trimming, read mapping and miRNA quantification than miRDeep2. Like some existing tools 
such as IsomiRage40, sRNAbench41, isomiRex42, isomiRID43 and SeqBuster44, which have implemented 
isomiR analysis functions, mirPRo possesses isomiR detection capacity that miRDeep2 does not have. 
Furthermore, mirPRo offers unique functions (e.g., miRNA family expression quantification, read cat-
aloging based on genome annotation, seed region check, and “arm switching” identification) that are 
not provided by most other existing tools including omiRas32, miRanalyzer33 and miRExpress34. In this 
article, we first describe the design and implementation of mirPRo, then report data analysis results of 
three miRNA datasets45–46 using mirPRo, and finally compare in depth miRNA analysis results between 
miRDeep2 and mirPRo.

Results
Design and implementation of mirPRo. The mirPRo package is composed of a main program (i.e., 
mirpro) and several component programs (see Supplementary Figure S1). Some of these component pro-
grams can be utilized independently. For instance, mirpro_findAdapter is a generic program for detecting 
adapter sequences for RNA-Seq data; mirpro_feature_pro is designed for cataloging mapped reads in 
terms of gene annotation; and mirpro_armSwitch is a specific program for “arm switching” detection. 
mirPRo makes use of a few third-party tools (e.g., Novoalign47, HTSeq48, randfold49 and RNAfold50), 
which must be installed as pre-requisite tools. Both the main and component programs allow advanced 
tuning in their adjustable parameters. For general users, the whole package except mirpro_armSwitch 
can be executed automatically by initiating the main program, which takes one or more FASTQ data as 
inputs. mirpro_armSwitch needs to be invoked separately after the main program has generated results 
for different treatments or samples.

Starting with raw sequence data, mirPRo first conducts quality filtering on the reads. For efficient 
read-to-reference mapping, final clean reads in each library/sample are then collapsed in terms of 
sequence content, with expression numbers counted (i.e., the count of reads that support one collapsed 
read). For example, if two sequence reads have one nucleotide difference, they are collapsed as two 
different collapsed reads. Novoalign47 is then utilized to map collapsed reads against the pre-miRNAs 
(hairpins) downloaded from miRBase51. Using collapsed-read-to-hairpin mapping results and expression 
numbers of collapsed reads, we can derive mapping results for individual final clean reads. Novoalign47 
has the option to report the mappings by the best mapping score for each read. If a read has only one 
mapping with the best score, it will be treated as a unique mapping (i.e., it is mapped to one hairpin 
uniquely). Otherwise, a read has non-unique mappings (i.e., it is mapped to different hairpins), each of 
which must have the same mapping/alignment score.

Relying on both the canonical mature miRNAs and their pre-miRNA (hairpin) sequences down-
loaded from miRBase51, mirPRo performs known miRNA quantification using the algorithm illustrated 
in Fig.  1. If a final clean read passes both the position check and seed region check, it will be treated 
as a mature miRNA read. Otherwise, it will be discarded. The position check ensures that the end shift 
between a mature miRNA read and its canonical mature miRNA is no more than 3 nucleotides, while 
the seed region check ensures that both a mature miRNA read and its canonical mature miRNA share 
the same seed region. This algorithm also assures that there is no over-counting problem for mature 
miRNA reads by evenly dividing read counts among their mapped hairpins, if the reads have non-unique 
mappings. Based on the pre-miRNA family classification data downloaded from miRBase51, mirPRo 
provides expression quantification for each family by adding all mature RNA reads quantified to relevant 
mature miRNAs that belong to a given family. mirPRo predicts novel miRNAs using the algorithm from 
miRDeep230,31 with our modifications (see Methods).

For miRNA variation analysis, mirPRo is able to detect isomiRs - miRNA variants that are different 
from their canonical mature miRNAs annotated in miRBase51. As shown in Fig.  1, we allowed mis-
matches, indels and 5′ /3′ -soft-clips in mapping and 5′ /3′  nucleotide position shift in quantification, 
enabling mirPRo to detect isomiRs. mirPRo can detect potential “arm switching” cases by examining 
canonical mature miRNAs that have two forms (5p and 3p) and comparing their mature miRNA read 
counts between different treatments (see Methods).
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mirPRo can provide cataloging of all clean reads if genome annotation information is provided in 
GTF format, so that users can understand the overall assessment of miRNA sequencing and alignment 
quality. We used HTSeq48 (see Methods) to tally mapped reads in terms of annotated features (e.g., pro-
tein coding, miRNA, snRNA, rRNA, snoRNA, and ncRNA genes). mirPRo can generate a sequence file 
that contains unmapped clean reads in FASTA format, so that the data can be further examined by users 
to determine potential sequencing contamination sources.

