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Abstract

Hepatitis C virus (HCV) infection is endemic in people who inject drugs (PWID), with preva-

lence estimates above 60% for PWID in the United States. Previous modeling studies

suggest that direct acting antiviral (DAA) treatment can lower overall prevalence in this pop-

ulation, but treatment is often delayed until the onset of advanced liver disease (fibrosis

stage 3 or later) due to cost. Lower cost interventions featuring syringe access (SA) and

medically assisted treatment (MAT) have shown mixed results in lowering HCV rates below

current levels. However. little is known about the potential cumulative effects of combining

DAA and MAT treatment. While simulation experiments can reveal likely long-term effects,

most prior simulations have been performed on closed populations of model agents—a sce-

nario quite different from the open, mobile populations known to most health agencies. This

paper uses data from the Centers for Disease Control’s National HIV Behavioral Surveil-

lance project, IDU round 3, collected in New York City in 2012 to parameterize simulations

of open populations. To test the effect of combining DAA treatment with SA/MAT participa-

tion, multiple, scaled implementations of the two intervention strategies were simulated. Our

results show that, in an open population, SA/MAT by itself has only small effects on HCV

prevalence, while DAA treatment by itself can lower both HCV and HCV-related advanced

liver disease prevalence. More importantly, the simulation experiments suggest that combi-

nations of the two strategies can, when implemented together and at sufficient levels, dra-

matically reduce HCV incidence. We conclude that adopting SA/MAT implementations

alongside DAA interventions can play a critical role in reducing the long-term consequences

of ongoing HCV infection.
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Introduction

In the United States, hepatitis C virus (HCV) infection is endemic in people who inject drugs

(PWID), with approximately 60% having chronic infection, and incidence of infection among

new injectors varying between 15-35 per 100 person-years of observation [1]. Beginning in

2007, HCV-related deaths in the US exceeded deaths related to HIV, and currently surpass

deaths from all other notifiable infections [2]. In high-income countries, HCV is the underly-

ing causal factor for more than half of cases of hepatocellular carcinoma (HCC), and HCC

incidence will continue to climb in the coming years due to advancing infections in the PWID

(and formerly PWID) population. There are highly effective and tolerable treatments for

chronic HCV infection, but the costs of these direct-acting antiviral medications (DAAs) are

high and currently fewer than 5-10%—the estimate is imprecise—of PWID are have been

treated [3].

Although mathematical modeling has shown that HCV treatment using the DAAs can be

cost-effective [4, 5], currently 23 U.S. states require that patients have advanced HCV diagnosis

(Metavir fibrosis stage F3 or cirrhosis) in order to approve publicly funded medical treatment

[6]. In contrast, “treatment as prevention” has been proposed as a strategy to reduce prevalence

among PWID—and in turn, lower transmission [7], though questions remain about the actual

efficacy of this approach [8]. A systematic review and meta-analysis showed that PWID who

receive medically assisted substance use treatment (SA/MAT) and participate in high-coverage

syringe access programs may reduce their risk of HCV infection by 70% [9]. This raises the

possibility that such strategies could be employed alongside DAA treatment to lower down-

stream cases of HCV-related severe liver diseases. Previous modeling studies have reported

that scaling up MAT, high-coverage syringe access programs, and HCV treatment over time

can reduce new infections and disease burden, and advance toward HCV elimination [10].

This paper extends that work by exploring the impact of treating chronically infected PWID at

all HCV stages, and describing the anticipated benefits of combining DAA treatment with

intensive SA/MAT.

Large-scale studies of combined interventions trials among PWID for either HIV or HCV

are rare [11], in large part due to cost and difficulties associated with controlling recruitment

and cohort retention over long time scales (as required given the slow impacts of both diseases

on health). As a result, the long-term efficacy of combination intervention strategies for HCV

is largely unknown. Given the recent rapid rise in opiate abuse, data-driven intervention

design is critical to altering the trajectory of HCV infection among PWID. Computer simula-

tion offers the possibility of predicting the long-term dynamics of HCV infection among

PWID, and the opportunity to “test” in silico, the effect of different combinations of interven-

tion strategies [3]. Where lower-cost SA/MAT interventions can be demonstrated to enhance

the impact of DAA treatments, public health officials may be availed of new, more effective

strategies to lower HCV prevalence among PWID.

Over the last two decades, researchers have used modeling and simulation to study HIV

infection, uncovering important social and behavioral factors related to its prevalence among

PWID [12–14]. This prior work has incorporated stochastic population models [15–19] for

sexual [20–23] and injection drug co-use networks [24–26], and combinations of both [27,

28]. More recently, analogous approaches have been brought to bear in the context of HCV

[29, 30], employing simulations based on both agent-based [31, 32] and networked population

perspectives [7, 33]. This ongoing effort emphasizes computational modeling of the projected

impact of interventions, considered both singly [7, 34] and in combination [8, 35]. In this

paper, we adopt a network-structured, agent-based approach that combines actors with diverse

behavioral profiles within the social environment of a dynamic, networked population. Our
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approach differs from both cohort-based Markov simulations [36] commonly used in cost-

effectiveness studies of HCV treatment [37, 38] and the closed population network models

found in stochastic actor simulations [29]. The simulations described here model open popula-

tions, where agents leave and join the risk population over time, and thus implement more

realistic models of the dynamic and mobile PWID communities in which municipalities’

health departments seek to intervene. In addition, we include HIV infection in our models, as

serosorting based on HIV status (and HCV status) is known to bias risk partner selection [39],

and can be expected to influence the in-network epidemiological dynamics of HCV. Simula-

tion-based research involving open, networked populations is rare, and thus the results pre-

sented here represent a significant advance over current HCV and HIV cohort modeling

frameworks.

Methods

Models

System model. At its core, the system is modeled as a dynamic network consisting of

nodes (the agents) that are interconnected by a set of edges (their risk-bearing relationships).

Nodes are dynamic because they enter and leave the population, and while within the popu-

lation, they change their relationships, and potentially change with respect to HIV and HCV

disease status. The dynamism is regulated and driven by 6 interlinked but autonomous

processes that operate within each agent. Collectively, these processes define a dynamic

socially networked population in which risk-bearing acts occur and (as a consequence) HIV

and HCV propagates. Each individual enters and leaves the population in a manner that is

governed by the Initialization and Longevity processes, respectively. Bracketed between

these, the node is said to be participating in the risk network, and engages both its Churn

and Risk processes. The former (Churn) process alters the local structure of the individual’s

risk relationships, while the latter (Risk) process engages current relationships to carry

out risk-bearing activity related to drug equipment sharing. Of course, such risk-bearing

activity has the potential to cause disease propagation. Each relationship, upon creation, is

stochastically assigned an expiration time. Each individual, upon creation, is stochastically

assigned both a participation interval, and an ideal risk degree (number of risk partners).

The process by which each individual ensures that it always has its ideal number of risk part-

ners (despite disruptions due to Churn and Edge Expiry) is referred to as the Ideal-degree

Enforcement process. Further details on interplay of the 6 processes are given in Table 1; an

explanation of the parameter values appearing in this Table can be found in the Model

Parameters section.

