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Abstract

Background: The PatholLogic program constructs Pathway/Genome databases by using a
genome's annotation to predict the set of metabolic pathways present in an organism. PathoLogic
determines the set of reactions composing those pathways from the enzymes annotated in the
organism's genome. Most annotation efforts fail to assign function to 40—-60% of sequences. In
addition, large numbers of sequences may have non-specific annotations (e.g., thiolase family
protein). Pathway holes occur when a genome appears to lack the enzymes needed to catalyze
reactions in a pathway. If a protein has not been assigned a specific function during the annotation
process, any reaction catalyzed by that protein will appear as a missing enzyme or pathway hole in
a Pathway/Genome database.

Results: We have developed a method that efficiently combines homology and pathway-based
evidence to identify candidates for filling pathway holes in Pathway/Genome databases. Our
program not only identifies potential candidate sequences for pathway holes, but combines data
from multiple, heterogeneous sources to assess the likelihood that a candidate has the required
function. Our algorithm emulates the manual sequence annotation process, considering not only
evidence from homology searches, but also considering evidence from genomic context (i.e., is the
gene part of an operon?) and functional context (e.g., are there functionally-related genes nearby
in the genome?) to determine the posterior belief that a candidate has the required function. The
method can be applied across an entire metabolic pathway network and is generally applicable to
any pathway database. The program uses a set of sequences encoding the required activity in other
genomes to identify candidate proteins in the genome of interest, and then evaluates each candidate
by using a simple Bayes classifier to determine the probability that the candidate has the desired
function. We achieved 71% precision at a probability threshold of 0.9 during cross-validation using
known reactions in computationally-predicted pathway databases. After applying our method to
513 pathway holes in 333 pathways from three Pathway/Genome databases, we increased the
number of complete pathways by 42%. We made putative assignments to 46% of the holes,
including annotation of 17 sequences of previously unknown function.

Conclusions: Our pathway hole filler can be used not only to increase the utility of Pathway/
Genome databases to both experimental and computational researchers, but also to improve
predictions of protein function.
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Background

Genome sequencing projects generate large numbers of
nucleotide sequences each year [1]. Once the sequences
are obtained, functions must be assigned to these new
sequences. This is typically accomplished by searching
large, public databases for similar sequences. Assessment
methods include hidden Markov models and identifica-
tion of functional motifs [2-4]. These methods assign
functional annotations based on sequence alone and do
not incorporate non-sequence-based information.

Most genome annotation efforts fail to assign function to
40 - 60% of the new sequences. Even when annotated,
many functions remain incomplete (only one function of
a multidomain protein) or nonspecific (e.g., "thiolase
family protein"). Operon- and pathway-based informa-
tion can provide additional clues about protein function,
and can clarify incomplete or nonspecific annotations.
For instance, the annotation of CC1617 (a Caulobacter cre-
sentus gene) as guaB (E.C.# 1.1.1.205) is supported by the
fact that CC1617 is part of a predicted operon with guaA
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(E.C.# 6.3.5.2) and the pathway for de novo biosynthesis
of purine nucleotides (I) includes both of these reactions.

The PathoLogic program [5] constructs Pathway/Genome
Databases (PGDBs) by using a genome's annotation to
predict the set of metabolic pathways present in an organ-
ism. PathoLogic determines the set of reactions catalyzed
by an organism from the enzymes annotated in its
genome. For each pathway in a set of reference pathways,
if one or more reactions is present in the organism, Path-
oLogic adds that pathway to the set of pathways present in
that organism. Figure 1 shows an example reference path-
way and the reactions that PathoLogic has identified in
the organism's genome. PathoLogic has assigned genes to
three of the six reactions. When PathoLogic includes a
pathway in a PGDB, the pathway may be missing one or
more enzymes; we refer to these as "missing enzymes" or
"pathway holes". We present a fully computational
approach for finding missing enzymes (i.e., filling path-
way holes), thus improving both the completeness and
accuracy of the PGDB and the annotation of its associated
genome.

quinolinate
synthetase
\TadA
quinolinate
n.n.
pyrophosphorylase
nadC
\ nicotinate
2.7.7.18 ~ nucleotide