Compared with mirPRo, most of the popular miRNA analysis tools including miRDeep2 do not 
offer useful functions like “arm switching” detection, miRNA family expression quantification, read cata-
loging, and seed region check (see Supplementary Table S1). Also, most of these tools do not allow indels 
in read mapping, affecting accurate quantification of miRNA variations (see below).

miRNA data analysis by mirPRo. We have used mirPRo to conduct miRNA analysis for three 
datasets (i.e., mouse, human, and chicken miRNA datasets, see Methods). On average, 99.99%, 98.45% 
and 99.09% of the raw reads in mouse, human and chicken datasets respectively were kept after quality 

Figure 1. The core algorithms of mirPRo for exploration and quantification of miRNA variants.  
(A) IsomiR identification. Human precursor miRNA “hsa-let-7a-1” is used for illustration, and the collapsed 
reads are not real data. mirPRo allows base errors (mismatch and indel) and soft clips in read mapping, 
and permits position check and optional seed region check in mature miRNA quantification. The isomiRs 
annotated by mirPRo include mature miRNA reads with mismatches, insertions, deletions, or a mixture, 
with 3′ -end non-templated nucleotide addition, and with nucleotide shift (super or sub) at their 5′ , 3′  
or both ends. Mature miRNA variants: “5 (3) super (sub)” means the reads have 5 (3) end upstream 
(downstream) nucleotide shift in collapsed-read-to-hairpin mappings. The upper case “D” in the aligned 
sequence means deletion. The column “collapsed read” has the identifier (“XXX-YYY”) for collapsed reads, 
where “XXX” is a unique number and “YYY” is the read count. The column “M/I/D/N” represents the 
number of "mismatches/insertions/deletions/nucleotide N" in the alignment. For the two hairpin arms, 
most of the collapsed reads are mapped to the 5′  arm while few reads are mapped to the 3′  arm. (B) Arm 
switching detection. More reads are mapped to the 5′  arm of the precursor in treatment 1, while more reads 
are mapped to the 3′  arm in treatment 2. This indicates that two different mature miRNAs are generated 
from two different arms of the same precursor in two different treatments (e.g., different tissues).
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filtering (see Supplementary Table S2). Since the human dataset we downloaded was already clean of 
adapters, we used an option in mirPRo to skip the adapter trimming process. After adapter trimming, 
averagely 93.09% (mouse) and 76.81% (chicken) of the raw reads were kept as final clean reads (see 
Supplementary Table S2). The total numbers of distinctive collapsed reads in mouse, human and chicken 
datasets are shown in Supplementary Table S3. On average, 85.72% (mouse), 43.86% (human) and 
19.35% (chicken) of the raw reads were mapped to their hairpin sequences (see Supplementary Table S2).  
In particular, 70.09% (mouse), 62.78% (human) and 60.53% (chicken) of the mapped clean reads had 
unique mappings, whereas 29.91% (mouse), 37.22% (human) and 39.47% (chicken) had non-unique 
mappings (see Supplementary Table S4). For both unique and non-unique mappings, on average, 77.55% 
(mouse), 72.72% (human) and 79.61% (chicken) were perfect mappings; 3.54% (mouse), 1.91% (human) 
and 13.77% (chicken) had mismatches; 0.002% (mouse), 6.24% (human) and 0.003% (chicken) had 
insertions; 0.07% (mouse), 1.99% (human) and 0.01% (chicken) had deletions; 1.20% (mouse), 2.36% 
(human) and 0.81% (chicken) had 5′ -soft-clips; 16.85% (mouse), 14.49% (human) and 4.83% (chicken) 
had 3′ -soft-clips; and 0.21% (mouse), 0.14% (human) and 0.04% (chicken) had both 5′ - and 3′ -soft-clips 
(see Supplementary Table S4).

After known miRNA quantification, on average, 78.14% (mouse), 39.59% (human), and 16.71% 
(chicken) of the raw reads were counted as mature miRNA reads (see Supplementary Table S2). The 
detailed statistics of quantification using the three datasets are shown in Supplementary Table S5. On 
average, 97.98% (mouse), 97.22% (human) and 91.10% (chicken) of the total mapped reads passed the 
position check, and 91.24% (mouse), 90.23% (human) and 86.23% (chicken) of the total mapped reads 
passed both the position and seed region checks. On average, 27.53% (mouse), 32.92% (human) and 
37.54% (chicken) of the total mapped reads can be mapped to more than one hairpin successfully with 
the same mapping scores after passing both the position and seed region checks, and their counts were 
distributed evenly among these different hairpins (see Supplementary Table S5). In miRBase release 21, 
there are 1915, 2588 and 994 mature miRNAs annotated for mouse, human and chicken respectively; we 
detected 1230, 954 and 577 different mature miRNAs in mouse, human and chicken datasets accordingly 
(see Supplementary Table S2). We also detected 760 (mouse), 589 (human) and 426 (chicken) miRNA 
families whereas there are 1305 (mouse), 1811 (human) and 780 (chicken) miRNA families annotated 
in miRBase release 21 (see Supplementary Table S2).

