
METHODS ARTICLE
published: 30 December 2013
doi: 10.3389/fninf.2013.00045

The Design of SimpleITK
Bradley C. Lowekamp1,2*, David T. Chen1,2, Luis Ibáñez3 and Daniel Blezek4

1 National Library of Medicine, Office of High Performance Computing and Communications, National Institutes of Health, Bethesda, MD, USA
2 Medical Science and Computing, Rockville, MD, USA
3 Kitware Inc., Clifton Park, NY, USA
4 Biomedical Engineering Department, Mayo Graduate School of Medicine, Rochester, MN, USA

Edited by:

Hans J. Johnson, The University of
Iowa, USA

Reviewed by:

Alexandre Gramfort, CNRS LTCI,
France
Krzysztof Gorgolewski, Max Planck
Institute for Human Cognitive and
Brain Sciences, Germany

*Correspondence:

Bradley C. Lowekamp, National
Library of Medicine, Office of High
Performance Computing and
Communications, BLDG 38A RM
B1N30, 8600 Rockville Pike,
Bethesda, 20894 MD, USA
e-mail: blowekamp@mail.nih.gov

SimpleITK is a new interface to the Insight Segmentation and Registration Toolkit (ITK)
designed to facilitate rapid prototyping, education and scientific activities via high level
programming languages. ITK is a templated C++ library of image processing algorithms
and frameworks for biomedical and other applications, and it was designed to be generic,
flexible and extensible. Initially, ITK provided a direct wrapping interface to languages
such as Python and Tcl through the WrapITK system. Unlike WrapITK, which exposed
ITK’s complex templated interface, SimpleITK was designed to provide an easy to use
and simplified interface to ITK’s algorithms. It includes procedural methods, hides ITK’s
demand driven pipeline, and provides a template-less layer. Also SimpleITK provides
practical conveniences such as binary distribution packages and overloaded operators.
Our user-friendly design goals dictated a departure from the direct interface wrapping
approach of WrapITK, toward a new facade class structure that only exposes the required
functionality, hiding ITK’s extensive template use. Internally SimpleITK utilizes a manual
description of each filter with code-generation and advanced C++ meta-programming to
provide the higher-level interface, bringing the capabilities of ITK to a wider audience.
SimpleITK is licensed as open source software library under the Apache License Version
2.0 and more information about downloading it can be found at http://www.simpleitk.org.

Keywords: software design, Insight Toolkit, segmentation, software development, image processing software,

image processing and analysis

1. INTRODUCTION
The proper practice of the scientific method requires the system-
atic verification of reproducibility of published reports (Popper,
1934). Ideally, this verification should be performed by indepen-
dent observers for it to be trustable (Popper, 1968). In the context
of computational science, the reports of scientific research must
include the means and the complete details required to enable
independent groups to fully replicate the published results. In
particular, they should include: data, reports, list of experimental
parameters, and software.

Open source software provides public implementations of
state of the art algorithms, that facilitate the accelerated advance-
ment of a field, through a more efficient research lifecycle and
more practical education. The National Library of Medicine’s
Insight Segmentation and Registration Toolkit (ITK) is a leading
open source software library for biomedical image analysis. Since
1999, it has been used in fields as diverse as brain registration
for neuroscience, microscopy image analysis, radiation treatment
planning, image segmentation for brain tumors, and processing
of electron microscopy, as well as non-medical applications such
as satellite imagery and industrial inspection.

Our fundamental goal in developing SimpleITK was to grow
the user community of ITK. Whereas direct use of the ITK
programming interface requires expertise in templated C++,
SimpleITK was designed to be accessible from a variety of higher
level languages. Furthermore SimpleITK has a straightforward

interface that requires no knowledge of the intricacies of ITK’s
templated types. By lowering the bar to access ITK’s portfolio
of image processing algorithms we hope to reach the domain
scientist and to further the goals of open source and open
science.

1.1. THE INSIGHT SEGMENTATION AND REGISTRATION TOOLKIT
The Insight Segmentation and Registration Toolkit (ITK) was
originally conceived as open software tools for the analysis of
the Visible Human Project by the National Library of Medicine
(NLM) with partnership from six other institutes at the National
Institutes of Health (NIH). During the initial development the
mission of ITK was outlined as: a software foundation for future
research, an archival repository of image processing algorithms,
a catalog of validation techniques, as well as a platform for
advanced product development (Yoo et al., 2002). NLM has
continued to support ITK through Algorithm Adaptors and
Data Distribution (A2D2) programs and on going maintenance,
while trying to foster the development of a sustainable open
source community. In 2010 NLM initiated a major revision
and refactoring of the toolkit funded by the American Recovery
and Reinvestment Act. Among the objectives outlined is to
simplify ITK.

Through the contributions of the ITK community and con-
tinued funding the scope of ITK has continued to grow. The
version 4 refactoring separated ITK into a modular structure

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 45 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2013.00045/abstract
http://www.frontiersin.org/people/u/94679
http://www.frontiersin.org/people/u/124475
http://www.frontiersin.org/people/u/28689
http://community.frontiersin.org/people/DanielBlezek/128799
mailto:blowekamp@mail.nih.gov
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lowekamp et al. The Design of SimpleITK

which now contains over 100 modules. The segmentation algo-
rithms available in ITK include region growing, level sets, Markov
random field classifiers, watersheds and other statistical classifiers.
The registration framework is designed to be modular with
the distinct parts for a transform, interpolator, transform, opti-
mizer, and image similarity metric along with support for multi-
resolution methods. ITK also contains data-structures for spatial
object, histograms, finite element meshes, quad-edge meshes,
neural networks, images and narrow band level-sets. There are
a large number of third party libraries that are supported and
used for input and output. Additionally there are numerous
image filters algorithms available including mathematical mor-
phology, smoothing, deconvolution, distance maps, fast march-
ing, image fusion, image statistics, geometric filters, and image
sources among many others. ITK contains a wealth of algorithms,
interfaces and data-structures to provide a platform for research
in algorithm development and a collection of image processing
algorithms.

The design of ITK focuses on providing a powerful and flexible
platform to allow for research, experimentation and development
of algorithms. To that end one of the notable implementation
details in ITK is the extensive use of C++ templates. The ITK
image class is a templated structure over both the pixel type as well
as the image dimension. The pixel type is the data type used to
represent a pixel. It can be an intrinsic integer or a real number as
well as an array-like class to represent vector or color pixels. This
design choice pervades all areas of the toolkit. Image filters must
be templated over the image type. Also the data structures and
objects used with the image classes are templated. These struc-
tures include image iterators, points, and indices. The results of
this interface design can be seen code Listing 1, taken from the
ITK Software Guide (Ibáñez et al., 2005).

Notably missing from the design goals of ITK were usability
and ease of accessibility.

1.2. WrapITK
The native wrapping of ITK is performed with a project called
WrapITK (Lehmann et al., 2006), which was integrated with ver-
sion 4 into the main source repository. Its goal was to be a direct
mapping of ITK’s interface for languages such as Python, Java
and Tcl. As a direct mapping it attempts to expose all of ITK’s
functionality including the pipeline, template parameters of data
objects and filters along with ITK’s use of pointers to objects.
WrapITK provides interfaces to many basic ITK objects such the
basic array, index vector, point and matrix classes. Additionally
interfaces to the core data object types such as images and trans-
forms are provided along with iterators and other utility classes.
Most of these types have template parameters for both dimension
and value type. The available types in WrapITK make it possible
to use most of ITK’s filters and many of ITK’s modular frame-
works, such as registration, with the native ITK class to specify
parameters.

WrapITK’s implementation was an evolution of the initial ITK
wrapping system which used CABLE (Lehmann et al., 2006).
There are four components to this system CMake (Martin and
Hoffman, 2003), GCC_XML (http://www.gccxml.org), pygccxml,
and SWIG (Beazley, 2003). The process is driven by CMake which

runs GCC_XML to produce an easily parsable description of the
ITK source code, then uses manually written CMake “wrap” files
along with Python’s pygccxml module to create a SWIG interface
file and describe how the ITK templates parameters should be
defined. Next SWIG generates the C++ code which instantiates
and wraps the ITK for the targeted language.