Example pathway created by PatholLogic for the Caulobacter cresentus PGDB, CauloCyc The enzymes for the
quinolinate synthetase, nicotinate-nucleotide pyrophosphorylase, and NAD(+) synthetase reactions are known. The enzymes
for the 1.4.3.-, nicotinate-nucleotide adenylyltransferase, and NAD(+) synthase (glutamine-hydrolyzing) reactions are missing.
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Previous computational efforts to identify missing
enzymes in metabolic pathways have focused solely on
sequence similarity as a means to find candidate enzymes.
Other methods have proposed the use of additional types
of evidence, but have not provided a computational algo-
rithm for combining these data [6-8]. Rather than merely
providing a score of the similarity of a sequence from the
genome of interest to sequences that catalyze the same
reaction, we use a Bayes classifier to determine the proba-
bility that the candidate protein has the function required
to fill the pathway hole. Our computational method
focuses on identification of potential candidates to fill
pathway holes and evaluation of these candidates by com-
bining homology-, operon-, and pathway-based data.
This approach will refine metabolic maps available in
PGDBs and improve annotations for previously unanno-
tated or incompletely annotated proteins.

Implementation

The pathway hole filler is implemented as part of the
Pathway Tools software [5], a software environment for
creating, editing, and querying PGDBs, such as EcoCyc

and MetaCyc http://biocyc.org|[9].

Overall algorithm

Figure 2 shows the overall algorithm used for filling a
pathway hole. The steps of the algorithm applied to each
reaction lacking an enzyme are

1. Sequence retrieval - Retrieve from Swiss-Prot [10] and
PIR [11] sequences for enzymes that catalyze the desired
reaction in other organisms. Because these sequences are
not necessarily homologs, we will refer to enzymes with
the same function in a variety of organisms as isozymes.
For Swiss-Prot, the program retrieves Swiss-Prot IDs
directly from the ENZYME database. For PIR sequences,
the program retrieves IDs from the MetaCyc PGDB.
Sequences are then retrieved directly from the most recent
version of each database.

2. Homology search — BLAST [12,13] each query isozyme
sequence against the genome of the organism of interest.

3. Data consolidation — Congruence analysis of the result-
ing BLAST hits to consolidate data reported for sequences
that align with one or more query isozymes.
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4. Candidate evaluation — Determine the probability that
each candidate protein has the activity required by the
missing reaction.

Steps 1 through 3 compose the "candidate identification”
phase of the process and generate the evidence used in the
fourth step, "candidate evaluation". Our implementation
of the homology search and data consolidation steps is
based on the Shotgun congruence analysis algorithm [14].
We applied our method to PGDBs developed by SRI's Bio-
informatics Research Group for three organisms - Caulo-
Cyc  (Caulobacter  cresentus [15]),  MtbRvCyc
(Mycobacterium tuberculosis [16]), and VchoCyc (Vibrio
cholerae [17]). All three PGDBs are available through the
BioCyc Web site at http://BioCyc.org

In this report, we will describe both the candidate identi-
fication and evaluation steps of our algorithm, including
the Bayesian network used for evaluation and the calcula-
tion of the conditional probability distributions used for
the network. We will also present the results of a five-fold
cross-validation study completed to evaluate the predic-
tive value of various network structures. Our prediction of
putative hole-fillers for three PGDBs will demonstrate the
utility of the method for identifying functions for unan-
notated genes and for increasing the completeness of the
metabolic map provided by a PGDB.

Candidate identification

To determine the function of a sequence, researchers typ-
ically use a single sequence of unknown function to search
for potential homologs in a large, public database. We
have, in effect, reversed this search process to fill pathway
holes in a PGDB. The activity of the missing reaction is
known from the inferred pathway; we search the genome
for a sequence that will provide that function. Our
method uses multiple isozymes from other organisms to
search for similar sequences in the genome used to build
the PGDB. Searching the smaller genome database greatly
increases search sensitivity by reducing the probability of
finding a match by chance [18,19]. Also, if a sequence
with the desired function exists in the genome, its align-

Table I: Node names and descriptions for Bayes classifier.
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ment with multiple isozymes will be more credible than
an alignment between a single sequence queried against a
large sequence database [4,13,14].

For each pathway hole, we retrieve isozyme sequences
from the Swiss-Prot and PIR databases. Next, we use
BLAST (version 2.0.10) to search the genome of interest
with each of the query sequences. The BLAST queries use
the default search parameters (e.g., filtering on, gapped)
with the E-value cutoff reduced to 1.0 (from the default of
10) to reduce the number of false hits returned but main-
tain the ability to identify hits with remote similarity.