HCV model. As the main focus of the paper is HCV, the simulation continuously updates

the disease status and liver function status of HCV+ agents in a manner consistent with the

natural history of HCV disease progression (see Fig 1; an explanation of the parameter values

appearing in the figure can be found in the Model Parameters section). All uninfected agents

who contract HCV through a risk act with an infected alter enter into an acute state. Over the

next 6 months of simulation time, they are HCV infected and can transmit the disease to their

network alters via risk acts. However, at the end of a six month acute phase, the agent’s status

is checked against a probability of spontaneously clearing the infection. The probability of

clearance is 0.243. If the agent has not cleared the infection, they enter a chronic HCV state

and begin a Metavir fibrosis progression. Here each agent’s fibrosis level is incremented by

0.117 annually. Agents whose cumulative fibrosis level is greater than 1.0 are said to be in

Metavir fibrosis level 1; greater than 2 are said to be in Metavir fibrosis 2.0, etc. Agents in
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Metavir fibrosis level 4 are said to be in cirrhosis. Chronically infected agents also have a fixed

chance, evaluated annually, of entering into one of three states of severe liver disease: cirrhosis

(0.0081), decompensated cirrhosis (0.0015) or hepatocellular carcinoma (0.0004). Once in an

advanced liver disease state, an agent faces increasing risk of death each year. HCV pathogen

properties of spontaneous clearance were drawn from Smith et al [40], while HCV fibrosis and

liver stage transition probabilities (e.g. Metavir fibrosis stage advancement rates and the devel-

opment of decompensated cirrhosis, and hepatocellular carcinoma) were drawn from pub-

lished meta-analyses of HCV infection dynamics among PWID [41]. During all HCV

infection states, transmission probabilities are set uniformly at 0.009 per risk act.

HIV model. In addition, because HIV infection is possible in the simulation (and HIV

serosorting behaviors condition network connections) a model of HIV infection was included

in the simulation based on prior work by the research team [24, 25]. Fig 2 describes the natural

history of HIV; an explanation of the parameter values appearing in the figure can be found in

the Model Parameters section. HIV infection has two stages, and initial acute phase of high

infectiousness (probability 4 � 10−3 per risk act), and a chronic phase of low infectiousness

(probability 4 � 10−5 per risk act). All infected agents pass through a 90 day acute phase before

moving to chronic HIV infection. Chronically infected agents remain in this state until they

leave the simulation (at the end of their individual simulation longevity), or die from either

HIV or HCV infection. The probability of dying of HIV in the simulation is constant in the

chronic state, and is assessed yearly by a stochastic evaluation. As with HCV, these parameters

were determined experimentally such that the results stabilized at current levels during simula-

tion burn-in.

Table 1. The six processes operating within each agent.

Process Description

Initialization (one-

time)

When a node is first made, we stochastically determine its properties, including:

participation longevity, ideal risk degree, age, race, etc. These assignments are made

stochastically, in a manner that is consistent with population-wide univariate distributions

(see Table 2). The Ideal-degree Enforcement process is then invoked at the newly created

node (see below).

Risk Each node, every 23.6 days, chooses one of its current set of risk partners uniformly at

random, and engages in a mutual risk act. If the pair is HIV-serodiscordant, HIV is

transmitted stochastically across the link with probability 4 � 10−3 (resp. 4 � 10−5) if the

HIV+ individual is in acute (resp. chronic) state. If the pair is HCV-serodiscordant, HCV is

transmitted stochastically with probability 0.009.

Churn Each node, every 60 days, chooses one of its current set of risk partners uniformly at

random, and breaks off the relationship; the Ideal-degree Enforcement process is then

invoked at both endpoints of the severed relationship (see below).

Edge expiry Edges are assigned expiration times when they are created as part of the Ideal-degree

Enforcement process (see below). When an edge expiration occurs, we break off the

relationship between its two endpoint nodes. The Ideal-degree Enforcement process is then

invoked at both endpoints of the severed relationship (see below).

Ideal-degree

Enforcement

If a node’s current number of risk partners is lower than the node’s ideal risk degree, we

mitigate this by selecting suitably many new risk partners from the subpopulation of other

nodes also having a degree below their ideal. This selection is made in a biased manner that

is consistent with the bivariate distributions (see Table 3). We create risk edges connecting

the node having a degree deficit to each of the selected risk partners, stochastically

assigning each new edge an expiration time in the future.

Longevity (one-time) Nodes are assigned a participation longevity when they are created as part of the

Initialization process (see above). When a nodes participation longevity elapses, all its

incident edges are prematurely expired, and the node is deleted from the network. Tom

maintain constant population size, a new node is made, and its properties stochastically

determined via the Initialization process (see above)

https://doi.org/10.1371/journal.pone.0206356.t001
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Implementation

Our simulation platform has been described in detail previously [42], and has been used

to establish the importance of self-organizing behavioral factors in explaining the non-

spreading of HIV among PWID in New York City during the early stages of HIV epidemic

[24, 25].

Fig 1. Finite state diagram of the HCV model used in the experiments. Once infected, agents face a series of stochastic and enforced progressions through a series

of ever worsening liver function. Throughout the simulation, infected agents who have reached a chronic state (non-acute HCV infected agents) face a small but

regular chance of moving directly to cirrhosis, decompensated cirrhosis, or hepatocellular carcinoma. In addition, their Metavir fibrosis level is incremented yearly,

moving them gradually from early stage fibrosis to cirrhosis. Once in any of the three severe liver stages, agents face an increasing probability of death due to HCV

infection, incremented on a five year basis.

https://doi.org/10.1371/journal.pone.0206356.g001

Fig 2. HIV finite state model. Once infected, agents spend 90 days in an acute state with a relatively high probability

of transmitting HIV, then pass into a chronic state and lower probability of transmitting an HIV infection. All chronic

HIV-infected agents face a yearly stochastic possibility of dying from the infection.

https://doi.org/10.1371/journal.pone.0206356.g002
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In the experiments described here, the simulation engine begins by creating a population of

agents who are assigned individual behavioral and demographic states, disease statuses, risk

propensities, and risk network connection tendencies as specified by univariate distributions

derived from Centers for Disease Control’s National HIV Behavioral Surveillance (NHBS)

project [43], IDU round 3, collected in New York City in 2012 by the New York City Depart-

ment of Health and Mental Hygiene [44, 45]; see Table 2. Once established as a population, a

set of risk relationships are created for each agent—links to network alters across which

Table 2. Per agent univariate parameters in the Baseline settings.