The result is a powerful exposure of the ITK interface, along
with many of ITK’s difficulties and problems. Each templated ITK
class is instantiated, compiled and wrapped as separate objects.
So in the target language the correct template parameters must
be provided as part of the class’s name to be constructed. While
this approach is very much in the style of ITK, many of the
targeted languages are scripted and typeless, making this extra
verbosity unnatural and cumbersome. This approach also has a
very large impact on the size of the WrapITK library and the
number of symbols in the library. For every ITK class, with every
combination of template parameter, for each method a wrap-
per method is needed, which introduces multiple symbols in the
library that must be loaded into the target language namespace.
With most of the pixel types instantiated, the WrapITK library
can be over a gigabyte, can contain nearly 3 million symbols, and
can take over a minute to load into Python. Also because of the
size, the large number of configuration options, and the compile-
time and configuration options, precompiled binaries are not
available.

1.3. OTHER WRAPPING
ManageITK was developed to provide wrappers for ITK for
the .NET languages such as C#, VB.NET and IronPython
(Mueller, 2007). It was based on the WrapITK infrastructure,
without the use of GCC_XML or SWIG, instead relying on a
manual description of properties of ITK classes, with the addi-
tion of some manually written wrapper classes for key data types.
Many of the advantages of this interface come from the power
of .NET including rapid GUI development, support for multiple
languages, and object browsing in an IDE. However, this wrap-
ping approach only works with Microsoft Visual Studio on the
Windows operating system, and properties and methods for a
new ITK object need to be manually added and updated. Also
there is no testing generated for the wrapped interface.

MATLAB (Mathworks, Natick, MA) is a popular commer-
cial platform for research and prototyping bio-medical image
processing and other numeric computation algorithms. There
are several libraries available to access ITK algorithms inside
MATLAB, although they are not providing a direct access to the
ITK interface. These include MatITK (Chu and Hamarneh, 2006)
and SimITK (Dickinson et al., 2011).

2. DESIGN GOALS
SimpleITK is designed to reduce the burden of usage and expand
the ITK user community by simplifying the complexities that
are frequently encountered when trying to use ITK. Our goal is
to expose the algorithms in ITK in a readily available format.
Currently a direct ITK user must be a sophisticated developer
with computer science skills to be able to compile and combine
ITK algorithms with their own C++ code. While applications
(Osirix, Paraview, SNAPITK, 3D Slicer) are built on top of ITK,

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 45 | 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lowekamp et al. The Design of SimpleITK

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

t y p e d e f f l o a t I n p u t P i x e l T y p e ;
t y p e d e f f l o a t O u t p u t P i x e l T y p e ;

t y p e d e f i t k : : Image < I n p u t P i x e l T y p e , 2 > Inpu t ImageType ;
t y p e d e f i t k : : Image < Outpu tP ixe lType , 2 > OutputImageType ;

t y p e d e f i t k : : ImageF i l eReade r < Inpu t ImageType > ReaderType ;

t y p e d e f i t k : : D i s c r e t e G a u s s i a n I m a g e F i l t e r < InputImageType , OutputImageType > F i l t e r T y p e ;

F i l t e r T y p e : : P o i n t e r f i l t e r = F i l t e r T y p e : : New () ;
ReaderType : : P o i n t e r r e a d e r = ReaderType : : New () ;
r e a d e r−> SetF i leName (a rgv [1]) ;

f i l t e r −> S e t I n p u t (r e a d e r−> GetOutpu t ()) ;

c o n s t double g a u s s i a n V a r i a n c e = a t o f (a rgv [3]) ;
c o n s t unsigned i n t maxKernelWidth = a t o i (a rgv [4]) ;

f i l t e r −> S e t V a r i a n c e (g a u s s i a n V a r i a n c e) ;
f i l t e r −> SetMaximumKernelWidth (maxKernelWidth) ;

f i l t e r −> Update () ;

t y p e d e f unsigned char W r i t e P i x e l T y p e ;
t y p e d e f i t k : : Image < W r i t e P i x e l T y p e , 2 > WriteImageType ;
t y p e d e f i t k : : R e s c a l e I n t e n s i t y I m a g e F i l t e r < OutputImageType , Wri teImageType> R e s c a l e F i l t e r T y p e ;
R e s c a l e F i l t e r T y p e : : P o i n t e r r e s c a l e r = R e s c a l e F i l t e r T y p e : : New () ;

r e s c a l e r−> SetOutputMinimum (0) ;
r e s c a l e r−> SetOutputMaximum (255) ;

t y p e d e f i t k : : I m a g e F i l e W r i t e r < WriteImageType > Wri te rType ;
Wr i t e rType : : P o i n t e r w r i t e r = Wr i t e rType : : New () ;
w r i t e r−> SetF i leName (a rgv [2]) ;

r e s c a l e r−> S e t I n p u t (f i l t e r −> GetOutpu t ()) ;
w r i t e r−> S e t I n p u t (r e s c a l e r−> GetOutpu t ()) ;
w r i t e r−> Update () ;

Listing 1 | A typical ITK example with templates, which reads an image, runs a Gaussian convolution then writes it back out to disk.

internally using ITK data structures and algorithms and exter-
nally exposing certain filters for image manipulation, users of
these applications are not direct users of ITK. We wish to expand
the user base, by making the programming interface accessible
to non-computer scientists such as domain scientists, biomedical
engineers and mathematicians.

Interactive scripting and programming environments such as
the Python’s SciPy environment (Jones et al., 2001), MATLAB and
The R Project for Statistical Computing are popular choices for
initial prototyping and experimentations. Scripting languages are
easily accessible to more people than C++.

The first complication a new user of ITK encounters is the
lack of a binary distribution or compiled software. They must
download and compile ITK from the source code, which requires
development tools such as a compilers and CMake which may be
new to the user. This requirement is a large initial hurdle, and
problems are frequently encountered as shown by the many help
requests on the ITK community mailing list.

A second common difficulty is dealing with the ITK’s advanced
C++ templates. ITK uses templates for both an image type’s

pixel type and the dimension, and the algorithms are templated
over the image types. The naive usage of these features require
the developer to determine static types used at compile time.
The code needed to create a basic program is excessively long
and verbose with basic programs requiring numerous C++ type
definitions. Handling multiple pixel types or image types can
result in even more bulky and complicated code with nested case
statements for template function dispatching.

A third problem is complications arising from the ITK
pipeline. When filters in a pipeline get executed, the number
of times they get executed, and the implicit buffering occurring
between filters can all result in performance issues. Common
problems include data or meta-data being out of date, excessive
memory usage due to filters buffering output, and unnecessary
re-execution of filters. In many cases a naively assembled ITK data
pipeline can perform worse than sequentially executing filters.

2.1. SURVEY AND ARCHITECTURAL REVIEW BOARD
Kitware conducted a survey of the ITK and related computer
vision and medical imaging communities. A variety of mailing

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 45 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lowekamp et al. The Design of SimpleITK

lists were queried for users to voluntarily fill out a survey includ-
ing ITK, VTK, R imaging group, LinkedIn, etc. Feedback was
obtained on commonly used tools, applications and requirements
for image processing. There were 253 total participants of which
45 participants had never used ITK and 54 were uncomfortable
using C++.

The survey produced several important conclusions. First, a
pre-compiled, installable package greatly increases the likelihood
user uptake. Second, 1 dimensional images are not important
with only 4 participants saying it would likely to be used. Third,
for each pixel type the group was asked to rate its priority from
“Not important” to “Essential.” Every pixel type had a minimum
of 25% of the participants saying it was at least a “High Priority.”

When asked questions about preferred programming lan-
guages, programming styles, object oriented vs. procedural, fea-
tures of ITK used or resource requirement, there was a lack
of clear consensus. So we concluded that it is important for
SimpleITK to be flexible in its usage.

To obtain more specific guidance on the design an Advisory
Review Board (ARB) was assembled consisting of 9 members
from academia, corporations and government agencies. During
the design process pseudo code of interfaces were reviewed. The
ARB was another important voice in the design process, giving
opinions on best approaches and guidance on prioritizing design
philosophies.