Our program evaluates each candidate based on the data
collected from congruence analysis of the set of BLAST
output files (one output file per isozyme sequence). For
each candidate, the congruence analysis groups together
the BLAST hits to the candidate in each output file. If a
query isozyme's output file does not include a hit to the
candidate, no data from that query is included. The evi-
dence for each candidate hole-filler is a summary of this
group of hits. For example, candidate Z is the first hit in
output file A and the second hit in output file B, and none
of the remaining output files include a hit to the candi-
date. The evidence for candidate Z will include data (E-
values, alignment lengths, etc.) for the hit in output file A
and the hit in output file B. Table 1 describes the parame-
ters calculated for use in the Bayes classifier.

Table 2 shows an example of a data consolidation step
and Figure 3 is a graphic representation of the consolida-
tion process. In the example in Table 2, five isozyme
sequences were retrieved from Swiss-Prot and PIR. The
five BLAST output files included hits to a total of seven
candidate sequences from the Caulobacter genome -
CC3619, CC1620, CC1541, CC3460, CC2963, CC3013,
and CCO0705. Because each of the five output files
included hits to CC3619, its Shotgun-score is five (5).
Likewise, the five values for the fraction of the query iso-
zyme aligned to the hit are used to calculate the average-
fraction-aligned for CC3619.

node description

has-function
Shotgun-score
best-E-value
average-rank
the average rank for the candidate is |)
average-fraction-aligned
pathway-directon
transcribed in the same direction
adjacent-rxns

true if the protein has the function required to fill the pathway hole, false if it does not

the number of query sequences whose BLAST output included the candidate sequence

negative log of the E-value for the best alignment of the candidate with a query sequence

the average rank of the candidate sequence in the BLAST output lists (e.g., if a candidate is the best hit in each search,

the average of each alignment length normalized by the length of the query sequence
true if the hit is in the same directon as another gene in the same pathway; a directon is a contiguous series of genes

true if the hit is adjacent to one of the genes coding the enzyme for an adjacent reaction in the pathway
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Table 2: Example of consolidation of BLAST output data for glutamine-hydrolyzing NAD(+) synthase.

Sequences producing significant alignments E-value rank in output fraction aligned
Hits found by Query Isozyme Q9CBZ6

CC3619 NAD(+) synthetase, putative 0.0 | 0.99
CC2963 hydrolase, carbon-nitrogen family 0.010 2 0.06
CC3013 TonB-dependent receptor 0.34 3 0.07
Hits found by Query Isozyme Q58747

CC3619 NAD(+) synthetase, putative 3e-07 | 0.70
CC1620 GMP synthase 0.029 2 0.14
CCO0705 ORF 0.15 3 0.34
Hits found by Query Isozyme F86762

CC3460 ORF 0.024 | 0.43
CC3619 NAD(+) synthetase, putative 0.092 2 0.48
CC1541| 2-isopropylmalate synthase 0.80 3 0.16
Hits found by Query Isozyme P18843

CC3619 NAD(+) synthetase, putative 2e-04 I 0.49
CC1541| 2-isopropylmalate synthase 0.36 2 0.43
Hits found by Query Isozyme P47623

CC3619 NAD(+) synthetase, putative 6e-05 I 0.55
CC1620 GMP synthase 0.24 2 0.09

Results of data consolidation

consolidated data for hits from target genome

shotgun-score

best-E-value average-rank average-fraction-aligned

CC3619
CCl620
CClI541
CC3460
CC2963
CC3013
CC0705

—— — — NN uwn

0.0 1.2 0.64
0.029 2 0.12
0.36 2 0.30
0.024 | 0.43
0.010 2 0.06
0.34 3 0.07
0.15 3 0.34

Candidate evaluation

Bayesian network structure

Each of the candidate hits is evaluated by calculating the
probability that the sequence encodes the desired func-
tion based on operon-, homology- and pathway-based
data. We use a Bayesian network to calculate this
probability.