Variable Source Value Percentage

Age NHBS–“age” 18-24 1.0

25-34 16.7

35-44 28.1

45-54 38.4

55-65 13.9

Average Degree NHBS (see below) 0-3 62.1

4-8 18.4

9-19 19.5

Connection Duration Khan et al [42] Short 40

Long 60

Gender NHBS–“gender” Male 74.9

Female 24.5

Transgender 0.1

HCV initial Smith et al [41] Negative 50

Acute 10.0

Chronic (F0) 30.0

Fibrosis Stage 1 4.5

Fibrosis Stage 2 2.0

Fibrosis Stage 3 1.5

Cirrhosis 1.0

Decompensated 0.5

HCC 0.5

Fibrosis progression Smith et al [41] per year rate 0.117

HIV Neaigus et al [45] Uninfected 88.0

Acute 0.2

Chronic 11.8

Longevity NHBS–“age-ageinj” 7-30 days 1

365-7301 days 99

Race/Ethnicity NHBS–“newrace” African American 66.7

Hispanic 13.5

White 18.8

Other 1.0

DAA/SVR treatment rate 0.0

Combined SA/MAT treatment rate 0.0

Baseline agent parameter distributions. The degree distribution was the sum of the NHBS variables “num-na; num-ccw; num-dda”. This count provides the number of

risk partners—i.e. the expected number of network alters with whom an agent shares needles or other injection related equipment. This number should not be confused

with the common measure of RDS network degree often used in data collection with PWID (which is the number of known alters who also inject drugs). The latter is

normally much higher than the actual number of risk partners.

https://doi.org/10.1371/journal.pone.0206356.t002
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diseases can be transmitted via singular risk acts. The biases in link formation tendencies are

expressed via bivariate distributions (also derived from NHBS data, see Table 3). In the current

experiments, these links represent drug co-use relationships with network alters who are regu-

lar co-injectors and with whom risk event are most likely to happen. As the simulation begins,

agents act independently to perform risk acts with network alters based on their individual

risk propensities. They also change network alters through a churn process that periodically

removes one of their incident links and replaces it with a new one.

A master scheduler conducts agent actions one at a time in a discrete event framework, such

that an action requested by one agent in the population is concluded before the next action of

any other agent in the population is begun. To manage this, all actions take place under a single

continuous time progression known as the simulation clock. The result of each event—such as

a change of disease status for one agent that results for a risk act that they are involved in—

becomes the starting condition for the next scheduled event by the next agent on the schedule.

Throughout the simulation, the outcomes of network churn events, disease transmission

Table 3. Baseline per agent bivariate mixing parameters.

Age (binned)

18-24 25-34 35-44 45-54 55-65

18-24 0.0 0.525 0.273 0.202 0.0

25-34 0.083 0.248 0.302 0.255 0.075

35-44 .027 0.184 0.331 0.368 0.091

45-54 0.014 0.110 0.173 0.443 0.174

55-65 0.0 0.087 0.173 0.471 0.269

Ideal Degree

0-3 4-8 9-19

0-3 0.518 0.364 0.118

4-8 0.391 0.417 0.193

9-19 0.279 0.425 0.296

Gender

Male Female Trans.

Male 0.784 0.211 0.005

Female 0.644 0.345 0.011

Transgender 0.379 0.288 0.333

HCV Status

Positive Negative

Positive 0.814 0.186

Negative 0.286 0.714

HIV Status

Positive Negative

Positive 0.816 0.184

Negative 0.144 0.856

Race/Ethnicity

Afr. Amer. Hispanic White Other

African American 0.762 0.100 0.127 0.010

Hispanic 0.507 0.381 0.112 0.0

White 0.277 0.048 0.651 0.0

Other 0.472 0.0 0.528 0.0

The table should be read as the proportional probability for each variable of forming an outgoing tie from the row to the column.

https://doi.org/10.1371/journal.pone.0206356.t003
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events, transitions from chronic to severe liver disorders, and overall agent longevity are deter-

mined stochastically, meaning that a random number generated by the simulation is compared

with a previously calculated probability distribution to produce an event result. In this way,

simulations with identical initial starting points can have different trajectories due different

stochastic outcomes. During the simulation, an observer module tracks the current set of net-

work connections and individual disease statuses of every agent, while performing updating

functions such as aging the agents according to the progression of the simulation clock, updat-

ing HCV disease status as it moves through stages of Metavir fibrosis and on to advanced liver

disease, removing agents from the simulation when their participation longevity is reached or

when they die as a result of either HIV or HCV disease progression, and creating and intro-

ducing new agents into the simulation population to replace those that leave or die. The data

sources for both the population and their behavioral tendencies are described below.

A central feature of the simulation approach used here is the inclusion of porous population

boundaries. Each agent in the simulation is given a participation longevity—the length of time

for which they will remain in the population and be subject to risk events, infection, disease

progression and so on. This feature is meant to mimic real world PWID networks where loca-

tion and co-use relationships are fluid, and which contrasts strongly with population—based

study cohorts where retention is assumed. Agent participation longevity is parameterized

according to CDC NHBS data (see Table 2), and agents schedule their departure event with

the master scheduler when they enter the simulation population. As with real world PWID,

this departure can be caused by any number of factors that enforce an end to local participa-

tion including entering treatment, incarceration, long-term relocation to a different drug-use

network, or death. When an agent leaves the network, the observer module notes the event

and creates a new agent whose characteristics are drawn from the original population specifi-

cations. In this way the population stays (on average) the same through time, but population

turnover takes place in ongoing fashion. As a result, simulations with a consistent population

of roughly 10,000 agents over 15 years actually involved the participation of more than 25,000

distinct agent actors. As mentioned above, this approach is meant to lend real-world credibility

to intervention scenarios which tend to be local in their implementation and subject to partici-

pant mobility/dynamism that necessarily involves a fluid population. We note that the incom-

ing, replacement population remains consistent with the original population parameters

which include a mix of new and long-term PWID with infected and uninfected statuses across

a range of HCV disease states.

In the current analysis, simulations track long-term HCV infection rates under a range of

conditions: 1) Baseline—where no new prevention or treatment activities are involved beyond

those already in place in New York City when the baseline data were collected, and where both

HCV and HIV percolate through the network based on the results of infections that take place

during risk events across agent networks; 2) prevention, which includes scaled implementation

of MAT and intensified syringe access to reduce pair-wise risk of infection (operationalized as

changes in the likelihood of infection taking place in the risk events of those taking part in the

intervention); 3) treatment, which includes implementation of DAA to chronically infected

agents (operationalized as a probabilistic cure of randomly chosen agents in any chronic stage

of HCV, i.e. post-acute Metavir fibrosis level zero or above); and 4) combinations of the afore-

mentioned prevention and treatment strategies at a range of implementation scales. Through-

out, intervention results are tracked over 15 years from an initial starting point that is based on

parameters drawn from PWID surveillance research in New York City in 2012 [45, 46].

The logic of this approach rests on the idea that Baseline simulations represent the likely

future of HCV prevalence and incidence over the next 15 years if no new actions are taken to

prevent infection, and drug use trends and availability remain relatively steady. As such,
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baseline rates are meant to include current levels of syringe exchange (but not intensive syringe

exchange coupled with MAT), anti-retroviral treatment, medically assisted opioid treatment

(but not in combination with intensive syringe exchange), and HCV treatment (though not

DAAs, which were not available when the data used for the baseline settings were collected).

The Intervention scenarios represent possible changes in those Baseline trajectories based on

changes brought about through new efforts in prevention or treatment, above and beyond

those in place in 2012 when the baseline data were collected. Though a future in which drug

use patterns and current intervention and prevention levels remain the same may seem overly

idealistic, such an assumption is necessary to isolate the potential impact of simulated preven-

tion and treatment changes.