2.2. GOALS
For a successful project there are certain software engineering
goals that must be achieved for maximum impact. Firstly, the
software should appeal to the greatest audience possible. This
goal suggests that SimpleITK must be cross platform and support
modern desktop operating systems such as Microsoft Windows,
Apple OS X, and GNU Linux. As observed in our survey, a vari-
ety of languages should be supported and the framework should
easily be extendible to other target languages. Also, to make it eas-
iest for potential users to try the software, there should be binary,
downloadable packages available.

Reliability and quality of the software is also of high impor-
tance. If a potential user downloads the software, and the first
thing they try does not work, they may never invest the time to
resolve the issue. To achieve reliability, automatic and manual
testing is a must. The coverage of the code needs to be high to
build confidence in the quality and reliability of the software.

Given that we want to expand the ITK community beyond
those who are comfortable with the current complexities of ITK,
certain features should be hidden to enable clearer access to the
core algorithms available in ITK. A common complaint about
ITK is the difficulties with using the templates for image and filter
algorithms. To address this complaint an important objective is to
present a template-less abstraction or typeless layer to the native
ITK interface that implicitly handles the ITK templated types. We
set the larger goal of not exposing any templates in the SimpleITK
interface.

Another challenge in our design is to provide a procedural
interface to the algorithms, while still providing a object oriented
interface for those that prefer it. Therefore the interface design
needs to be flexible so that it can support multiple usage styles.

There are many aspects of ITK that we would like to retain. The
algorithms still needed to be at the high performance standard
that ITK currently has as a compiled C++ library. And we still
would like support for the flexible multi-threaded infrastructure
when the filtering algorithms are executed. The survey partici-
pants placed a high priority on the large number of pixel types
available in ITK. Therefore we must support this wide variety of
pixel types including color images and vector component images.

The initial mission of ITK included providing a platform
for algorithm development, SimpleITK goals focus on providing
usable algorithms. So the building block that ITK provides for
algorithm development such an image iterator, adaptor, neigh-
borhood algorithms and other utilities and interfaces are not
designed to be included in the SimpleITK interface. This limi-
tation should not exclude SimpleITK from being a platform for
new algorithm development. For example new methods can be
developed that are a composite of other algorithms.

Lastly, while ITK is an biomedical segmentation and registra-
tion library, it explicitly does not contain any visualization. That
is a user can not view an image with ITK alone. Viewing an image
requires an external program or library. However for SimpleITK
to be part of an interactive environment convenient visualization
of intermediate images is required.

3. IMPLEMENTATION
We implemented SimpleITK as an interface on top of ITK, built
as a C++ library. This interface is then wrapped for a variety of
targeted languages. The SimpleITK interface is functionally com-
plete and fully encapsulates ITK. In other words SimpleITK can be
used independently without any direct calls to ITK. This interface
was designed from the ground up to be easy to use and intuitive,
as well as to take advantages of advanced language features and
convenience.

The goals for this project were high, and some of them seemed
in conflict. The challenges of presenting a procedural interface
for the highly object oriented and templated ITK library while
still preserving robust support for multiple image dimensions
and pixel types was the essence of the problem in designing
SimpleITK. Based on our motivations and goals a number of
choices were made.

3.1. DECISIONS
3.1.1. No exposed pipeline
One of the first decisions was that we were not going to expose
ITK’s demand driven pipeline. We decided to hide the pipeline
because errors in using the pipeline are quite common to new
users. Without the pipeline, results of operations are immediate
so there is no chance that an image is out of date or missing infor-
mation. Users can simply call the methods needed to set a filter’s
parameters then execute the filter. The overhead required to con-
nect, manage and update filters is removed from the interface.
Also, with filters executing immediately, the object oriented and
the procedural interfaces can be closely related.

3.1.2. Use SWIG for wrapping
One of the fundamental goals of SimpleITK was to provide lan-
guage bindings for different languages such as Python, Java, and

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 45 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lowekamp et al. The Design of SimpleITK

C#. Due to the large number of language targets, a single uni-
fied tool for all languages was required for maintainability. The
Simplified Wrapper and Interface Generator (SWIG), is open
source and a powerful development tool for wrapping C++ with
numerous high-level programming languages. SWIG has support
for over 20 target languages. It is capable of parsing basic C++
interfaces and generating glue code to connect the target lan-
guages to the interface. The result is generally a direct mapping
of a methods from the target language to an associated method in
the C++ interface.

WrapITK uses SWIG to interface ITK with other languages.
But the complexity of the templated programming used in
ITK means that SWIG cannot directly wrap ITK. Instead
WrapITK requires additional tools to explicitly specify the inter-
face of ITK in a format that SWIG can understand to wrap
certain instantiations of the templated ITK interface. SimpleITK’s
simplified interface is designed to be directly wrappable by SWIG.

3.1.3. Parameter types
ITK uses a variety of array-like types such as arrays, vectors,
indexes, sizes, points and offsets. These types have template
parameters such as dimension and value type which makes them
dependent on the type of the image, resulting in dozens of array-
like types in the native ITK interface. SWIG has built in support
for many C++ Standard Template Library (STL) objects such as
std::vector and std::list and provides specialized interfaces for tar-
get languages. For example SWIG can provide an interface to a
std::vector in Python similar to its own list or tuple type along with
implicit conversions. This feature greatly improves the interaction
in the target language, giving the interface a native feel. Because
of the goal to create a template-less layer free from compile-time
parameters, SimpleITK uses std::vectors for array-like parameters
for its interface. However, for the targeted scripting language it
may appear as native arrays.

3.1.4. Hide smart pointers
Pointers and explicit memory management are elements of C++
that preclude it from being considered a high-level language
compared to scripting languages like Python. The smart pointer
design pattern is a combination of implicit reference counting
for objects along with an interface of a standard pointer so that
objects can be automatically deleted when no longer referenced.
Thus, they reduce the burden of explicit memory management.
While smart pointers are used in ITK, they are not simple enough
for SimpleITK as they may introduce a new concept in target
languages. Many languages provide a direct object type, not a sep-
arate pointer type that refers to the object. The burden of a direct
approach in C++ is that implicit deep copies of objects occur dur-
ing assignments and passing arguments by value. We decided that
SimpleITK would provide direct image, filter and transformation
objects but not provide the undue burden of implicit copying.

3.1.5. Template-less layer
The template-less or typeless layer concept’s goal is to hide ITK’s
template parameters from the user. A common suggestion was
to simply consider all images as 32-bit or 64-bit real numbers.
However, this approach can cause unacceptable memory use and

performance penalties. Consider starting with an image that is
an 8-bit and 4 gigabytes. Converting to a 64-bit type would use
eight times the memory now requiring 32 gigabytes of memory
for its representation. This monolithic choice changes the nature
of working with an image from one that can be done on a laptop
to one that requires a large server. Additionally, the users surveyed
demanded the flexibility to use a variety of pixel types.

Therefore the template-less layer concept requires that
SimpleITK images all have the same external type and interface,
unlike ITK. The details of dealing with the different ITK template
parameters is hidden so that the user can generically manipu-
late any image. An image’s pixel type and dimension are handled
by SimpleITK internally and not directly exposed to the user,
unlike ITK which requires the user to explicitly determine them at
compile-time. At runtime a PixelIDValue, in the form of an inte-
ger and enumerated type is used to represent a pixel type, which
along with the image dimension are intrinsic run-time attributes
of the SimpleITK image.

3.1.6. Facade interfaces
The facade design pattern is a software design pattern to present
the user with an simplified interface to a larger body of code
(Gamma et al., 1995). This approach is how SimpleITK encap-
sulates ITK filters and data objects, where the body of code
encapsulated is the set of template parameters for a class. Our
facades internally use ITK objects and call ITK methods, so there
is very little additional code. The facade code provides a template-
less layer to instantiate and dispatch to the correct templated
ITK code. Additional code is used to make the objects of the
facade behave natively instead of requiring smart pointers and
converting between the templated ITK array-like types and STL
objects.

3.1.7. Image buffer access
The ability to easily import and export images into SimpleITK
is a critical feature. It enables the interfacing between multiple
image processing libraries. We chose to allow the direct expo-
sure of an image’s buffer via a raw pointer at the C++ interface.
This pointer provides efficient direct access, however its use is
inherently unsafe. Therefore it is not directly exposed in wrapped
languages. Instead our goal is to expose a native array interface to
the buffer in the target language, such as numpy for Python.