Based on background knowledge of protein function pre-
diction, we initially specified a Bayesian network [20] to
capture the factors involved in predicting protein function
from sequence alignment data. Part of our initial network,
N,, is shown in Figure 4. The network includes nodes for
E-values, alignment length, and the rank of the candidate
protein in the isozyme's BLAST output. Each node is con-
ditionally dependent on the has-function node, as indi-
cated by the arcs connecting the node to the has-function
node. Additional arcs indicate other conditional depend-
encies; for example, because alignment length affects the
E-value of an alignment and the E-value affects the rank of
the candidate in the BLAST output, N, includes arcs con-
necting these nodes. If a hit has a very low E-value, it is
more likely to be one of the first hits listed in the BLAST

output (low rank). If the alignment between an isozyme
and the candidate protein is longer, it may be more likely
to have a lower E-value.

While the N, network may more accurately capture the
relationship between these variables, large amounts of
data would be required to determine the probability dis-
tribution for each node in the network. Thus, we instead
chose to assess the adequacy of a drastically simpler net-
work. Figure 4 shows both N, and the static naive Bayes
classifier we evaluated, N;. We eliminated all conditional
dependencies between the child nodes (shown as dashed
lines in Figure 4). We also added pathway-based data to
the network (shown as double-lined nodes in Figure 4).
Each node in our model is described in Table 1. Since the
naive classifier has only one parent node (has-function),
the probability distributions can be obtained from a
much smaller dataset.

Calculating the probability that a candidate catalyzes the missing
reaction

In evaluating the candidate sequences identified by our
searches, we are primarily concerned with the network's
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Step 3 & 4: Consolidate hits and
evaluate evidence

3 queries have low-scoring hits to
sequence X

X auab

Resulting P(has-function) is low

8 queries have high-scoring hits to
sequence Y

A duab

organism 6 enzyme A

organism 7 enzyme A

organism 8 enzyme A

Resulting P(has-function) is high

5 queries have low-scoring hits to
sequence Z

Z auab

EN
a
N
a

Resulting P(has-function) is low

target genome ___A

Figure 3
A graphical representation of the data consolidation process

parent node, has-function. The probability that this state
is true, P(has-function), or P, is the probability that a can-
didate protein has the function needed for the missing
reaction. The probability that the protein does not have
the needed function is 1-P. Each of the other nodes in the
network will have probability distributions conditioned
on the state of the has-function node. For example, sup-
pose our network structure included only the parent node,
has-function, and two child nodes, average-rank and
pathway-directon, as defined in Table 1. To calculate the
probability that a candidate has the desired function given
the evidence for that candidate, we need the following
data: the evidence for the particular candidate (i.e., the
candidate's values for average-rank and pathway-direc-
ton), the probability of finding that evidence if the candi-
date has the desired function or if it does not, and the
prior probability that any candidate has the desired func-
tion. For our example network and candidate we need

I - The average-rank of the candidate and the value of
pathway-directon. Let's assume that the values of average-

rank and pathway-directon for our example candidate are
1.5 and "true", respectively.

I1 - The probability that a protein has a particular value for
each child node given that it has or does not have the
desired function. For our example candidate, P(average-
rank = 1.5 | has-function) = 0.40 and P(average-rank = 1.5
| =has-function) = 0.03. Also, P(pathway-directon = true |
has-function) = 0.24 and P(pathway-directon = true |
-has-function) = 0.04.

III - The prior probability distributions are calculated
from a data set where 4.1% of the candidates are true hits
and 95.9% are false hits; thus, P(has-function) = 0.041
and P(-has-function) = 0.959.

(1) is the evidence collected from the BLAST searches for
each candidate protein. The values for (II) are taken from
the conditional probability distributions. Forty percent of
the candidates have an average-rank between 1.0 and 2.0
when the candidate is a true hit. Likewise, pathway-direc-
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Network Njincludes all single-outline nodes plus both the solid and dashed arcs The simple Bayes classifier used by
our program (N)) includes all nodes but excludes the dashed arcs. We simplified the network, excluding the dashed arcs to
reduce the amount of data required to accurately construct the conditional probability distributions needed for the network.

ton = "true" for 24% of the candidates that are true hits
(conversely, pathway-directon is "false" for 76% of the
candidates when the candidate is a true hit). Since our net-
work assumes conditional independence among the child
nodes, we use Bayes' Rule to determine P(has-function |
average-rank = 1.5 and pathway-directon = "true"):

P( has-function|evidence ) =

P ( has-function ) P( pathway directon ="true"|has-function ) P average rank = 1.5 | has-function )

z (x=has-function,~ hasrfunc\inn)P( x) P(pathway directon ="true"[x ) P( average rank = 1.5\x)

= 075

Calculation of conditional distributions

To perform this calculation for each candidate, we must
determine a conditional probability distribution for each
node in the network (conditioned on the state of the has-
function node). We derived the data used to calculate
these distributions from the known reactions in each
PGDB.