As shown in Supplementary Tables S6 and S7, on average, 60.21% (mouse), 52.07% (human) and 
58.83% (chicken) of the mature miRNA reads are somewhat different than their canonical mature miR-
NAs. Interestingly, the most frequent isomiRs appear to be the 3′  super mature miRNA variants: aver-
agely 22.38% (mouse), 19.99% (human) and 33.36% (chicken) of the mature miRNA reads show 3′  super 
mature miRNA variants (see Fig. 1 and Supplementary Tables S6 and S7). On average, 0.77% (mouse), 
0.48% (human) and 6.81% (chicken) of the mature miRNA reads had mismatches in mappings; 0.0006 
% (mouse), 4.41% (human) and 0.002% (chicken) had insertions; 0.018% (mouse), 1.20% (human) and 
0.004% (chicken) had deletions. In particular, 5.67% (mouse), 13.18% (human) and 27.08% (chicken) of 
the mature miRNA reads with mismatches only had A-to-G mismatches, which have proved to be the 
major form of RNA editing events in miRNAs52. Due to the seed region check and filtration, we did not 
find any 5′  super/sub miRNA variants and 5′  non-templated nucleotide additions among three datasets. 
In contrast, averagely 16.21% (mouse), 6.77% (human) and 1.55% (chicken) of the mature miRNA reads 
had 3′ -end non-templated nucleotide addition. Among the reads with 3′ -end non-templated nucleotide 
addition, 34.29% (mouse), 28.47% (human) and 42.12% (chicken) had one or more uracil nucleotides 
(or poly(U) tails) at their 3′  ends; 42.62% (mouse), 51.92% (human) and 34.69% (chicken) had one or 
more adenine nucleotides (or poly(A) tails) at their 3′  ends; and 23.09% (mouse), 19.61% (human) and 
23.19% (chicken) had other nucleotides at their 3′  ends (see Supplementary Table S8). Based on the 
sequence content comparison, we are positive that these extra nucleotides at 3′  ends are not remnants 
of untrimmed adapter sequences. In addition, averagely 4.42% (mouse), 10.96% (human) and 11.88% 
(chicken) of the mature miRNA reads had a mixture of variations: mismatches and/or indels in mapping, 
3′  super/sub variants, and non-templated nucleotide addition at 3′  ends. Also interestingly, we found 
16, 26 and 0 putative “arm switching” cases in mouse, human and chicken datasets respectively (see 
Supplementary Table S9). For read cataloging in terms of gene annotation, the counts and percentages of 
the mapped reads in different genomic features among the total clean reads are shown in Supplementary 
Table S10. On average, 15.47%, 44.52% and 14.30% of the total clean reads were not aligned to the ref-
erence genome in mouse, human and chicken datasets respectively.

We found 144, 174 and 91 novel precursors (see Supplementary Data 1–3) and 144, 175 and 93 novel 
mature miRNAs (see Supplementary Data 4–6) in the mouse, human and chicken datasets respectively. 
The predicted RNA secondary structures of novel precursors in dot-bracket notation (DBN)53 are shown 
in Supplementary Data 7–9. On average, 0.09% (mouse), 0.41% (human) and 1.17% (chicken) of the 
raw reads were mapped to novel precursors perfectly, and 0.042% (mouse), 0.15% (human) and 1.09% 
(chicken) of the raw reads were finally counted as novel mature miRNA reads after both the position and 
seed region checks (see Supplementary Table S2).

We used DESeq254 to perform differential expression profile analysis for known and novel mature 
miRNAs. As shown in Supplementary Table S11, there were 110 known and 12 novel mature miRNAs 
that showed significant differential expressions (adjusted p-value <  0.05) between two treatments in the 
mouse dataset; 304 known and 34 novel mature miRNAs displayed significant differential expressions 
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between two treatments in the human dataset; 10, 5 and 1 known and 1, 1, 0 novel mature miRNAs had 
significant differential expressions respectively in three pairwise comparisons among three treatments 
in the chicken dataset. We also conducted differential expression profile analysis for miRNA families 
using DESeq254. For mouse and human datasets, 62 and 163 miRNA families were significantly different 
respectively between the two treatments (see Supplementary Table S12). For the chicken dataset, 6, 2 and 
2 miRNA families were significantly different in three pairwise comparisons among three treatments (see 
Supplementary Table S12).

Comparing miRNA data analysis between miRDeep2 and mirPRo. Since miRDeep2 is the 
most widely used standalone program for miRNA analysis31,36–39, we conducted in-depth comparative 
analysis between miRDeep2 and mirPRo using the aforementioned three datasets. We first performed 
procedure-by-procedure comparison in which each of the main procedures (i.e., adapter trimming, read 
mapping and miRNA quantification) was compared separately using the same inputs, and then whole 
package comparison using comparable parameters for both programs. We also conducted speed perfor-
mance comparison and found that mirPRo is faster than miRDeep2 (see Supplementary Results).