In the experiments described below, 5 random artificial injection networked populations of

10,000 injectors were created for each of 4 scenarios (Baseline, DAA intervention, SA/MAT

intervention, and simultaneous DAA and SA/MAT interventions). For each of the popula-

tions, 3 independent simulations were undertaken from the same initial starting point, project-

ing the population out 15 years into the future after an initial 5 year burn-in (see Fig 3). In the

Baseline simulations, the same initial settings guided the entire simulation as actors followed

their behavioral characteristics for risk and network churn, and HCV and HIV percolated

throughout the population. In the Intervention settings, key agent parameters were altered to

mimic the effects of an intervention. This took place immediately following the burn-in

period, and were repeated each year according to the intervention descriptions below.

The overall population levels for the simulation (i.e. 10,000 agents) is meant to reflect a sin-

gle, open region within a larger urban zone. Such geographical concentrations are well known

in most urban areas and represent permeable spatial and social foci where individual PWID

Fig 3. Experiment protocol. For each Baseline or Intervention scenario, 5 artificial PWID populations are created and given initial edge sets. A 5 year simulation burn-in

creates independence from the initial population/network starting point and then Baseline or Intervention scenarios are followed. The burn-in and scenario are repeated

3 times.

https://doi.org/10.1371/journal.pone.0206356.g003
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are associated for varying lengths of time [47]. The burn-in period for the simulation is meant

to produce a simulation environment that is free from initial starting conditions. Generally,

HCV prevalence during the burn in period rises as HCV is transmitted across the risk edges to

uninfected agents. In the Baseline scenarios, HCV (and HIV) prevalence and incidence remain

relatively static throughout the next 15 years, despite the fact that agents come and go from the

network and new infections continue to take place. In the Intervention scenarios, changes to

agent behaviors (prevention) or disease states (treatment) alter the incidence and prevalence

trajectories away from the Baseline settings.

Over the course of each scenario, agents commit risk acts across their existing network rela-

tionships, and form new relationships whenever their existing connections dissolve. Agents

also leave the simulation population when their participation longevity elapses. Whenever an

agent leaves the simulation, his/her network connections are dissolved and his/her HCV infec-

tion status is removed from future measurements. To replace departing agents, new agents are

created and given their own risk partnerships with current members of the population. Arriv-

ing agents continue to have a 50% chance of being HCV infected at inception (as per initial

conditions—simulating a situation where a mixture of new injectors and those who have been

injecting for some time enter the population from the surrounding area). At each step of the

simulation, population-wide prevalence is measured by considering the status of only those

agents who are still in the simulation. This modeling paradigm reflects real-world conditions

where community boundary conditions are fluid and populations are mobile: PWID change

locations, enter addiction treatment, become incarcerated, and so on, all of which removes

them from their risk networks, while other, previously unknown PWID take their place in an

evolving network milieu (54). One result of this is that incarceration rates, cessation rates,

death rates due to non-HIV or HCV causes, and relocation out of the imagined study area are

not treated as separate parameters. Instead, they are subsumed under the single longevity vari-

able that simply assigns a participation duration to every agent—leaving the specific cause of

their exit undetermined. Individual infections of both HIV and HCV also age as the simulation

progresses. Metavir stages are incremented for those infected with HCV, and stochastic oppor-

tunities for sever liver disease progression are made each year (with probabilities set to match

known population level outcomes). Among the possible outcomes is death via liver-related dis-

ease [48].

Model parameters

Data for simulation populations are drawn from the Centers for Disease Control’s National

HIV Behavioral Surveillance project [43], IDU round 3, collected in New York City in 2012 by

the New York City Department of Health and Mental Hygiene [44, 45]. Table 2 provides the

univariate distributions drawn from participants who were verified to have injected any drug

in the past year at the time of their interview. These data were used to create each individual

agent’s age, gender, average network degree, race, and longevity of participation within the

simulation population. All variables are treated as categorical to enable discrete mixing proba-

bilities. Where ranges are present within a category (i.e. “age” or “average degree”), agents are

assigned a random value within the range.

Mixing patterns between agents were determined by aggregating the agent x agent bivariate

probabilities across all categories to create a relatively likelihood of connection from one agent

to another. Stochastic throws against relative likelihoods were used to determine actual agent

connections both initially and in dynamic fashion as the simulation progresses. Table 3 quanti-

fies the homophily biases on population mixing (by age, average degree—binned, gender,

HCV status, HIV status, and race). To remain true to the original recruitment data, these

Simulation of combination interventions for Hepatitis C and Cirrhosis reduction

PLOS ONE | https://doi.org/10.1371/journal.pone.0206356 November 29, 2018 10 / 25

https://doi.org/10.1371/journal.pone.0206356


distributions often reflect asymmetrical mixing tendencies common to PWID—meaning that

the tendency of individuals in group A to seek partners from group B may not be the same as

the tendencies of B’s to seek partners from A. The parameters in these tables were drawn from

both the NHBS interview data and the respondent driven sampling recruitment data, analyzed

and weighted via RDSAT [49]. Tendencies toward serosorting behaviors for both HIV and

HCV infection are drawn from published sources [39, 50, 51]. Prior research has shown that

serosorting condition the likelihood of pairwise risk relationships [52], and the use of serosort-

ing data has yielded conclusions which are consistent with what is known about the long-term

behaviors of the PWID population [25] in New York City. Distributions quantifying the dura-

tion of risk relationships were drawn from consultation with ethnographers working in the

area and prior research with PWID in New York City [25].

Risk acts are simulation events where an agent, according to their own risk tendencies,

decides to engage in an act with a current network alter that can potentially transmit HCV or

HIV. These can be thought of needle or equipment sharing events between two people already

in a drug co-use relationship. The frequencies were drawn from the interview portion of the

CDC’s NHBS survey that deal with injection risk: NHBS researchers asked the frequency with

with respondents inject drugs (injavr), and the rate at which the respondent had used injection

related paraphernalia after someone else had used it in the preceding 12 months, including

needles (sharndle); cookers (sharcookr); cotton (sharcottr); water (sharwatrr); works (shar-
workr); used a previously used syringe to divide drugs, i.e. “backloading” (samessyrr). Because

these measures were collected along a qualitative scale, they were recoded as numbers that

reflected ranked intervals (0 = never, 1 = rarely, 2 = half time, 3 = most time, 4 = always). The

individual values were summed for each respondent, and then divided by the reported injec-

tion frequency. This created a distribution of relative risk rates across the NHBS population

that, while lacking an absolute scale, differentiate population according to their frequency of

engaging in risky injection practices with their network alters. Preliminary simulation experi-

ments were used to scale this relative parameter to an absolute number of days such that risk

rates converged on the HCV and HIV prevalence levels obtained by the CDC NHBS study

over the burn-in period, and remained near these levels during Baseline simulations (see “Vali-

dation” below). At their creation, agents are randomly assigned an absolute risk rate within

this “pegged” distribution. The result is that the average agent engages in one risk act capable

of transmitting HIV or HCV every 23.6 days.

As above, per-risk-act infection probabilities for HCV were also treated as a tuning parame-

ter, and were fitted to the NHBS data along side the absolute risk rates discussed above. The

final setting (0.009 chance of infection per risk act across HCV discordant pairs in an active

risk relationship) produced prevalence levels (60-70%) that match current HCV levels in the

NHBS New York PWID population (and among US PWID more generally [1, 45]—see Boelen

et al [53] for a discussion of defining transmission probability via equipment sharing).