Although some reactions in a PGDB are missing, other
reactions in the pathways have proteins assigned to them.
We call these "known" reactions. To generate data for the
conditional distributions for our classifier, we ran the
"candidate identification" step of our program on the set

of known reactions in a PGDB, identifying a list of candi-
date hole-fillers for each reaction. Since each known reac-
tion has been assigned one or more enzyme sequence by
PathoLogic, we can identify true and false hits in the list of
candidates identified for each reaction. For each reaction,
all enzymes previously assigned by PathoLogic are consid-
ered true hits; all other hits are designated false hits. Given
the set of true hits and false hits, we calculated conditional
distributions for the network. As an example, the distribu-
tions for the average-fraction-aligned are shown in Figure
5.

Cross-validation and statistical evaluation

To evaluate our model structure, we divided the set of
known reactions in a PGDB and their candidate proteins
randomly into five separate sets. Given the network and
the associated distributions, we then calculated P for each
candidate sequence from the data collected for the
sequence. Using these true hits, false hits, and their asso-
ciated P's, we evaluated various network structures. For
each set, the probability distributions were derived from
the other four.
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Example of conditional probability distribution calculated from the candidates identified for the known reac-

tions in CauloCyc This figure shows the probability distribution for the average-fraction-aligned node. The set of candidates
for all known reactions in the PGDB was divided into two subsets — true hits (those candidates that are assigned to a particular
reaction in the PGDB) and false hits (those candidates that are not assigned to a particular reaction in the PGDB). We partition
the values into nonoverlapping bins and determine the frequency of candidates within each bin for the two sets of hits. These
frequencies make up the conditional probability distributions used for our Bayesian network. For example, if the avg fraction of
query aligned for a candidate is 0.84, the P(average-fraction-aligned = 0.84 | has-function) = 0.16 and P(average-fraction-aligned

= 0.84 | “has-function) = 0.02.

Since classifying each protein (has-function or ~has-func-
tion) depends on the chosen probability threshold, a sin-
gle assessment of specificity and sensitivity will not
completely describe the predictive power of the model.
Hence, we compared models by plotting the number of
true positives as a function of the number of false posi-
tives. We used McNemar's test [21] to determine statisti-
cally significant differences between the models at various
false positive rates.

Results

While our program is generally applicable to any organ-
ism's PGDB, we evaluated its ability to match proteins to
a missing enzyme using three PGDBs: CauloCyc (Caulo-
bacter cresentus), MtbRvCyc (Mycobacterium tuberculosis
strain H37Rv), and VchoCyc (Vibrio cholerae). The number
of pathways, missing reactions, known reactions, and a

summary of the data collected during the validation proc-
ess for each PGDB are shown in Table 3.

Cross-validation and model exploration

To explore the adequacy of the model proposed for the
Bayes classifier, we performed fivefold cross-validation on
the known reactions from the three PGDBs.

The candidate identification step of our program gener-
ates an average of 27 candidate proteins per pathway hole.
Although, we identify one true hit for most reactions,
some reactions (e.g., 101 for VchoCyc) have multiple true
hits (when multiple genes are assigned to a reaction either
as part of a multimeric complex or as separate polypep-
tides that catalyze the same reaction), while other reac-
tions (e.g., 44 for VchoCyc) have no true hits identified
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Pathway/Genome Database

MtbRv
pathways in PGDB 146
incomplete pathways 118
known reactions 327
missing reactions 313
cross-validation
# true hits 491
# false hits 10093
positive predictive value at P > 0.9 0.66
true-positives at P > 0.9 325

Caulo Vcho
139 172

99 116

354 417
255 276
469 506
9624 9151
0.67 0.79
371 449

(i-e., either no isozyme sequences were available or all
candidate proteins for that reaction are false hits).