Procedure-by-procedure comparison. Adapter trimming. The raw sequence reads of mouse and 
chicken datasets were used as the inputs, because the human dataset was already clean of adapters. In 
mirPRo, one error base (indel or mismatch) is permitted and the minimum adapter length for trimming 
is 10 nt. In miRDeep2, adapter trimming is based on exact string match, where indel and mismatch are 
not allowed, and the minimum adapter length for trimming is 1 nt. Consequently, on average, 97.62% 
(mouse) and 51.75% (chicken) of the raw reads were detected with adapters by mirPRo, while 98.26% 
(mouse) and 64.69% (chicken) by miRDeep2; 91.91% (mouse) and 78.52% (chicken) of the raw reads 
were kept after trimming adapter (with a length > =  17) in mirPRo, while 92.05% (mouse) and 78.65% 
(chicken) were kept by miRDeep2 (see Supplementary Table S13). To evaluate which tool is more accu-
rate in adapter trimming, we compared the clean reads generated by these two programs and retrieved 
the consistent reads (i.e., reads with the same sequence identifiers and sequence contents) and incon-
sistent reads. The inconsistent reads include: (1) reads with the same identifiers but different sequence 
contents, and (2) reads kept only by one program after trimming due to the minimum length require-
ment for the final clean reads (i.e., 17 nt for both miRDeep2 and mirPRo). We then mapped inconsistent 
reads to the pre-miRNA hairpin sequences using Bowtie55 with at most two mismatches allowed and 
compared the sensitivity and true negative rates in mapping. As shown in Supplementary Results and 
Supplementary Tables S13 and S14, mirPRo exhibits a better performance in trimming adapter sequences 
in raw reads than miRDeep2.

Mapping (Novoalign47 in mirPRo versus Bowtie55 in miRDeep2). We used the clean collapsed reads 
generated by miRDeep2 as the same input in both programs for mapping against hairpin sequences, 
and compared the counts of mapped reads. In mirPRo, we use Novoalign that allows soft clipping, mis-
matches and indels in mapping. In miRDeep2, read mapping by Bowtie allows at most 2 mismatches, 
whereas indels are not allowed and soft clips are treated as mismatches. As shown in Supplementary 
Table S15, on average, 85.10%, 43.40% and 19.76% of the raw reads were mapped successfully for 
mouse, human and chicken datasets respectively with mirPRo, whereas 81.89%, 39.31% and 18.64% were 
mapped with miRDeep2. In mirPRo, averagely, 3.54% (mouse), 1.57% (human) and 14.47% (chicken) 
clean-read-to-hairpin mappings showed mismatches; 0.002% (mouse), 6.30% (human) and 0.003% 
(chicken) showed insertions; 0.07% (mouse), 1.95% (human) and 0.01% (chicken) showed deletions; 
1.19% (mouse), 2.30% (human) and 0.83% (chicken) showed 5′  soft clips; and 16.87% (mouse), 14.55% 
(human) and 4.87% (chicken) showed 3′  soft clips. In miRDeep2, averagely 20.45% (mouse), 19.45% 
(human) and 17.25% (chicken) clean-read-to-hairpin mappings had mismatches.

Quantification (Bowtie as aligner). We used the collapsed-read-to-hairpin mappings generated by 
miRDeep2 (Bowtie) and the expression numbers for collapsed reads as the inputs for both programs, and 
compared the counts of mature miRNA reads generated by the quantification processes of the two pro-
grams. As shown in Supplementary Table S16, averagely 76.02% (mouse), 36.34% (human) and 16.19% 
(chicken) raw reads were counted as mature miRNA reads by mirPRo, whereas 108.52% (mouse), 55.08% 
(human), and 31.01% (chicken) raw reads were counted as mature miRNA reads by miRDeep2. This 
result (e.g., 108.52%) clearly demonstrates that a large percentage of the clean reads were over-counted 
by miRDeep2 in its quantification process.

Whole package comparison. We conducted a whole-package comparative analysis of mirPRo and miR-
Deep2 independently. In miRDeep2, some of entries in final results had duplicate names of mature miR-
NAs and their pre-miRNAs, with different sets of mature miRNA counts across different libraries (see 
mouse and human data, Supplementary Table S17). These discrepancies made users unable to tell which 
one was correct, causing difficulty in further downstream statistical analysis. In order to perform differ-
ential analysis using DESeq2, we added unique IDs (i.e., the combination of a numeric prefix, mature 
miRNA name and pre-miRNA name) for each entry. DESeq2 analysis showed that in miRDeep2, 145 and 
332 mature miRNAs had significant differential expressions in mouse and human datasets respectively, 
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and 9, 8 and 1 mature miRNAs were significantly different in 3 pairwise comparisons among three 
treatments in chicken dataset (see Supplementary Table S18). In contrast, DESeq2 analysis for mirPRo 
results showed that 113 and 308 mature miRNAs had significant differential expressions in mouse and 
human datasets respectively, and 8, 6 and 1 mature miRNAs had significant differential expressions in 
3 pairwise comparisons among three treatments in the chicken dataset (see Supplementary Table S19). 
As shown in Fig.  2, both miRDeep2 and mirPRo have reported most of the same miRNAs that have 
significant differential expressions. However, these two programs have different calls for some differ-
entially expressed miRNAs (also see Supplementary Table S20). It is worthy of note that, as shown in 
Fig.  2, no mature miRNA shows opposite differential expression results between miRDeep2 and mir-
PRo (i.e., the case (+ /− ) means up-regulated in miRDeep2 and down-regulated in mirPRo, and vice 
versa for the case (− /+ )). However, there are more miRNAs reported as differentially expressed by 
miRDeep2 (i.e., cases (+ /Δ ) and case (− /Δ )) than by mirPRo (i.e., cases (Δ /+ ) and case (Δ /− )). 
For those miRNAs with inconsistent calls, we further scrutinized their alignment results. For instance, 
mirPRo reported that mmu-miR-152-3p is down-regulated significantly (see mouse data alignments in 
Supplementary Data 10) whereas miRDeep2 called it a miRNA without significant differential expres-
sion. Furthermore, mirPRo reported that hsa-miR-324-5p is up-regulated significantly (see human data 
alignments in Supplementary Data 11) whereas miRDeep2 determined that it does not have a significant 
differential expression. mmu-miR-152-3p exemplifies the case (Δ /− ) while has-miR-324-5p exemplifies 
the case (Δ /+ ) shown in Fig. 2. The alignment results from miRDeep2 are presented in Supplementary 
Data 12–21. Clearly, we found that the mappings in mirPRo were more accurate (allowing indels and 
soft clips) than miRDeep2, and mirPRo was more stringent in seed region check (no error base allowed) 
than miRDeep2. Consequently, mirPRo shows less false positives in calling significantly differentially 
expressed miRNAs than miRDeep2.