Validation

To validate the Baseline settings, 15 year simulations were performed using the cross-section

data from the NYC NHBS as coded in settings shown in Tables 2 and 3 and the HIV/HCV

models described above (i.e. the “Baseline scenario”), and the results compared to historical

trend data from NYC [45, 46]. The goal of the validation experiments was to show that the

Baseline settings would cause the simulation to converge at a relatively steady state that

matched the known population incidence and prevalence levels of the PWID population in

New York City. Where simulations converge and maintain current levels of HCV and HIV

risk in dyanamic fashion, this indicates that ongoing risk acts, network churn, and population
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turn over result in a dynamic equilibrium in line with what is know about historical HCV and

HIV trends from the same area. As such, these results show that the simulation produces

known macro-level results as emergent phenomena based only on the actions of the agents

themselves. Given such a dynamic equilibrium, comparisons can be made between the rela-

tively steady state Baseline and later Intervention scenarios in which one or more Baseline

parameter is changed [54]. In addition, the low level of variation seen in the simulation trajec-

tories show that despite the stochastic nature of the system, 15 simulations were sufficient to

capture the overall effects (see standard deviations across 15 trials in Table 4).

For these validation runs (and for all subsequent experiments) the population-wide initial

prevalence of HCV infection prior to the burn-in period was set at 50%, meaning that during

the population creation process, each agent is given a 50% chance of being assigned an HCV

infection state (according to a distribution of liver disease statuses drawn from published

sources, see Table 2). During 5 years of simulation “burn in” (used in both the baseline and

intervention scenarios) HCV prevalence stabilizes at 60-65%, and HIV prevalence stabilizes at

12-15%. Such conditions are meant to approximate current conditions in New York City [45],

and generally reflect PWID HCV prevalence rates in urban areas through the US at the current

time.

The long-term results of the validation simulations are shown as averages across 15 years of

simulation after the 5 year burn-in period at the Baseline settings, across 15 independent simu-

lations (for a total of 225 data points). Robustness and sensitivity tests for these results are dis-

cussed in the Limitations section below. Validation of the Baseline model can be seen in the

incidence (per 100 person years) and prevalence of the main outcome variables: acute HCV

infection, overall HCV infection rate, rates of cirrhosis (CC), decompensated cirrhosis (DC),

and hepatocellular carcinoma (HCC) (see Table 4). These results can be compared to those of

recent meta-analyses [41] and NYC incidence and prevalence estimates [45, 46]. The only

major difference noted in the validation outcomes is in the rate of decompensated cirrhosis

(0.088 simulation average versus reported rates of 0.182 [46]). For consistency, the disease

state transition probabilities were drawn from a meta-analysis by members of our team using

data from 1990-2013 [41], while the comparison statistic cites rates from 2006 to 2013 [46]. As

such, the discrepancy may reflect changes in the nature of the HCV epidemic over time. For

comparison, we note that one of the only prospective studies of HCV progression among

PWID [55] found high variance in progression rates to severe liver disease, including jumps to

Fibrosis stage 5 or 6 from much lower prior Fibrosis levels (including levels 1 and 2). Because

all final rates in the simulation are emergent phenomena that are dependent on the number of

Table 4. Average incidence and prevalence of HCV states in Baseline simulations.

HCV State Avg Incidence (std) Published Rate Avg Prevalence (std) Published Rate

Uninfected 33.9 (2.1)

Acute 11.841 (.420) 4.6 (.2)

CC 0.599 (.023) 0.662 [46] 3.9 (.5)

DC 0.088 (.006) 0.182 [46] 0.8 (.1)

HCC 0.024 (.002) 0.032 [46] 0.5 (.1)

All HCV States 66.1 (1.8) 67.1 [45]

To validate the Baseline settings, incidence and prevalence rates were tracked across 15 years of simulation time (following a 5-year burn-in period). Means across 15

independent simulations of networked populations of 10,000 actors for all years of each simulation are here compared with published results. Acute incidence is

expressed per 100 person years of all uninfected agents. Cirrhosis (CC), decompensated cirrhosis (DC), and hepatocellular carcinoma (HCC) incidence is expressed per

100 person years of all HCV infected agents.

https://doi.org/10.1371/journal.pone.0206356.t004
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agents in a given state of Fibrosis, exact fitting of every state turned out to be problematic.

Where the rates are comparable, we proceed with the progression figures suggested by Smith

et al [41], but note that the final simulation results for decompensated cirrhosis are likely lower

than suggested by current data.

Interventions

In the experiments described here, we test the effect of a range of intervention scenarios:

• A Baseline scenario where neither of the interventions described below take place. In the

Baseline scenario there is no direct acting antiviral HCV treatment (such treatments were

unavailable at the time, though 34% of NHBS NYC respondents reported having received

some medication for HCV infection ever in their lifetime, and 29 of 526 reported having

been cured of HCV in the past). Syringe exchange services were active in the NHBS sample

(88% of NHBS respondents indicated that they had receive at least one syringe for a such

a service in the last year), but coupled intensive syringe exchange where all needles are

received from an exchange and simultaneous medically assisted opiate addiction treatment

were not available (see [3] for a similar distinction). Specific data on ongoing medically assis-

ted opioid treatment is not available for the the 2012 NHBS NYC data, though 63% of those

interviewed reported some participation in drug treatment in the last 12 months. Because

the intervention scenarios discussed here go well beyond simple syringe access or prior non-

DAA HCV treatments, for the purposes of the current experiments, the level DAA (and cor-

responding “sustained virological response” (SVR) and combined intensive SA/MAT in the

Baseline scenarios are set to zero. We note, however, that evidence of a willingness to engage

treatment and the potential for syringe services to reach large proportions of the population

are clear from these data.

• A DAA intervention implemented on the first day of year 6 (following the 5-year burn in

period) and on the first day of each subsequent year. Here a fixed percentage of the current,

post—acute, chronically infected HCV population is randomly selected for participation in

the intervention, and their intervention start date is randomly assigned to occur in the next

365 days. Selection is made across all Metavir fibrosis states F0 through cirrhosis (F4). Dur-

ing the intervention, participants undergo DAA treatment while continuing to practice drug

use and incurring risk of HIV infection, but the odds of contracting HCV during this period

is zero. Reflecting research findings, 90% of those agents adhere to HCV DAA treatment for

the entire duration (168 days/24 weeks), and 95% of those who complete it are cured [56]. At

the end of treatment adherence period agents are placed back into the simulation population

and continue to operate in a manner specified by their individual agent parameters. During

the post-treatment period, reinfection with HCV is possible for as long as the agent remains

in the simulation. This is determined stochastically via risk acts in the same way that the ini-

tial infection was created. In the case of reinfection, Metavir fibrosis levels resume at the

level reached prior to treatment and once again begin to progress toward cirrhosis. Other

than treatment-based changes in disease status, at the micro-scale, DAA participants operate

in a manner consistent with Baseline.

• Intensive syringe access and opiate substitution treatment (SA/MAT), at various levels of

recruitment/participation. Here, in year 6 and in each year following, a fixed percentage of

the total population in the simulation is recruited for participation regardless of HCV status.