3.2. THE DESIGN OF THE SIMPLEITK IMAGE
The image class is at the heart of SimpleITK. It is the most com-
monly used class and has been specially designed to provide a
natural and intuitive user interface across multiple target lan-
guages. We followed our principles for intuitive interface driven
design by writing numerous example code blocks and discussing
tradeoffs with the ARB.

From an interface perspective, the handling of the life of an
object, i.e., how the object is constructed, copy and destroyed,
is a key aspect of developing an intuitive interface. Because we
chose not to expose smart pointers, we use a completely differ-
ent approach from ITK’s New factory method. Our approach is
simple and translates to other languages seamlessly. We simply
directly expose the Image class’s constructors and destructor with-
out the restrictions applied in ITK. The reasons ITK uses the

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 45 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lowekamp et al. The Design of SimpleITK

New factory method include: adding flexibility to override a class’
implementation and enforcing smart pointers use by preventing
stack based allocation. Our approach to the SimpleITK interface
does not allow our classes to be directly overridden but still allows
ITK class overrides to occur internally. As we encourage the direct
use of our Image class, the smart pointer motivation is moot as
well. An Image is able to be default constructed, as an image of
size zero. An image of any dimension or pixel type is considered
to be empty if its size is zero. The common constructor methods
take parameters for the size of the image along with the pixel type
and support the option for the number of components per pixel.
The dimension of the image is determined by the number of com-
ponents used for size. How Images are copied is closely related to
their constructors, but the relationship between the SimpleITK
interface and ITK objects needs to be described first.

The SimpleITK Image interface presented, utilizes the facade
design pattern in conjunction with the private implementation,
“pimpl” pattern (Sutter, 2000). It is a facade in that it provides
a unified interface for multiple ITK classes and template param-
eters. The single SimpleITK Image class provides an interface to
ITK’s Image, VectorImage, and LabelMap classes and supports
multiple dimensions and pixel types. However, the SimpleITK
Image class is not polymorphic, i.e., it is not a virtual base class
and does not contain virtual methods. Instead it relies on an
internal pointer to a private class in the “pimpl” pattern to pro-
vide a unified polymorphic interface to ITK’s Image class. The
“pimpl” image has an abstract base class for the unified interface
with templated derived classes to implement the specifics. This
“pimpl” image fully encapsulate ITK’s templates and instantiates
all the ITK image classes. A call from the SimpleITK interface to
an ITK image is quite efficient and direct despite the complexity
of the patterns used. A call to the SimpleITK image’s method, calls
the same method in the “pimpl” Image through the polymorphic
interface, which then calls the ITK method. This dispatch method
is direct and free from any conditionals. The SimpleITK Image
only contains a pointer to the “pimpl” image which only contains
a smart pointer to ITK Image. This implementation provides an
efficient interface with low overhead.

Our interface also allows for direct copying and assignment of
the Image class in an optimized manner. From a user perspec-
tive, the availability of optimized copy methods is generally all
that needs to be known. However, we have optimized these meth-
ods by using a form of lazy evaluation through a copy-on-write
(COW) policy. This policy is a key component that allows for
an efficient implementation while removing pointers from the
interface. Ironically, COW is implemented by using ITK’s smart
pointers. When a copy of a SimpleITK Image occurs, a new ITK
smart pointer to the image is created and stored. This new smart
pointer increases the reference count contained of the ITK Image.
When there is a write request to the SimpleITK Image, the refer-
ence count is checked; if it is not 1, then a deep copy is performed
of the bulk image data. This approach enables the SimpleITK
Image to be passed by value without the overhead of implicitly
copying the bulk image data.

Our user survey and ARB discussions were inconclusive in
determining a limited set of important pixel types to implement.
As adding more image or pixel types does not increase the number

of methods in the SimpleITK interface, we do not limit the types
enabled. Currently we have up to 26 different pixel types available
including scalars, multi-component vectors, complex as well as
label maps implemented with the run length encoded LabelMap
classes. Fully implementing these type does not have an adverse
effect on usability or run-time. It does however increase the
demands on the system requirements for compiling the library.
As the goals for SimpleITK focus more on usability of the inter-
face then ease of building, it was determined to be a reasonable
tradeoff. Additionally, we settled for only supporting 2 and 3
dimensional images. Interest by the users in higher dimensional
images was limited.

The Image interface was also customized for C++, Python,
R, Java and C# to provide additional syntactic enhancements to
make language integration as easy as possible. These enhance-
ments include features such as operator overloading, advance
subscripting, and utilizing weak typing of return values in many
scripting languages.

The resulting image class provides a simple and easy to use
interface that fully encapsulates the complexities of ITK. Among
the things that are hidden include templates for both the image
dimension and pixel type as well as multiple image classes. Details
such as smart-pointers, memory management and copy seman-
tics are also removed and replace with a straightforward C++
interface. This standard interface can be directly wrapped by
SWIG, thus providing a conventional interface for different target
languages.

3.3. THE DESIGN OF THE SIMPLEITK FILTERS
Among the objectives which drove the filter interface design of
SimpleITK included removing the dependency on the image type
at compile-time, the removal of ITK’s data driven pipeline as
well as providing a flexible interface which has an object ori-
ented and procedural interface. With the template-less image class
designed and the decision to use STL’s std::vector as parameters
whose length is dependent on the image dimension, the interface
was rather straight forward. Determining which types to use for
filter method parameters was a difficulty when it was the same
type as the image’s pixel type. Generically using the double type
resolved this issue. The double is a superset of all scalar pixel
types except 64-bit integers, and for vector pixel types the scalar
value is replicated for all components. Listing 2 can be used as a
reference.

In ITK, the pipeline needs to be explicitly updated before
results can be examined. This update initiates the examination
of the dependencies in the pipeline to determine the necessary fil-
ters to execute. After the Update method of a filter is called the
results in the output are valid and can now be examined. Without
the pipeline, a filter is executed immediately, so the method name
Execute was chosen to illustrate the difference. Filters which have
secondary results, such as a number of iterations or a measure-
ment of error are problematic for the procedural interface as
functions naturally only return a single value. The solution was
to add “measurements” only to the filter classes. An alternative
approach, to make these available through the procedural inter-
face was have them as arguments to the procedural methods.
However doing so would result in too many arguments, and

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 45 | 6

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lowekamp et al. The Design of SimpleITK

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

c l a s s F i l t e r
{
p u b l i c :

s t d : : s t r i n g GetName () c o n s t ;

s t d : : s t r i n g T o S t r i n g () c o n s t ;

S e l f &S e t P a r a m e t e r (double p i x e l V a l u e) ;
double G e t P a r a m e t e r () c o n s t ;

S e l f &S e t D i m e n s i o n P a r a m e t e r (s t d : : v e c t o r < unsigned i n t > dimValue) ;
s t d : : v e c t o r < unsigned i n t > G e t D i m e n s i o n P a r a e t e r () c o n s t ;

double GetMeasurement () c o n s t ;

Image Execu te (c o n s t Image &image1) ;
Image Execu te (c o n s t Image &image1 , double p i x e l V a l u e , s t d : : v e c t o r < unsigned i n t > dimValue) ;

} ;

Image F i l t e r (c o n s t Image &image1 , double p i x e l V a l u e = 0 , s t d : : v e c t o r < unsigned i n t > dimValue =
d e f a u l t V a l u e) ;

Listing 2 | A prototypical example of a SimpleITK filter interface.

passing by reference or pointer is not portable across differing
languages.

Defining the behavior of a filter is more complicated than spec-
ifying the desired interface for the template-less filter. For each
filter decisions must be made about the input types supported as
well as the image type produced. The goal is to have filters support
as many image types as possible. Even when the ITK filter does
not directly support vector images, the SimpleITK infrastructure
can execute the ITK filter on each component independently. For
determining the output image type there are a couple general
policies that occur. The first and most common is defining the
output image type the same as the input. This is sensible for many
filters including mathematical morphology, image grid manipu-
lations, and label image manipulations. For other filters having
a fixed output type is sensible. For example filters which output a
mask such as thresholding, always output a unsigned 8-bit integer,
while distance field filters produce 32-bit floating point numbers.
Consideration must include limiting the number of instantiated
filters of one type to a reasonable number, to prevent excessive
compilation and library size from excessive permutation, so in
general there is no selection of the output type.