In miRDeep2, there were no consistent, unified names for novel precursors and their mature miR-
NAs in all libraries (i.e., the same novel precursor might have different names in different libraries). 
This makes it difficult for users to perform downstream differential analysis. In contrast, in mirPRo, we 
unified the names of both novel precursor and their mature miRNAs across all libraries by the following 
criteria: (1) novel precursors with the same genomic coordinates in different libraries are considered the 
same novel precursors, and their names include a unique identifier “XXX-novel-mir-YYY” (“XXX” rep-
resents the species name and “YYY” is a unique number). In the FASTA output of novel precursors, there 

Figure 2. The comparative analyses of mature miRNAs differential expression profiles between 
miRDeep2 and mirPRo using three datasets. The y-axis represents the number of mature miRNAs. In 
the x-axis, we have 8 different cases for comparative differential expression analyses of mature miRNAs 
detected by miRDeep2 and mirPRo. Each case is labeled as (A/B), where A stands for miRDeep2 result and 
B for mirPRo result, and both A and B can be one of these values: +  (up-regulated significantly), - (down-
regulated significantly) and Δ  (no significant differential expression). For example, the case (+ /+ ) means 
that a mature miRNAs is significantly up-regulated, reported by both miRDeep2 and mirPRo.
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is a description field that defines their genome locations (chromosome, strand, start and end position)   
(see Supplementary Data 1–3); (2) novel mature miRNAs with the same precursors and identical 
sequences across different libraries are considered to be the same mature miRNAs, and their names 
include a unique identifier “XXX-novel-miR-YYY” (“XXX” represents the species name and “YYY” is 
the same number as its precursor). In the FASTA output of novel mature miRNAs, there is a descrip-
tion field that contains the name of a known mature miRNAs from the reference species, whose seed 
region is the exact same as the reported novel miRNA (see Supplementary Data 4–6). mirPRo pro-
vides novel pre-miRNA sequences in DBN53 format in order to display their secondary structures (see 
Supplementary Data 7–9), which are not available in miRDeep2.

Discussion
IsomiRs are mainly generated due to imprecise cleavage of pre-miRNAs, RNA editing and non-templated 
nucleotide additions at 3′  end of miRNAs1,15,18. IsomiRs account for a large percentage of total mature 
miRNAs in cells and are reported to be functionally relevant along with canonical miRNAs56. As another 
form of miRNA variation, “arm switching” in miRNA biogenesis is related with differential miRNA target 
interaction in gene expression regulation3,57–59.

Different from miRDeep2, mirPRo allows close examination of miRNA variations, including isomiRs 
and “arm switching” (see Fig.  1). The improvements in adapter trimming, read mapping and mature 
miRNA quantification approaches in mirPRo allow for more reads mapped to pre-miRNAs (hairpins) 
than miRDeep2, because mirPRo tolerates error bases (mismatch and indel) in adapter trimming and 
permits error bases and soft clips in read mapping. Our comparative data analysis suggests that a signif-
icant portion of final clean reads showing miRNA variations were ignored by miRDeep2, because it does 
not allow indels or soft clips in mapping.