During the year that follows, each participating agent’s number of risk acts with their net-

work neighbors is decreased by 80% from its original pre-intervention level [57]. At the end

of the intervention period, participating agents return to their pre-intervention risk act rate.
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Because the selection of participants is random each year, individuals may be re-recruited in

subsequent years (or even two or more years in a row), depending on the luck of the draw;

or they may leave the intervention prior to reaching the 365 day intervention duration,

depending on their likelihood of completing the program (determined stochastically). The

result is a distribution of participation that may last from a few months to several years in

the intervention. In cases where a high percentage of the population is enrolled each year,

longer periods of continuous reduced risk becomes more likely. Other than intervention-

based changes in risk behavior, at the micro-scale, SA/MAT participants operate in a manner

consistent with Baseline.

• To test the effect of combination strategies, additional scenarios were considered where both

the DAA treatment and SA/MAT participation were engaged concurrently (and indepen-

dently) in the same simulation population. The rationale for this set of scenarios was to

determine whether and to what extent each of these approaches—direct-acting antivirals

and opiate substitution/syringe access—might, in combination, further reduce levels of

HCV in the population compared against approaches relying on each strategy taken alone,

and against a Baseline matching conditions akin to those in 2012.

Results

The final prevalence rates for the 15 years after burn in for Baseline and Intervention imple-

mentation (for a range of DAA and SA/MAT interventions scales) are found in Table 5. The

long-term effects of combined interventions at various scales are considered next, including

measurements of chronic prevalence (Table 6), prevalence of HCV-related advanced liver

disease (CC+DC+HCC; see Table 7), HCV incidence (Table 8), and incidence of cirrhosis

(Table 9).

The tabulated results show that the effects of SA/MAT treatment marginally enhance the

effectiveness of DAA treatment in lowering chronic HCV prevalence in an open population

(decline of 7%), but have little effect on HCV-related advance liver disease (decline of 1%),

with roughly linear effects due to scale for HCV prevalence. However, a different pattern

emerges when we turn our attention to incidence rates. Here we see that SA/MAT interven-

tions have significant impacts. As seen in Table 8, high levels of SA/MAT recruitment (at 80%

treatment level) have the effect of lowering overall HCV incidence by more than 60%, while

Table 5. Population proportion by HCV disease state after 15 years of intervention: Mean (std).

Intervention Uninfected Acutely infected F0-3 CC+DC+HCC Total

Baseline .384 (.005) .049 (.002) .527 (.005) .041 (.002) .616

DAA 5% .440 (.004) .051 (.002) .475 (.004) .035 (.002) .560

DAA 10% .491 (.006) .051 (.003) .427 (.005) .031 (.002) .509

DAA 15% .535 (.004) .052 (.002) .390 (.004) .027 (.002) .465

DAA 20% .574 (.004) .049 (.002) .352 (.004) .024 (.001) .426

SA/MAT 20% .400 (.008) .045 (.003) .514 (.007) .041 (.002) .600

SA/MAT 40% .417 (.005) .040 (.002) .503 (.005) .040 (.002) .583

SA/MAT 60% .438 (.005) .034 (.002) .489 (.006) .039 (.002) .562

SA/MAT 80% .457 (.005) .028 (.002) .475 (.006) .040 (.002) .543

Measures after the completion of 15 years simulation that followed a 5-year burn-in period. Results show the mean and standard deviation for each state from 15

independent simulations of networked populations of 10,000 actors.

https://doi.org/10.1371/journal.pone.0206356.t005
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scaled DAA treatment at even the highest levels tested here produces a less significant effect

(a decrease of 28%). Even at low intervention levels (20%), SA/MAT treatment lowers HCV

incidence by 21-39% when combined with DAA treatments of 5% to 20%, with the impact

increasing as DAA intervention levels rise. SA/MAT interventions have less of an impact on

cirrhosis incidence associated with HCV infection, but still serve to lower cirrhosis incidence

by 6-39% when combined with DAA treatments from 5% to 20%. As seen in Table 9, these

impacts continue to grow as SA/MAT increases in scale of coverage.

The heatmaps shown in Figs 4 through 7 demonstrate both continuous and thresholding

behaviors in the combined interventions. Chronic HCV prevalence (Fig 4) and the prevalence

of advanced liver diseases (Fig 5) show continuous declines as DAA levels increase, with rela-

tively fewer (but still continuous) declines provided by increased levels of SA/MAT.

Table 6. Population proportion of Chronic (F0-F3) after 15 years of combined interventions.

Intervention Baseline DAA 5% DAA 10% DAA 15% DAA 20%

Baseline .527 (.005) .475 (.004) .427 (.005) .390 (.004) .352 (.004)

SA/MAT 20% .514 (.007) .477 (.006) .413 (.003) .377 (.004) .343 (.004)

SA/MAT 40% .503 (.005) .453 (.007) .403 (.004) .366 (.005) .332 (.004)

SA/MAT 60% .489 (.006) .436 (.006 .391 (.005) .355 (.004) .323 (.005)

SA/MAT 80% .475 (.006) .423 (.006) .378 (.005) .345 (.004) .313 (.004)

Measures after the completion of 15 years simulation that followed a 5-year burn-in period. Results show the mean and standard deviation for each state from 15

independent simulations of networked populations of 10,000 actors. Acute infections are not included in this table to avoid counting those who spontaneous clear the

infection during the simulation year.

https://doi.org/10.1371/journal.pone.0206356.t006

Table 7. Population proportion of HCV-related advanced liver disease (CC, DC, HCC) after 15 years of combined interventions.

Intervention Baseline DAA 5% DAA 10% DAA 15% DAA 20%

Baseline .041 (.002) .035 (.002) .031 (.002) .027 (.002) .024 (.001)

SA/MAT 20% .041 (.002) .034 (.002) .031 (.001) .027 (.002) .023 (.001)

SA/MAT 40% .040 (.002) .035 (.003) .030 (.002) .026 (.002) .023 (.002)

SA/MAT 60% .039 (.002) .033 (.002) .029 (.001) .025 (.001) .023 (.001)

SA/MAT 80% .040 (.002) .034 (.002) .030 (.002) .025 (.002) .023 (.002)

Measures after the completion of 15 years simulation that followed a 5-year burn-in period. Results show the mean and standard deviation for each state from 15

independent simulations of networked populations of 10,000 actors.

https://doi.org/10.1371/journal.pone.0206356.t007

Table 8. Incidence rate of HCV among uninfected agents (in 100 person years).

Intervention Baseline DAA 5% DAA 10% DAA 15% DAA 20%

Baseline 11.00 (0.25) 10.40 (0.35) 9.37 (0.39) 8.84 (0.28) 7.89 (0.33)

SA/MAT 20% 9.43 (0.68) 8.72 (0.30) 8.07 (0.28) 7.35 (0.16) 6.74 (0.32)

SA/MAT 40% 7.74 (0.37) 7.44 (0.67) 6.33 (0.33) 5.90 (0.21) 5.29 (0.26)

SA/MAT 60% 6.02 (0.38) 5.58 (0.41) 5.02 (0.32) 4.46 (0.28) 4.16 (0.28)

SA/MAT 80% 4.38 (0.29) 4.16 (0.30) 3.57 (0.28) 3.23 (0.20) 2.93 (0.15)

Measures after the completion of 15 years simulation that followed a 5-year burn-in period. Results show the mean and standard deviation for each state from 15

independent simulations of networked populations of 10,000 actors.

https://doi.org/10.1371/journal.pone.0206356.t008
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Table 9. Incidence rate of Cirrhosis among all infected HCV agents (in 100 person years).