Using data from the CauloCyc PGDB, we explored various
network configurations to determine their effect on the
predictive value of the classifier. The following three mod-
els were included in our investigation:

model 1 - classification of each hit by the Bayes classifier
shown in Figure 4, N,

model 2 - classification of each hit by the Bayes classifier
excluding the best-E-value node

model 3 - classification of each hit by E-value of the best
alignment alone (i.e., choosing an E-value cutoff to clas-
sify hits as positive or negative)

Results for the three models are shown in Figure 6.
Although model 3 performs better at low numbers of false
positives (10 false positives, p = 0.04), at higher numbers
(>31 false positives, p < 1e-5), model 1 outperforms both
model 2 and model 3. The inset in Figure 6 displays
results for all three PGDBs (CauloCyc, MtbRvCyc, and
VchoCyc) predicted using model 1.

Candidate identification for missing reactions
We used model 1 to identify enzymes for the missing reac-
tions in MtbRvCyc, CauloCyc, and VchoCyc.

Table 4 summarizes the results of filling pathway holes in
the three databases. About 53% of the pathway holes in
the three databases were filled using a cutoff of P > 0.9. A
few additional pathway holes were filled with P(has-func-
tion) lower than our cutoff. All of these had nonspecific or
unknown functions and in most cases P(has-function)
was greater than 0.7. Specific changes made to the three
PGDBs can be found in Additional files 1, 2, 3 and 4. Fig-

ure 7 shows the percent of pathway holes filled as a
function of the probability threshold chosen for the three
PGDBs. For about half of the pathway holes filled, the
separation between the most likely candidate and the sec-
ond most likely candidate was greater than 0.9, demon-
strating that the highest scoring candidate is often the only
reasonable contender for the missing enzyme.

As a result of applying our program to the three PGDBs,
we linked 17 missing reactions with sequences of previ-
ously unknown function. Our program identified putative
enzymes for a total of 266 missing reactions across the
three databases. These 266 instances fall into four catego-
ries explaining the absence missing enzyme.

1. The function of the protein was correctly annotated;
however, due to inconsistent and nonstandardized anno-

tations, the PathoLogic name-matcher did not recognize
or understand the annotation, leading to a "missing
enzyme" when the enzyme had, in fact, been identified in
the genome already.

When creating a PGDB, Pathologic uses an enzyme
name-matcher and an EC-number-based-matcher to link
enzymes in the genome annotation to reactions in the
reference pathway database (i.e., MetaCyc). For each reac-
tion, the name-matcher tries to match one of the protein
products or its synonyms in the annotation to the activity
of the reaction. If no gene's annotation matches any of the
names/synonyms for the reference reaction, no enzyme
will be linked to that reaction in the PGDB resulting in a
missing enzyme in all pathways including that reaction.

2. The annotated activity is nonspecific (e.g., "thiolase
family protein" or "probable phosphoribosyltrans-
ferase"). Our program provides a more exact specification
of the enzyme's function than the original annotation.
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True positives versus false positives for classification using E-value cutoff alone, and using the Bayes classifier
model without E-valuesThe inset shows the fraction of true positives versus number of false positives as determined by
model | for all three PGDBs evaluated.

Table 4: Summary of hole-filling results.

Pathway/Genome Database

MtbRv Caulo Vcho
missing reactions w/ isozyme seqs 195 162 156
putative enzymes found at P > 0.9 84 71 82
fillers with borderline P (0.5 to 0.9) 37 17 I
holes with no BLAST hits 8 7 7
holes filled with ORFs at P > 0.8 9 2 6
newly completed pathways at P > 0.9 18 17 17
newly completed pathways at P > 0.8 20 14 17
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Fraction of pathway holes filled as a function of probability threshold

3. The annotated activity is incomplete (e.g., a multifunc-
tional protein annotated with only one function). Our
program can identify additional functions that were
missed by the original annotation process.

4. The functional annotation of the protein is inconsistent
with the activity required for the reaction. These instances

may represent either false positives classified by our pro-
gram or, perhaps, incorrectly annotated proteins.

Example pathway: pyridine nucleotide biosynthesis

PathoLogic's prediction of the pyridine nucleotide bio-
synthesis pathway in CauloCyc is shown in Figure 1.
Enzymes have been assigned for the quinolinate syn-
thetase, nicotinate-nucleotide pyrophosphorylase, and
NH3-dependent NAD+ synthetase reactions. The other
three reactions in the pathway (L-aspartate oxidase,
nicotinate-nucleotide adenylyltransferase, and glutamine-
dependent NAD+ synthetase) remain as missing reac-
tions. Our hole-filling program has identified enzymes in

the Caulobacter genome for each of these missing reac-
tions as shown in Figure 8.