We have found a large percent (60.21% mouse, 52.07% human and 58.83% chicken) of the mature 
miRNA reads different from their canonical mature miRNAs in alignments. Most of the differences are 
presented as nucleotide shifts in the 3′  end, which might be caused by imprecise precursor terminal cut-
ting by enzymes in miRNA biogenesis18. Previous studies have shown that some mature miRNAs have A 
(adenine) to I (inosine) modification in the internal sequence due to RNA editing, which presents mainly 
as A to G mismatch in mapping52. We found that in all mature miRNA reads with mismatches in map-
pings, a large percent (5.67% mouse, 13.17% human and 27.08% chicken) had purely A to G mismatches, 
consistent with previous studies. We detected the non-templated nucleotide addition in the 3′  end of 
mature miRNA reads such as adenine/uracil nucleotides or their homopolymer tails, consistent with 
the previous findings60. Interestingly, we also detected lots of sequence patterns of 3′ -end non-templated 
nucleotide additions other than poly(A)/(U) tails, and they are clearly not adapter remnants. On the 
other hand, we found some reads that have 5′ -end soft clips in mapping. However, these reads were 
filtered out in our data analyses after seed region check. These reads might be the results of potential 
5′ -end non-templated nucleotide addition or sequencing errors, and are worthy of further evaluation in 
the future. Moreover, mirPRo can detect the potential “arm switching” cases and allow users to further 
study the mature miRNAs with “arm switching” under different treatments. These functions can clearly 
deepen our understanding of miRNA variations and their relevant regulatory mechanisms.

Our comparative data analysis shows that miRDeep2 has a problem of over-counting in quantifying 
known miRNAs, making the counts of some mature miRNA reads unreliable. In miRDeep2 output, the 
counts of some mature miRNAs are confusing because of duplicate name entries for both precursor and 
mature miRNAs. The over-counting problem in miRDeep2 is due to the fact that when a collapsed read 
has non-unique mappings to hairpins, miRDeep2 will add the read count to the corresponding mature 
miRNAs independently without dividing it evenly. Evidently, this will result in an increment in read 
counts for the mature miRNAs with non-unique mapping reads. In contrast, mirPRo avoids this prob-
lem by a commonly used read count dividing method61,62 based on the numbers of mapped locations in 
reference sequences (see Methods).

Different from other popular tools, mirPRo provides the optional function of seed region check in 
miRNA quantification. For animals, the seed regions determine the functions of mature miRNAs2, and 
this function makes sure that all mature miRNA reads have the same seed region as the corresponding 
canonical mature miRNAs. When performing analysis without the seed region check using mirPRo, 
more reads will be counted and more variations in the 5′  end of the mature miRNAs could be detected 
for further exploration.

Moreover, mirPRo offers some new functions not available in other popular tools (see Supplementary 
Table S1). In miRBase, pre-miRNA family clustering was done by using the single-linkage method to 
cluster the pre-miRNA sequences based on BLAST hits and then manually adjusting the clustered fam-
ilies by multiple sequence alignments, keeping in mind that the clustered miRNAs in a family possibly 
have the same ancestor51,63. pre-miRNAs from the same family always have the same consensus second-
ary structures and often conduct similar functions64. Using miRNA family classification data obtained 
from miRBase51, mirPRo can perform miRNA family expression quantification and allow users to study 
differential expressions of miRNA families in their data. In mirPRo, cataloging all clean reads in terms 
of genome annotation can provide users overall assessment of sequencing and alignment quality. Also, 
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mirPRo unifies the names of novel miRNAs and provides a count table of novel mature miRNAs in all 
samples.

In conclusion, mirPRo can quantify both known and novel miRNAs more accurately and provide 
detailed data for users to explore miRNA variations. Without a doubt, mirPRo is a valuable addition to 
the research community in processing large-scale miRNA sequencing data.

Methods
Data collection. The first miRNA dataset is from mouse synovial fibroblast with two treatments45: 
human tumor necrosis factor transgenic (Tg) group and control wild type (WT) group, where each 
treatment has two biological replicates. The second miRNA dataset is from human induced pluripotent 
stem cell-derived cardiomyocyte (hiPSC) with two treatments46: endothelin 1 (ET1) stimulated group 
and control group, where each treatment has three biological replicates. The third dataset is our own 
chicken miRNA data from retinal pigmented epithelium (RPE) and includes three treatments: E4 devel-
opment RPE (control), RPE collected at 6 hrs post-retinectomy (retinetomy) and RPE collected at 6 hrs 
post-retinectomy in the presence of FGF2 (FGF2), where each treatment consists of three biological 
replicates. Similar treatments have been reported during RPE reprogramming65.

The raw mouse miRNA sequencing data was downloaded from http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc= GSE31667 with the sequencing adapter “ATCTCGTATGCCGTCTTCTGCTTG”. 
Mus musculus genome sequences in FASTA format and genome annotation in GTF format (Ensembl 
release 79: GRCm38.p3; top level assembly) were downloaded from http://www.ensembl.org/. The raw 
human miRNA sequencing data was downloaded from http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc= GSE60292, which was clean of adapter sequences. Homo sapiens genome sequences and genome 
annotation (Ensembl release 79: GRCh38.p2; primary assembly) were downloaded from Ensembl web-
site. For human genome, the top level assembly is too large (~40 GB) to build a Novoalign index file, 
so we used its primary assembly instead of its top level assembly. The adapter for our chicken data 
is “TGGAATTCTCGGGTGCCAAGG”, and Gallus gallus genome sequences and genome annotation 
(Ensembl release 79: Galgal4; top level assembly) were downloaded from Ensembl website. The raw data 
in SRA format was transformed to FASTQ format by SRA Toolkit version 2.5.2 (http://www.ncbi.nlm.
nih.gov/Traces/sra/sra.cgi?cmd= show&f= software&m= software&s= software). The sequences for both 
mature canonical miRNAs and their hairpins, as well as the precursor miRNA family classification data 
(i.e., “miFam.dat”), were downloaded from miRBase51 (release 21).