Those filters which take two image as input required spe-
cial consideration for how to handle the multiple types. In ITK,
filters that are binary functors such as the addition and subtrac-
tion operators, have 3 template parameters corresponding the
two inputs and the single output. This approach makes ITK very
flexible by allowing conversion to occur simultaneously with the
operation. Languages have different type promotions schemes,
and certain overflow and conversions are explicitly undefined in
C++. Therefore we decided that most of the binary filters require
the inputs to both be of the same type as well as the resulting
output. So we do not do any implicit conversion or promotion,
thereby requiring the user to explicitly cast the inputs to be the

same type. SimpleITK does have the ability for filters to accept
multiple images of differing types and to use the correct ITK fil-
ter templates based on these input types. These filters are called
dual image filters in SimpleITK. They have been used sparingly
due to size constraints when the computation validity of multiple
types is not in question. The types of filters where this feature is
used include filters with masking and overlays. The group of fil-
ters which allow the user to select the output type such as casting,
camping, and resample also use the dual dispatch infrastructure.

By choosing to remove ITK’s pipeline architecture from
SimpleITK there are numerous simplifications that we have taken
advantage in our design. Among the ITK features SimpleITK
omits are the advanced details of memory management occur-
ring in the pipeline such as releasing data, and running filters
in place. They are not relevant, since SimpleITK has an immedi-
ate execution model that lacks pipeline buffering. ITK’s interface
for the ProcessObject, which is the basis for all filters, consists of
over 40 public methods for manipulating the pipeline and man-
aging the inputs and outputs. All these methods are irrelevant
for SimpleITK’s Execute method approach. Omitting them sim-
plifies the interface for each filter class. Among the features still
relevant is the monitoring of progress and events; these features
are scheduled for the next release of SimpleITK, version 0.8.

3.4. IMPLEMENTATION DETAILS
The design of the interface was not done in isolation from
the implementation. Extreme software development method-
ologies were use to continuously test and regularly integrate
features into a stable version. The goals and the design of
the interface presented immense software engineering problems
that had not been addressed before with ITK. Initially there
were doubts that maintainable code and infrastructure could
be developed to create a template-less layer for a significant

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 45 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lowekamp et al. The Design of SimpleITK

part of ITK’s filters without unmaintainable, manually created
code. Our resulting implementation uses advanced C++ template
meta-programming to perform compile-time execution of code
generation, as well as traditional code generation based on the
description of filters. The details in this section are completely
hidden from a user of SimpleITK, and are relevant to those exam-
ining the internals of SimpleITK or those who wish to learn the
novel techniques used for similar projects.

3.4.1. Overview
SimpleITK is implemented with more than just static code. It is
a complex sequence of code generation and compilation to pro-
duce the C++ interface, followed by wrapping with SWIG for the
target languages (see Figure 1). The manually written common
code of SimpleITK consists of the meta-programing infrastruc-
ture for the template-less layer and the core data structures such
as the image and the transform classes. Also, a few of the filters
and the reading, writing and image display interfaces are written
by hand. As of SimpleITK 0.7.1, the SimpleITK C++ interfaces
for 245 image filters are automatically generated from manually
written descriptions.

3.4.2. Code generation
After experimenting and iteratively improving manually written
filter interfaces, it was immediately apparent that a solely manu-
ally written interface would take excessive time to develop, lead

FIGURE 1 | Data flow diagram of SimpleITK’s build process. Boxes
represent data, while ovals are important processes.

to an inconsistent interface, and be unmaintainable. Due to the
requirement of maintaining a consistent interface among a large
number of filters, automatic source code generation became the
natural choice. Code generation allows the developers to focus on
writing the generator and the description at a higher level than
the immediate interface.

Each generated filter in SimpleITK is described by a JavaScript
Object Notation (JSON) file. The JSON file structure is a
lightweight data format popularized by JavaScript programming
for the web, which is easy for both humans and computer software
to read and write. The JSON description contains the essence of
an ITK filter. A filter description contains expected named fields,
such as name, template_type, number_of_inputs, pixel_types, and
output_pixel_type, with values, as well as more generic fields
which can contain C++ code to be inserted into the template.
The output_pixel_type is frequently more that just a static value
by containing meta-programing to transform the input type to
the output. Additionally, there is the member sections which con-
tains the description for each filter parameter so that it can be
stored in the SimpleITK facade and translated into the typed ITK
filter. There is also an optional section to describe measurements,
and how to update the member variable from the results of the
ITK filter.

For normal image filters previously mentioned portion of the
JSON description can generally be written in just a few moments
from a similar example. The time consuming part in writing a
JSON description is the tests section. This section contains input
image file names, the values of parameters, and either a hash of
the expected output or a baseline image to compare a test against.
By including this section we are able to generate tests for each
language to verify usability and functionality of the filter with dif-
ferent image types. Automatic testing is critical to developing a
robust interface that is proven and reliable.

The generator of the source code is a text based program,
which processes a set of text inputs and produces source code.
Lua is a powerful, portable, fast, and lightweight scripting lan-
guages (Ierusalimschy et al., 2006). We chose it as the language
for the source code generator script because its small size makes
it easily included as part of the SimpleITK source and com-
piled during the build process. The generator script is derived
from the Lua “Text Template Expand” example (http://lua-
users.org/wiki/TextTemplate) combined with an publicly avail-
able JSON parser. This system uses template files which contain
and inlined Lua expressions all of which are evaluated into strings.
The scope of the Lua expressions include variables from the cur-
rent scope in the JSON description file. There are template files
for filters of types such as ImageSources, BinaryFunctorFilters, and
DualImageFilters.

3.4.3. Template meta-program and typelists
The crux of the problem for the template-less layer is the abil-
ity to map the runtime pixel type information, PixelIDValue,
available from SimpleITK’s Image to the compile-time template
parameters in ITK and vice versa. Template meta-programming
in C++ is the use of templates to perform compile-time execu-
tion to generate code. SimpleITK uses a concept called “Typelists”
to operate on list of types, PixelIDs, which represent the types

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 45 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lowekamp et al. The Design of SimpleITK

of pixels. Specifically these lists have compile-time operations to
append, merge, intersect, search, traverse and perform permu-
tations of selections from two lists (Alexandrescu, 2001). The
runtime ID of a pixel type, PixelIDValue, is the index in the
global InstantiatedPixelIDTypeList type, which is a Typelist of all
the available pixel types. There are a variety of groups of PixelIDs
declared as Typelists such as integer, real and vector. The JSON
description of a filter describes the valid input pixel types by
performing meta-programming operations on these Typelists.

The compile-time mapping of the run-time PixelIDValue to
an instantiated function with the image as a template parameter
is more problematic. The compile-time mapping of the PixelID
to the scalar PixelIDValue can and must be done on all instanti-
ated types. On the other hand the templated functions can only
be instantiated with the parameters that are specified via Typelists.
Otherwise the code may not be valid.

The mapping of the run-time PixelIDValue to an instan-
tiated member function is done with an abstraction called a
MemberFunctionFactory. This factory has a method which maps a
PixelIDValue and image dimension to a member function pointer
of an instantiated member function over the associated ITK image
types. These functions are registered into the factory by passing a
PixelID Typelist and the dimension. Additionally the factory has a
templated object which knows how to get the address of the mem-
ber function, enabling the compile-time traversal of the Typelist
to instantiate the member function. With the member func-
tions stored in the factory, they are indexable by the PixelIDValue
at run-time. This MemberFunctionFactory is the heart of the
dispatch system used to implement SimpleITK’s templateless
layer and is an important software engineering innovation for
dispatching run-time mappings to ITK types.

3.4.4. Automated documentation
Without documentation to accompany filters and algorithms, the
interface of SimpleITK would be unusable. Duplicating the effort
to describe each algorithm and parameters with what has already
been done in ITK would be a foolish task. Doxygen is the de facto
standard tool for generating reference manuals of a programming
interface from annotated source code (http://www.doxygen.org).
It is used as the source code annotation throughout ITK and
SimpleITK. For all the manually written SimpleITK infrastructure
and facade interfaces the annotations are written in the source
code. Automated utilities have been developed to insert docu-
mentation strings from ITK into the JSON filter description files.
These documentation fields are then incorporated into the gen-
erated source code as well as used for wrapped target language’s
online documentation. Currently the ITK documentation some-
times contains C++ implementation details or other features only
available in native ITK. In the future ITK’s documentation may
be further annotated to note the relevance of different sections
to allow better integration with SimpleITK and other external
projects.