Intervention Baseline DAA 5% DAA 10% DAA 15% DAA 20%

Baseline .554 (.040) .531 (.076) .500 (.060) .450 (.067) .405 (.065)

SA/MAT 20% .570 (.099) .521 (.081) .474 (.044) .435 (.070) .390 (.062)

SA/MAT 40% .521 (.053) .512 (.070) .473 (.059) .406 (.076) .370 (.068)

SA/MAT 60% .552 (.047) .473 (.072 .432 (.057) .399 (.079) .385 (.050)

SA/MAT 80% .515 (.063) .479 (.066) .435 (.065) .381 (.054) .339 (.057)

Measures after the completion of 15 years simulation that followed a 5-year burn-in period. Results show the mean and standard deviation for each state from 15

independent simulations of networked populations of 10,000 actors.

https://doi.org/10.1371/journal.pone.0206356.t009

Fig 4. Chronic HCV (F0-3) prevalence at a range of combined intervention scales after 15 years of simulated

intervention. Thresholds can be seen at the DAA 20% scale for all levels of SA/MAT.

https://doi.org/10.1371/journal.pone.0206356.g004

Fig 5. Advanced HCV-related liver disease prevalence at a range of combined intervention scales after 15 years of

simulated intervention. Strong thresholds can be seen at the DAA 20% scale for all levels of SA/MAT.

https://doi.org/10.1371/journal.pone.0206356.g005

Simulation of combination interventions for Hepatitis C and Cirrhosis reduction

PLOS ONE | https://doi.org/10.1371/journal.pone.0206356 November 29, 2018 16 / 25

https://doi.org/10.1371/journal.pone.0206356.t009
https://doi.org/10.1371/journal.pone.0206356.g004
https://doi.org/10.1371/journal.pone.0206356.g005
https://doi.org/10.1371/journal.pone.0206356


Discussion

This simulation experiment represents an attempt to model open populations of PWID over

relatively long time periods, and to test the effectiveness of single and combined interventions

under such conditions. The scenario we envision is quite common to municipalities and public

health departments facing rising HCV rates associated with increases in injection drug use:

what are the best strategies for reducing HCV incidence and prevalence and subsequent severe

liver related disorders? Given the high mobility of PWID and the long time periods needed for

intervention impacts to manifest, intervention planners need to know what can be expected of

Fig 7. Cirrhosis incidence at a range of combined intervention scales after 15 years of simulated intervention. A

notable threshold can be seen at the DAA 20% and SA/MAT 20% scale. There the inclusion of even low levels of SA/

MAT can combine with higher levels of DAA to produce considerable effects on cirrhosis incidence in later years.

https://doi.org/10.1371/journal.pone.0206356.g007

Fig 6. HCV incidence (in 100 person years) at a range of combined intervention scales after 15 years of simulated

intervention. Strong thresholds can be seen at the SA/MAT 80% scale for all levels of DAA treatment, and for SA/

MAT 60% at DAA treatments of 10% or higher.

https://doi.org/10.1371/journal.pone.0206356.g006
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new disease containment strategies based on the administration of direct acting antivirals, the

deployment of medically-assisted addiction treatment and high-coverage syringe access pro-

grams, and combinations thereof.

The open nature of the simulations added considerable dynamism to a model that already

included regular network “churn”—the effect of agents leaving some risk relationships and

entering into relationships with new alters. Despite the fact that the simulation population was

held steady at a level of 10,000 agents, in the combined 5 years of burn-in and 15 years of simu-

lation more than 28,000 agents participated in the simulation (on average); more than 330

thousand risk relationships were made and unmade; more than 131,000 intervention events

took place; and approximately 26,000 total new infections (HIV and HCV) occurred. The

effects of overall HCV incidence and prevalence we report here were thus consistent even

amid considerable network change and population turnover.

The final prevalence rates shown in Table 5 show similarities to previous results from

Europe [3]. In particular, SA/MAT shows limited ability to lower overall HCV prevalence

(declines of 2-7%) across all HCV states—and very little detectable effect (roughly 1%) on

advanced liver disease after 15 years [58]. This is not surprising, given that SA/MAT does not

cure infection—and thus can not affect prevalence rates directly. However, as reflected in the

declining prevalence of acutely infected agents (which show a 42% decrease from baseline lev-

els of roughly 5% to under 3%), SA/MAT can be expected to result in a steady decline in overall

HCV incidence that is not captured in the timescale investigated here.

Scaled DAA treatment shows the ability to lower HCV rates directly, resulting in a more

than 30% decline when 20% of those with chronic HCV infection are treated each year. In con-

trast to SA/MAT intervention, there is very little effect on incidence of acute infection. The

simulations also show a large drop in the prevalence of advanced liver disease associated with

DAA treatment over the 15-year intervention period (reduction of more than 40%). These

results were obtained despite the unbounded nature of the population and the fact that many

of those who undergo DAA treatment subsequently leave the simulation in the future and are

replaced by others who did not undergo treatment, and occurs despite the fact that reinfection

after treatment remains a possibility for agents throughout their time in the simulation.

The results of the simulations also verify previous research findings that SA/MAT interven-

tions, acting alone, do little to reduce overall prevalence of HCV infection or the related

advanced liver diseases [59]. However, our result show that SA/MAT does have an important

effect on HCV incidence (including a decline of of 60% when 80% of the agents are enrolled)—

an effect that, when coupled with even low levels of DAA treatment, can magnify the much

smaller declines in HCV incidence under DAA treatment alone (a decline of 28% at the high-

est intervention level tested here, where DAA treatment was carried out for 20% of the infected

agents each year). In the real world, the long term effects of this are shrouded by the very long

time scales associated with advancing HCV, and by the open boundaries on the simulation

community—whereby the effects of treatment on the current agents are lost when those

treated leave the population. Despite this, even low rates of DAA (5% annually) can be coupled

with moderate SA/MAT (40%) to produce a 32% drop in HCV incidence and a 8% drop in cir-

rhosis incidence over 15 years. In contrast, the same DAA treatment that takes place without

accompanying SA/MAT shows smaller declines in HCV incidence (4%), ensuring that treat-

ment needs remain high in the future. High levels of DAA (20%) and SA/MAT (80%) in com-

bination show an ability to lower both HCV (resp. cirrhosis) incidence by more than 73%

(resp. 39%), when compared to baseline levels. Importantly, these effects can be anticipated

despite high population turnover, and take place amid a steep drop in the overall prevalence of

chronic HCV (decline of 21%).
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What is apparent from these simulations is that deployment level influences the impact of

interventions in a non-linear manner. 5% increments in the number of agents enrolled in

DAA treatment per year reduce HCV prevalence on average by 5.2, 4.8, 3.7, and 3.8% respec-

tively, as DAA treatment rates go from 5 to 20% of chronically HCV infected agents (Table 6).