miRNA data analysis by mirPRo. The prerequisite tools for mirPRo include: (1) FASTX-Toolkit 
(http://hannonlab.cshl.edu/fastx_toolkit/index.html, version 0.0.14); (2) Novoalign47 (http://www.
novocraft.com/support/download/, release V3.02.11); (3) HTSeq48 (http://www-huber.embl.de/users/
anders/HTSeq/doc/install.html, version 0.6.1); (4) RNAfold50 (http://www.tbi.univie.ac.at/RNA/index.
html, version 2.1.9); (5) randfold49 (http://bioinformatics.psb.ugent.be/supplementary_data/erbon/
nov2003/, version 2). They need to be installed before running mirPRo.

mirPRo first extracted mature and precursor miRNA sequences annotated by miRBase51 for a given 
species (i.e., mouse, human or chicken) and mapped these mature miRNAs to their hairpins using 
Novoalign, allowing only perfect mappings to obtain the accurate positions of mature miRNAs in corre-
sponding hairpins for downstream analysis.

The raw read quality filtering was performed by FASTX-Toolkit (fastq_quality_filter, http://hannonlab.
cshl.edu/fastx_toolkit/index.html) to filter out reads with poor qualities using the following settings: (1) 
the minimum quality score for each base =  20; (2) the percent of bases that must have the minimum 
quality score ≤ 95%. The adapter sequence was trimmed off by subprogram mirpro_findAdapter of mir-
PRo, with the following settings: (1) the maximum number of error bases including mismatches and 
indels in detected adapter sequences =  1; (2) the minimum length of detectable adapters =  10; (3) the 
minimum length of final clean reads without adapters =  15 (the minimum length of mature miRNAs in 
miRBase is 15). The clean reads were then collapsed by the program fastx_collapser in FASTX-Toolkit 
with expression numbers counted (i.e., the count of reads that support one collapsed read).

The collapsed reads were then mapped to the known pre-miRNAs (hairpin sequences) using Novoalign 
with the following settings: (1) mismatch penalty =  30; (2) gap opening penalty =  40; (3) gap extension 
penalty =  6; (4) the maximum penalty score for alignment =  60; (5) soft clips are allowed; (6) for the 
reads that can be mapped to more than one hairpin, and the best mappings with the lowest penalty score 
are kept. We used the option “-r All –R o” to report the mapping(s) with the best alignment score for 
each read. The maximum penalty score for alignment (60) allowed at most 2 mismatches or 3 indels in 
one opening gap in mappings.

Using the results of mature-miRNA-to-hairpin and collapsed-read-to-hairpin mappings, we per-
formed known miRNA quantification with the subprogram mirpro_quantifier with the following set-
tings: (1) the maximum number of nucleotide shift in the upstream or downstream of the 5′ /3′  end 
of a mature miRNA read is < =  3 in reference to its canonical mature miRNA annotated by miRBase 
(i.e., the position check); (2) remove the reads that don’t have the exact same seed regions (2nd–8th nt) 
as their canonical mature miRNAs (i.e., the seed region check). The detailed quantification algorithm 
was as follows: (1) use mature-miRNA-to-hairpin mappings to record the positions of canonical mature 
miRNAs in corresponding hairpins, and the recorded mature miRNA and hairpin pairs should share 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31667
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31667
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the same IDs (e.g., mature: mmu-miR-YYY-5p or mmu-miR-YYY-3p; hairpin: mmu-mir-YYY, where 
YYY represents a number); (2) filter out the reads that did not pass either position or seed region check;  
(3) consider the remaining read mappings as qualified mappings, and for each collapsed read, if it has 
unique mapping, add the read count directly to the corresponding mature miRNA; (4) if the collapsed read 
has non-unique mappings, record the numbers of soft clips in these mappings respectively (N1, N2, … Nn),  
and then find the minimum number of soft clips (Nmin) and its corresponding mapping (s), which is 
(are) considered as the best priority mappings; (6) if the number of the best priority mapping is equal 
to 1, add the read count directly to the corresponding mature miRNA; if the number of the best priority 
mappings is larger than 1, divide the read count evenly by the number of all best priority mappings and 
then add it to the counts of corresponding mature miRNAs. Finally the counts of known miRNAs in all 
libraries were rounded to integers and output to one csv file.

For miRNA family expression quantification, we relied on the miRNA family information provided by 
miRBase, and clustered the mature miRNAs into different miRNA families with the summation of rele-
vant mature miRNA read counts. Mature miRNAs that do not belong to any known family in miRBase 
were considered to have their own individual families.