4. EXAMPLES
4.1. MULTI-MODAL VENTRICLE SEGMENTATION
Segmentation of the human brain lateral ventricles is a com-
mon task in the study of brain anatomy and its diseases. Changes

in the volume of cerebrospinal fluid and the shape of the cere-
bral ventricles are associated with a number of diseases including
hydrocephalus (Brandt et al., 1994) and schizophrenia (Staal
et al., 2000).

In this example we use SimpleITK’s VectorConfidence
Connected filter (Ibáñez et al., 2005) to segment an MRI data
set from the Neuroimage Analysis Center’s Multi-modality
MRI-based Atlas of the Brain (Halle et al., 2013). This filter
begins with user-selected seed points then iteratively grows a
region based on the similarity of the local vector image statistics.
To create a vector image we combine the MRI T1 and T2 images
into a single vector image.

We developed this script interactively in an IPython Notebook
(Pérez and Granger, 2007) session. We implemented custom dis-
play functions called showimg and showimg3d, which allow for
the easy tiled display of multiple slices. For display we export the
tiled slices to numpy and utilize matplotlib for inline display in the
IPython notebook.

First we read the T1 and T2 brain images and create unsigned
char version for display (see Listing 3: lines 5–10). Taking advan-
tage of SimpleITK’s Python array slicing, extracting axial slices
from the MRI volumes is simple (see Figure 2 and Listing 3:
lines 13–14). Then from the original T1 and T2 volumes we cre-
ate a vector volume using SimpleITK’s Compose function (see
Listing 3: line 18).

For initializing the segmentation of the cerebral ventricles we
start with 2 seed points, one each side (see Listing 3: line 21).
For visualization purposes, we create a seed volume, based on the
dimensions of the T1 volume. Setting the seed voxels to 1 is simple
with SimpleITK’s array indexing (see Listing 3: line 25–29, and
Figure 3).

To display our segmentation we can create a contour of it and
overlay that on the T1 volume (see Figure 4 and Listing 3: line
43–47).

Finally using a volume renderer we can visualize the lateral
ventricles segmentation in 3d (see Figure 5).

4.2. MICROSCOPY SEGMENTATION
Many modalities of microscopy acquire images at high resolu-
tion over large areas and can result in very large data sets. The
Connectome Project at Harvard’s Center for Brain Science is one
example (Seyedhosseini et al., 2011).

To illustrate the computation efficiency and the effective-
ness of using SimpleITK on larger real world problems, this
example demonstrates a segmentation of an electron microscopy
dataset. Ion-abrasion scanning electron microscopy (IA-SEM), is
an image acquisition technique from the combination of tradi-
tional scanning electron microscopy acquired on a sample block
with a focused ion-beam used to mill the block with nano-meter
resolution. The method has been used for whole cell imaging
(Murphy et al., 2011).

The dataset chosen is a volume of 100 nm gold beads used
to analyze the procedures and methods for data acquisition (see
Figure 6). It was collected by the Biophysics Section and Electron
Microscopy Core, Laboratory of Cell Biology at the National
Cancer Institute and is publicly available on a MIDAS data server
at the NLM (http://placid.nlm.nih.gov). The dataset was acquired

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 45 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lowekamp et al. The Design of SimpleITK

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

import SimpleITK as s i t k
from showimg import showimg , showimg3d

Load t h e MRI vo lumes
img T1 = s i t k . ReadImage (” Data / nac− b r a i n − a t l a s − 1.0 / volumes / A1 grayT1 . n r r d ”)
img T2 = s i t k . ReadImage (” Data / nac− b r a i n − a t l a s − 1.0 / volumes / A1 grayT2 . n r r d ”)

Conve r t t h e vo lumes t o 8−b i t g r a y s c a l e
img T1 255 = s i t k . Cas t (s i t k . R e s c a l e I n t e n s i t y (img T1) , s i t k . s i t k U I n t 8)
img T2 255 = s i t k . Cas t (s i t k . R e s c a l e I n t e n s i t y (img T2) , s i t k . s i t k U I n t 8)

E x t r a c t and d i s p l a y an a x i a l s l i c e from each volume
y s l i c e T 1 = img T1 255 [: , 1 1 5 , :]
y s l i c e T 2 = img T2 255 [: , 1 1 5 , :]
showimg (y s l i c e T 1 , d p i =30 , t i t l e =” t1 image ”)
showimg (y s l i c e T 2 , d p i =30 , t i t l e =” t2 image ”)

Crea t e a v e c t o r vo lume from T1 and T2
i m g m u l t i = s i t k . Compose (img T1 , img T2)

Crea t e 2 seed p o i n t s f o r t h e r e g i o n f i n d i n g
s e e d s = [[1 1 2 , 1 1 6 , 1 2 5] , [1 1 0 , 1 2 0 , 1 3 2]]

Crea t e a seed p o i n t vo lume
seedimg = s i t k . Image (img T1 . G e t S i z e () , s i t k . s i t k U I n t 8)
seedimg . C o p y I n f o r m a t i o n (img T1)
seedimg [s e e d s [0]] = 1
seedimg [s e e d s [1]] = 1
seedimg = s i t k . B i n a r y D i l a t e (seedimg , 3)

D i s p l a y t h e seed p o i n t vo lume
showimg3d (s i t k . L a b e l O v e r l a y (img T1 255 , seedimg) ,

z s l i c e s = r a n g e (s e e d s [0] [2] − 3 , s e e d s [1] [2] + 3 , 3) ,
d p i =15 , t i t l e =” i n i t i a l s e e d ”)

Perform t h e r e g i o n based s e gmen t a t i o n
seg = s i t k . V e c t o r C o n f i d e n c e C o n n e c t e d (img mul t i , s eeds , n u m b e r O f I t e r a t i o n s =2 , m u l t i p l i e r = 4 . 5)

Apply a median f i l t e r t o t h e s e gmen t a t i o n
seg = s i t k . BinaryMedian (seg , [3 , 3 , 3])

D i s p l a y an o v e r l a y image w i t h a c on t ou r o f t h e segmented v e n t r i c l e
o v e r l a y e d = s i t k . L a b e l O v e r l a y (img T1 255 , s i t k . La b e l C o n t o u r (seg))
mysize = img T1 . G e t S i z e ()
showimg3d (o v e r l a y e d , y s l i c e s = r a n g e (1 0 0 , mysize [1] − 100 ,15) ,

z s l i c e s = r a n g e (1 0 0 , mysize [2] − 100 ,15) , d p i =30 , t i t l e =” s e g m e n t a t i o n ”)

Listing 3 | A Python script using SimpleITK for the multi-modal segmentation of the lateral ventricles.

FIGURE 2 | Axial cross sections of T1 (left) and T2 (right) MRI of a brain.

at 5 nm square voxels with a volume size of 1003 × 1003 × 296
pixels resulting in a 284 megabyte volume.

The goal of this segmentation is to identify each distinct
gold bead by creating a unique label for each gold bead. The

segmentation occurs primarily in two steps: first identifying the
individual beads (see Listing 4: lines 9–16) and second growing
the seeds (see Listing 4: lines 26–27). This sequence of process-
ing was developed in an interactive python session making use of
SimpleITK’s Show method to visualize intermediate results. It was
then converted into a single script to assist with batch processing
and parameter exploration.

The method first uses thresholding to identify the high inten-
sity gold, then uses mathematical morphology to separate the
beads of at least 13 pixels (65 nm) in diameter. Next, each isolated
part is given a unique identifier using the connected components
algorithm. The watershed from markers algorithm available in
ITK (Beare and Lehmann, 2006), is a multi-label greedy region
growing algorithm subject to the penalty of the feature image.
The individuated gold components are combined with an addi-
tional marker for the background. This marker image is used in

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 45 | 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lowekamp et al. The Design of SimpleITK

FIGURE 3 | Segmentation seeds in green on coronal cross sections of T1 volume.

FIGURE 4 | Axial and coronal cross sections with the resulting ventricle segmentation shown as a green contour.