As above, SA/MAT show little impact on prevalence, such that increases or decreases in mar-

ginal utility are not found. On the other hand, when looking at HCV incidence, accelerating

marginal gains can be seen in SA/MAT increments of 20% result which result in relative

declines in HCV incidence of 14, 18, 22 and 27%. The impact of increasing DAA coverage is

mixed: decreases in HCV incidence of 5.5, 9.9, 5.7 and 10.7% can be seen as DAA coverage is

increased by 5 to 20% in 5% increments. Increasing both of these interventions simultaneously

results in similar non-linear gains of 21, 27, 30, and 35% relative to each prior increment.

However, these results show that combining of DAA and SA/MAT interventions is linear

mechanism the total gain is the sum of the impacts of each in isolation.

One can see in the heatmaps limited but important threshold behaviors in the combined

DAA and SA/MAT results (see Figs 4 through 7). For example, for HCV incidence (Fig 6),

increasing DAA coverage from zero coverage to 5% coverage while holding SA/MAT rates at

40% results in a relative decrease of HCV incidence of 14.9% (where the average gain for

increasing DAA by one step across all SA/MAT levels is an 8.6% decrease in HCV incidence).

Similarly, when holding DAA treatment rates steady at 5%, increasing SA/MAT enrollment

from 40 to 60% results in a 25% relative decrease in HCV incidence. For cirrhosis incidence

(Fig 7, a jump from 40 to 60% SA/MAT coverage results in an 8.7% decrease (average gain for

SA/MAT increase of 5% is 3.1%), while an increase of DAA treatment from 10 to 15% of the

infected population while holding SA/MAT rates steady at 40% resulted in a 14.1% decrease in

cirrhosis incidence after 15 years. The largest incremental decrease in cirrhosis incidence

resulted from adding 5% DAA coverage to 60% SA/MAT coverage (a drop of 14.3%, compared

to an average marginal gain of 8.6% for each 5% increase in DAA coverage). Such discontinu-

ous gains offer health agencies opportunities to assess how best to increase their overall effec-

tiveness where financial or other means prevent them from capitalizing on the accelerating

marginal gains seen in increasing both interventions simultaneously.

Limitations

The most significant limitation on these results is the obvious fact that these findings were

obtained via simulation, and thus ignore a range of possible influences external to the simula-

tion environment—such as future changes in drug markets and drug availability, the impact

of possible historical events (such as the long term implications of the unfolding opioid epi-

demic in the US), changes in PWID routes of administration [60], or new local efforts aimed

at changing risk behaviors. Though our framework attempts to engage more realistic interven-

tion conditions through the simulation of an open, networked population, possible errors in

these data and their basis in New York City also limit their possible extension to other

locations.

To test the robustness of our results against possible sensitivity issues unanticipated in the

modeling framework, we conducted sensitivity tests that examined significant changes in

input parameters closely connected to HCV spreading in the population. Using “one-factor-

at-a-time” strategies [61], we perturbed 5 key parameters by ±15% from initial levels: (i) the

network churn rate, (ii) the risk rate, (iii) the HCV transmission probabilities, and initial prev-

alence levels of both (iv) HIV and (v) HCV (see Table 10). We note that, following Best Prac-

tice VI-6 of the ISPOR guideline [62], this table is intended to present data on experiment

sensitivity (the effect on outputs of varying inputs) and is not intended to speak to questions of
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uncertainty. The latter type of analysis would require formal determination of parameter

uncertainty—a task which is beyond the scope of this paper, given the present state of the liter-

ature. Here we take an “even if” approach (see [62], pp. 838) that identifies a range of parame-

ter values that do not change our conclusions.

Comparing intervention and baseline scenarios, the data in Table 10 shows that parameter

perturbations had minimal impact on the reduction in HCV prevalence after 15 years. More

precisely, DAA10/MAT40 intervention reduces HCV prevalence to between 75-77% of its ini-

tial value over 15 years, regardless of perturbations of ±15% in parameters (i)-(iv); a fluctuation

of 30% in one of the parameter values (i)-(iv) is thus seen to produce < 2% fluctuation in the

intervention’s impact on HCV prevalence after 15 years. Sensitivity to initial HCV prevalence

is greater; here we found that perturbations of ±15% in parameter (v) produced� 6% fluctua-

tion in the reduction HCV prevalence (73-79% of the initial value). The heightened sensitivity

of final HCV prevalence to initial prevalence levels is not surprising given the open population

model and the fact that new agents entering the simulation take their HCV status probabilisti-

cally from the initial settings. In effect, the overall impact of changes in simulation parameters

is dampened by the simulation process itself. From these tests, we surmise that our results are

robust against errors of� 15% in initial settings, and that the results are unlikely to reflect hid-

den sensitivity effects.

Further limitations include recognized elements of HCV progression that were not

included in the simulation such as HIV co-infection impacts on HCV progression (which can

increase Metavir progression rates by as much as 50% [63], though this impact is lessened con-

siderably by HIV patients receiving ARV treatments [64]). In the simulation, all HCV infected

agents advance at the same Metavir fibrosis rate. We also note that new DAA treatments have

shortened the treatment period from 168 days (24 weeks) for roughly half that time [65]. Pre-

liminary tests indicated that this does not significantly impact the results presented here, but

future work will include a range of DAA treatment times.

Conclusion

These results suggest significant and immediate steps for health officials and harm reduction

programs. Combined interventions that match lower-cost syringe access and medicine assisted

addiction treatments with direct acting antiviral treatments can have a large effect on HCV

incidence, cirrhosis incidence, and overall HCV prevalence, even among highly mobile PWID

populations. Simulations suggest that lower cost syringe exchange and medically assisted opi-

oid treatment can be combined with less available direct acting antiviral treatments to radically

lower HCV incidence among people who inject drugs, even when that population is highly

mobile and where treatment is at times short term and only temporarily successful. These

Table 10. Sensitivity test showing the effects of parameter changes of 15% on HCV prevalence under both baseline and intervention conditions.

Baseline (orig. 0.616) DAA 10/MAT 40 (orig. 0.473)

+15% -15% +15% -15%

(i) Churn rate 0.613 (0.005) 0.618 (0.005) 0.467 (0.004) 0.476 (0.010)

(ii) Risk interval mean 0.590 (0.007) 0.630 (0.008) 0.445 (0.005) 0.4814 (0.002)

(iii) Transmission probability 0.638 (0.006) 0.596 (0.008) 0.483 (0.007) 0.467 (0.011)

(iv) Initial HIV prev. 0.617 (0.005) 0.615 (0.006) 0.475 (0.008) 0.478 (0.003)

(v) Initial HCV prev. 0.671 (0.002) 0.570 (0.006) 0.532 (0.006) 0.420 (0.004)

Measures after the completion of 15 years simulation that followed a 5-year burn-in period. Results show the mean and standard deviation for each state from 5

independent simulations of networked populations of 10,000 actors.

https://doi.org/10.1371/journal.pone.0206356.t010
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outcomes are contingent on opening up participation in direct acting antiviral treatment to

drug users prior to their entry into later stage fibrosis, and on the ability of health agencies to

sustain intervention efforts for more than a decade.
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