For detecting miRNA isoforms - isomiRs, we calculated the counts of the mature miRNA reads that 
had mismatches, indels, 5′ /3′  nucleotide shift or soft clips in mappings, and further classified the 3′ -soft 
clips as adenine fragment (one or more A, or poly (A) tail), uracil fragment (one or more U, or poly (U) 
tail) or other patterns. We further listed all the sequences of other patterns and compared them with the 
adapter sequences to make sure that they are not adapter remnants or fragments.

To detect “arm switching”, we used the subprogram mirpro_armSwitch of mirPRo, focusing on the 
mature miRNAs that have two different forms (5p and 3p) from the same hairpins, and compared the 
counts of two forms in each library to determine which form was consistently dominant. We adopted the 
following criteria: (1) the count fold-change between two forms > 2; (2) the count difference between two 
forms > 10. If the counts of the two forms do not satisfy these criteria, no form is dominant. We further 
detected the “arm switching” cases by the following algorithm: (1) in each treatment, we selected the 
mature miRNAs that have the same dominant forms in all replicates of one treatment; (2) we compared 
the dominant forms of each selected miRNA across different treatments, and if there was an inconsist-
ency, then the selected miRNAs would be considered to have potential “arm switching” cases among 
different treatments.

For cataloging clean reads in terms of genome annotation, mirPRo mapped final clean sequence reads 
to the reference genome sequences by Novoalign with the maximum penalty score of alignment =  60. 
Then, it categorized and counted the mapped clean reads in different features annotated in gene annota-
tion GTF files by the subprogram htseq-count of HTSeq. As the parameters for HTSeq, the “gene_id” is 
set as the feature ID by default while the minimum alignment quality value was set to 0.

For novel miRNA prediction, we used a similar prediction algorithm as in miRDeep2 with our 
improvements. (1) We mapped collapsed reads to the genome and only kept the perfect mappings with 
mapped read lengths between 18 and 25 nt inclusively and mapped locus/loci < =  5. (2) We used the 
remaining mappings to excise potential precursors (hairpins) from the genome by miRDeep2 algorithm. 
(3) We mapped collapsed reads and known mature miRNAs to the excised hairpins, and kept the per-
fect mappings with mapped read lengths between 18 and 25 nt as signatures. Different from miRDeep2 
that allows 1 mismatch here, we only permitted perfect mapping to reduce false positives. (4) We used 
RNAfold50 to calculate the structure and minimum free energy of the excised hairpins. (5) For each 
excised hairpin, we selected the sequence of the mapped reads with the highest read stack as the mature 
miRNA sequence of the hairpin. Here, we required that the fold-change was larger than 2 in comparison 
with the second highest read stack; if no mapped read satisfied this fold-change criterion, the excised 
hairpin would be discarded. The fold-change requirement is our improvement over miRDeep2 to reduce 
false positives. (6) We selected all excised hairpins by miRDeep2 algorithm and computed their randfold 
p-values by randfold49. (7) We calculated miRDeep2 scores of all excised hairpins by miRDeep2 algo-
rithm, using the results of (3), (4), (5) and (6). (8) We performed controls and surveys by miRDeep2 
algorithm. (9) We selected the excised hairpins with miRDeep2 score > 0 as novel pre-miRNAs and the 
corresponding mature miRNA part in the hairpins as novel mature miRNAs.

After the novel miRNA prediction, mirPRo generated the lists of novel mature and precursor miR-
NAs for each library and removed the redundancy of the sequences. For novel mature miRNA, a 
sequence file in FASTA format was generated. For novel precursors, sequence files in FASTA and DBN 
format were created. The clean collapsed reads were then mapped to novel precursors only allowing 
perfect mappings, and novel miRNA quantification was performed with the same settings as known 
miRNAs. Finally, the output counts of novel mature miRNAs in all libraries were rounded to integers 
in a single csv file.

miRNA data analysis by miRDeep2. In miRDeep2 (version 2.0.0.5), the mapper and quanti-
fier modules were used in analyzing known miRNAs in the data whereas the miRDeep2 module was 
used for novel miRNA prediction. The program settings were as follows: (1) the minimum clean read 
length =  17 after adapter trimming (for novel miRNA prediction, miRDeep2 needs input clean read 
length > =  17); (2) maximum mismatch bases allowed in read mapping is 2 (indels are not allowed 
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in miRDeep2); (3) because miRDeep2 needs a reference species for its novel miRNA prediction, rat, 
mouse and zebra finch were selected as the reference species for mouse, human and chicken respectively;  
(4) other settings were default parameters used by miRDeep2. miRDeep2 require Bowtie for 
read-to-hairpin mapping (quantifying known miRNAs) and read-to-genome mapping (novel miRNA 
prediction), and we have used Bowtie (version 0.12.7) in our comparative data analysis.

Statistical analysis. The R (version 3.2.1) package DESeq254 (version 1.8.1) was used to detect the 
differential expression of the mature miRNAs and miRNA families between different treatments for 
all three datasets. The counts of mature and novel miRNAs in all samples are used as a single input 
of DESeq2. The size factor was estimated by the median-of-ratios method used in DESeq66. After nor-
malization, the different expression was tested based on a Negative Binomial distribution54. Adjusted 
p-valve <  0.05 was considered to be statistically significant.
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