FIGURE 5 | Volume rendering of segmented ventricle.

conjunction with an edge image for the watershed algorithm. The
SimpleITK code is easy to follow, brief and executes 16 ITK fil-
ter to perform its task. Many of those filters are invoked through
overloaded operators for comparison and arithmetic.

The resulting segmentation consists of over 9000 seg-
mented gold beads (see Figures 7 and 8). Segmentation is
just one of many steps in the process of quantitative anal-
ysis. SimpleITK provides facilities for basic statistics in the
LabelImageStatisticsImageFilter. However, for this study custom
shape analysis was implemented in C++ within ITK’s LabelMap
framework, illustrating the complementary nature of SimpleITK’s
and ITK’s interfaces. When implementing new algorithms ITK

FIGURE 6 | Slice from the gold bead volume with 5nm pixel resolution.

The dense 100nm gold beads are bright while the embedded resin is dark.

can be the best tool to use, while interactively exploring existing
algorithms for a solution may be better suited to SimpleITK.

4.3. SIMPLEFILTERS IN 3D SLICER
The SimpleITK infrastructure can also be used as a way to inte-
grate ITK into applications. Many image processing applications
are designed in a modular fashions so that modules or extensions
can be created to add new functionality. A frequent objective is

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 45 | 11

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lowekamp et al. The Design of SimpleITK

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

import SimpleITK as s i t k

img = s i t k . ReadImage (” Gold3nmInLensA . mrc ”)
s i t k . Show (img)

median img = s i t k . Median (img , [1 , 1 , 1])
s i t k . Show (median img , ” In− Median1 ”)

m = median img > 160
Grays ca l e i s more e f f i c i e n t f o r t h i s case , and p roduce s t h e same r e s u l t s
m = s i t k . G r a y s c a l e E r o d e (m, 6)
m = s i t k . G r a y s c a l e D i l a t e (m, 2)

s i t k . Show (s i t k . L a b e l O v e r l a y (img ,m) , ”Mask”)

marke r s = s i t k . ConnectedComponent (m, f u l l y C o n n e c t e d = F a l s e)
d e l m

in c r emen t a l l i n i t i a l makers and add bg marker
marke r s += s i t k . Cas t (marke r s !=0 , marke r s . G e t P i x e l I D ())
make a bg maker w i t h 1 va l u e
marke r s += s i t k . Cas t (median img < 50, marke r s . G e t P i x e l I D ())
s i t k . Show (s i t k . L a b e l O v e r l a y (img , marke r s) , ” Markers ”)

g rad = s i t k . G r a d i e n t M a g n i t u d e R e c u r s i v e G a u s s i a n (median img , median img . Ge tSpac ing () [0])
ws = s i t k . Morpho log ica lWate r shedFromMarke r s (grad , markers ,

markWatershedLine = F a l s e , f u l l y C o n n e c t e d = F a l s e)
ws − = s i t k . Cas t (ws==1 , ws . G e t P i x e l I D ())

s i t k . Show (s i t k . L a b e l O v e r l a y (img , ws) , ” S e g m e n t a t i o n ”)
s i t k . Wri te Image (ws , ” g o l d s e g . mha”)
s l i c e =150
s i t k . Wri te Image (s i t k . L a b e l O v e r l a y (img , ws) [: , : , s l i c e] , ” g o l d s e g . t i f f ”)
s i t k . Wri te Image (img [: , : , s l i c e] , ” go ld . t i f f ”)

Listing 4 | Example Python script using SimpleITK to segment gold beads with the watersheds algorithm.

to integrate ITK’s important algorithms into an end user appli-
cation with a graphical user interface (GUI). When trying to
directly integrate ITK with applications, there are common prob-
lems encountered that SimpleITK can resolve. Interfacing an
application’s data types with the templated ITK types requires
dealing with template parameter instantiation and run-time dis-
patching. Also, for each filter or algorithm important parameters
and default values need to be determined. SimpleITK can help
with these and other difficulties to enable rapid integration of a
large number of ITK filters into a application.

3D Slicer is in modular image computing platform used for
quantitative analysis in medical image computing and clinical
research (Fedorov et al., 2012). It is a free and open source appli-
cation with support for numerous biomedical imaging formats
and functionality such as automatic interactive segmentation,
registration, and visualization. It is built upon a variety of open
source software to provide core functionality such as visualiza-
tion, GUI support, and script. It has a modular architecture to
support custom plug-ins. Despite 3D Slicer including ITK in
its C++ backend, the burden of creating a module for a large
number of ITK filters was too great, so many of ITK’s basic image
processing algorithms were not available to end users.

The SimpleFilters module in 3D Slicer was created to provide a
basic GUI to the image filters available in ITK through SimpleITK.
During the course of a single week at a National Alliance of

Medical Image and Computing (NAMIC) project week, with the
support of various member of the developer community, we cre-
ated an initial implementation of the module encorporating over
200 SimpleITK image filters with GUIs for their parameters.

The module was written in Python to take advantage of the
ability to generate a string and evaluate that string at runtime. By
using this run-time capability with a few hundred lines of code,
we were able to implement code to generate a GUI for the param-
eters and to execute each filter. This module was created without
any filter specific code or compile-time code generation, but by
reading SimpleITK’s JSON descriptions files to obtain the param-
eters. The calls to configure filters for execution were constructed
at runtime from strings. Also the documentation strings in the
JSON are used for mouse quick tips and hover overs. The module
uses SimpleITK and its template-less layer for runtime type dis-
patching, so all image types are supported without additional case
or switch statements. The SimpleFilters module has been incor-
porated into 3D Slicer and is part of the binary distribution with
version 4.3.

The JSON filter descriptions in SimpleITK contain the essence
of ITK. They provide a standard to describe the parameters
for algorithms, along with their default values and documen-
tation. In addition to the interface and language bindings that
SimpleITK provides, these descriptions are another valuable asset
when integrating ITK into applications. They can dramatically

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 45 | 12

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lowekamp et al. The Design of SimpleITK

FIGURE 7 | Gold bead segmentation results on the same slice as

Figure 6. Each identified bead has a unique color transparently overlaid the
original image.

FIGURE 8 | Volume rendering of colorized labeled gold bead

segmentation.

reduce the implementation time and increase the number of
algorithms that can be made available.

5. DISCUSSION
The SimpleITK interface with wrapping for additional languages
is a new and easy way to use ITK’s image processing algorithms
that will make these algorithms available to a wider audience of
domain scientists. A number of features of ITK are hidden and
the bulk of the interface has been simplified. Currently approx-
imately 250 algorithms are available through SimpleITK for
interactive exploration in a number of scripting and prototyping
environments.

SimpleITK has already gone through several releases during
development. The most current release available is 0.7.0rc1. As
of this writing there have been over 7000 binary downloads of
SimpleITK on SourceForge. This number does not include those
who have built SimpleITK from the source code repository or are

using it from an integrated application. The SimpleITK official
website (http://www.simpleitk.org) contains more information
about how to get started using SimpleITK.

5.1. FUTURE WORK
While the foundations of ITK have been integrated into the
SimpleITK interface for classes such as images, transforms and
interpolators and the infrastructure for source code generation
for filters has been implemented, much of the work for ITK’s
registration framework is yet to be done. Some ITK registration
methods are ITK filters and can easily be integrated as part of the
current framework. The modular registration framework in ITK
version 3 and the latest version, v4, present new problems which
require novel design solutions.

Additionally, there are features in ITK that still need to be
incorporated in to the SimpleITK interface such as progress
reporting and call-back methods. While SimpleITK currently
contains over 250 image filters, we are always looking for feed-
back from our user community for what additional ITK filters
should be priorities in future work. Many of the unincorpo-
rated ITK filters are not commonly used. So when the SimpleITK
interface is tested, bugs in ITK may arise or other inconsisten-
cies may be discovered in ITK’s interface. These issues must
be addressed and fixed in ITK and slow the development of
SimpleITK.

ITK is a very large toolkit consisting of millions of lines of code.
The SimpleITK interface is highly customized and not designed
to expose all of ITK. The design goals of SimpleITK have been
for a robust, reliable, and elegant interface to ITK. To that end
we have focused on the template-less layer to the image class and
image filters. There are many additional data structures that could
be added to the interface including histograms and quad-edge
meshes. However, we wish the presented interface to be the best
possible. To that end some portions of ITK may be avoided to
maintain a high standard until there is broad ITK community
support.

The number of the languages which SimpleITK is wrapped
for is large and includes Python, Java, C#, Ruby, Lua, Tcl and
R. Developing and maintaining unique features and “syntactic
sugar” such as advanced subscripting and native buffer interface
for all languages is too large of a task. We seek the on going
support of the ITK community to support these features and lan-
guages. Specifically, in the near future we hope to add native Java
array integrations with SimpleITK image buffers and improve
SWIG’s wrapping for the R language to handle enumeration types
correctly.

5.2. CONCLUSION
SimpleITK is a new user-friendly software interface to the image
processing algorithms available in ITK. Through the use of inno-
vative software engineering combined with disciplined testing
practices, SimpleITK makes a large portfolio of reliable open
source imaging algorithms available to a broad range of scientific
communities. The end goal of this work is not the SimpleITK soft-
ware itself. Rather the goal is to aid research over a wide range of
scientific fields by improving accessibility and reproducibility for
state of the art image analysis algorithms.

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 45 | 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Lowekamp et al. The Design of SimpleITK

ACKNOWLEDGMENTS
We would like to thank the ITK Community including all
the users, developers and contributors. We would also like to
acknowledge the work of Kedar Narayan, PhD, National Cancer
Institute, in collecting the IA-SEM data set.

FUNDING
This work was funded in part by National Library of
Medicine contract awards HHSN276201000488P and
HHSN276201000490P under the American Reinvestment
and Recovery Act (ARRA) along with the National Library of
Medicine’s intramural research program.

REFERENCES
Alexandrescu, A. (2001). Modern C++ Design: Generic Programming and Design

Patterns Applied. Boston, MA: Addison-Wesley Longman Publishing Co., Inc.
Beare, R., and Lehmann, G. (2006). The watershed transform in itk - discussion and

new developments. Insight J. Available online at: http://hdl.handle.net/1926/202
Beazley, D. M. (2003). Automated scientific software scripting with SWIG.

Future Gener. Comput. Syst. 19, 599–609. doi: 10.1016/S0167-739X
(02)00171-1

Brandt, M. E., Bohant, T. P., Kramer, L. A., and Fletcher, J. M. (1994). Estimation
of csf, white and gray matter volumes in hydrocephalic children using fuzzy
clustering of mr images. Comput. Med. Imaging Graphics 18, 25–34. doi:
10.1016/0895-6111(94)90058-2

Chu, V., and Hamarneh, G. (2006). MATLAB-ITK interface for medical image fil-
tering, segmentation, and registration. Proc. SPIE 6144, 61443T-1–61443T-8.
doi: 10.1117/12.652628

Dickinson, A. W. L., Mousavi, P., Gobbi, D. G., and Abolmaesumi, P. (2011).
SimITK: rapid ITK prototyping using the Simulink visual programming
environment. Proc. SPIE 7964, 796438-1–796438-6. doi: 10.1117/12.878254

Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C.,
Pujol, S., et al. (2012). 3D Slicer as an image computing platform for the
quantitative imaging network. Magn. Reson. Imaging 30, 1323–1341. doi:
10.1016/j.mri.2012.05.001

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns:
Elements of Reusable Object-Oriented Software. Boston, MA: Addison-Wesley
Longman Publishing Co., Inc.

Halle, M., Talos, I.-F., Jakab, M., Makris, N., Meier, D., Wald, L., et al. (2013).
Multi-modality mri-based atlas of the brain. Boston, MA: SPL. Available online
at: http://www.spl.harvard.edu/publications/item/view/2037

Ibáñez, L., Schroeder, W., Ng, L., and Cates, J. (2005). The ITK Software
Guide. 2nd Edn. Kitware, Inc. ISBN 1-930934-15-7. Available online at:
http://www.itk.org/ItkSoftwareGuide.pdf.

Ierusalimschy, R., Figueiredo, L. H. d., and Celes, W. (2006). Lua 5.1 Reference
Manual. Lua.Org.

Jones, E., Oliphant, T., Peterson, P., et al. (2001). SciPy: open source scientific tools
for Python. Available online at: http://www.scipy.org/

Lehmann, G., Pincus, Z., and Regrain, B. (2006). WrapITK: enhanced lan-
guages support for the Insight Toolkit. Insight J. Available online at:
http://hdl.handle.net/1926/188

Martin, K., and Hoffman, B. (2003). Mastering CMake: A Cross-Platform Build
System. Clifton Park: Kitware Inc.

Mueller, D. (2007). ManagedITK: .NET Wrappers for ITK. Insight J. Available
online at: http://hdl.handle.net/1926/501

Murphy, G. E., Narayan, K., Lowekamp, B. C., Hartnell, L. M., Heymann, J. A., Fu,
J., et al. (2011). Correlative 3d imaging of whole mammalian cells with light and
electron microscopy. J. Struct. Biol. 176, 268–278. doi: 10.1016/j.jsb.2011.08.013

Pérez, F., and Granger, B. E. (2007). IPython: a System for Interactive
Scientific Computing. Comput. Sci. Eng. 9, 21–29. doi: 10.1109/MCSE.
2007.53

Popper, K. R. (1934). The Logic of Scientific Discovery. London: Hutchinson.
Popper, K. R. (1968). Conjectures and Refutations: The Growth of Scientific

Knowledge. New York, NY: Harper & Row.
Seyedhosseini, M., Kumar, R., Jurrus, E., Giuly, R., Ellisman, M. H., Pfister, H.,

et al. (2011). “Detection of neuron membranes in electron microscopy images
using multi-scale context and radon-like features,” in MICCAI (1), Vol. 6891 of
Lecture Notes in Computer Science, eds G. Fichtinger, A. L. Martel, and T. M.
Peters (Springer), 670–677.

Staal, W. G., Hulshoff Pol, H. E., Schnack, H. G., Hoogendoorn, M. L., Jellema,
K., and Kahn, R. S. (2000). Structural brain abnormalities in patients with
schizophrenia and their healthy siblings. Am. J. Psychiatry 157, 416–421. doi:
10.1176/appi.ajp.157.3.416

Sutter, H. (2000). Exceptional C++: 47 Engineering Puzzles, Programming Problems,
and Solutions. Boston, MA: Addison-Wesley Longman Publishing Co., Inc.

Yoo, T. S., Ackerman, M. J., Lorensen, W. E., Schroeder, W., Chalana, V., Aylward,
S., et al. (2002). Engineering and algorithm design for an image processing API:
a technical report on ITK - the insight toolkit. Stud. Health Technol. Inform. 85,
586–592.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 01 November 2013; accepted: 13 December 2013; published online: 30
December 2013.
Citation: Lowekamp BC, Chen DT, Ibáñez L and Blezek D (2013) The Design of
SimpleITK. Front. Neuroinform. 7:45. doi: 10.3389/fninf.2013.00045
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2013 Lowekamp, Chen, Ibáñez and Blezek. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 45 | 14

http://hdl.handle.net/1926/202
http://www.spl.harvard.edu/publications/item/view/2037
http://www.scipy.org/
http://hdl.handle.net/1926/188
http://hdl.handle.net/1926/501
http://dx.doi.org/10.3389/fninf.2013.00045
http://dx.doi.org/10.3389/fninf.2013.00045
http://dx.doi.org/10.3389/fninf.2013.00045
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	The Design of SimpleITK
	Introduction
	The Insight Segmentation and Registration Toolkit
	WrapITK
	Other Wrapping

	Design Goals
	Survey and Architectural Review Board
	Goals

	Implementation
	Decisions
	No exposed pipeline
	Use SWIG for wrapping
	Parameter types
	Hide smart pointers
	Template-less layer
	Facade interfaces
	Image buffer access

	The Design of the SimpleITK Image
	The Design of the SimpleITK Filters
	Implementation Details
	Overview
	Code generation
	Template meta-program and typelists
	Automated documentation

	Examples
	Multi-Modal Ventricle Segmentation
	Microscopy Segmentation
	SimpleFilters In 3D Slicer

	Discussion
	Future Work
	Conclusion

	Acknowledgments
	Funding
	References