The first missing enzyme, nadB (CC2913), was actually
annotated as L-aspartate oxidase in the Caulobacter
genome. Because the reaction (and the E.C. number of the
reaction) catalyzed by nadB changes depending on
whether it acts as a monomer (1.4.3.-) or in complex with
nadA (1.4.3.16) [22,23], CauloCyc includes two different
reactions for L-aspartate oxidase. During the creation of
CauloCyc, PatholLogic matched CC2913 to the mono-
meric reaction, but did not match the enzyme to the reac-
tion catalyzed by the complex (complexes must be created
by the user), leaving a hole in the pathway.

Our program assigns putative nicotinate-nucleotide ade-
nylyltransferase activity to CC3431 for the second missing
reaction in the pathway. CC3431 lacked any functional
description in the original annotation. When queried
against GenBank, the highest scoring hit to CC3431 is a
nicotinate-nucleotide adenylyltransferase with an E-value
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of 3e-38. Against the nicotinate (nicotinamide) nucle-
otide adenylyltransferase TIGRFAM [24], CC3431 scores
just above the trusted cutoff score. The sequence has been
assigned to the NadD COG (COG1057) [25].

The third missing reaction, glutamine-dependent NAD+
synthetase, is catalyzed by the same enzyme catalyzing the
NH3-dependent reaction. CC3619 includes an N-termi-
nal domain that enables the reaction to proceed with
either substrate [26]. Each of the two domains of CC3619
has been assigned to COGs (COG0388, predicted amido-
hydrolase and COG0171, NAD synthase). Additional files
5, 6 and 7 contain alignments [27] of the set of sequences
used to query the Caulobacter genome and the putative
enzyme assigned to each pathway hole in the example
pathway.

Discussion

We have shown that our hole-filling program can improve
the quality of PGDBs and the quality of genome annota-
tions by clarifying nonspecific and incomplete annota-
tions and providing annotations for sequences of
previously unknown function. For the three PGDBs used
in this work, an average of 27% of the pathways were
complete before running our program. After filling path-
way holes, an average of 38% of the pathways are com-

plete, and an average of 28% of the previously missing
reactions have putative enzymes assigned with probabili-
ties above 0.9.

In the course of this work, we have identified additional
uses for the pathway hole-filler in improving the quality
of a PGDB. For example, in cases where several enzymes
have been assigned to a reaction by PathoLogic, our pre-
dictor may determine which enzyme is most likely to be
the correct one. When the set of enzymes all have the same
general functional annotation (e.g., aldehyde dehydroge-
nase), we can provide a more specific function for the
enzyme assigned by our predictor when the activity of the
missing reaction is more specific.

Related work

Osterman and Overbeek have provided a review of com-
parative genomics techniques that can be applied to the
identification of missing enzymes in metabolic pathways
[7]. The authors provide detailed descriptions and exam-
ples of cases where homology alone was insufficient for
finding a missing gene to fill a pathway hole. Their
approach encompasses three phases: identifying holes in
pathways, identifying and ranking candidate genes, and
experimental verification. Identification and ranking of
candidates includes the use of comparative genomics
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Table 5: Probabilities calculated for putative functional assignments made by Reed et al. Bhumbers (unique IDs for E. coli genes) shown
in italics are below the P cutoff (P > 0.8). Those in bold correspond to the gene assigned to the reaction in EcoCyc when one is assigned.

E.C. # Bnumber P(has-function) MAST E-val HMMER E-val
1.3.99.3 b0221 0.05 -- le-4
b0039 0.80 le-7 10e-13
b1695 0.93 2e-9 4e-16
b4187 0.003 6e-4 3e-4
1.6.6.9 b0997 1.0 le-145 0
b1872 1.0 6e-147 0
b3551 0.93 5e-95 0
b1587 0.17 Se-16 2e-28
bl1588 0.05 6e-16 3e-26
2.7.1.23 b2615 1.0 3e-63 le-144
b3916 2e-5 8e-4 1.0
2.7.2.1 b3115 1.0 5e-69 2e-170
b2296 1.0 2e-95 le-261
2.8.1.2 b2521 091 le-133 2e-208
bl1757 0.05 2e-4 4e-12

techniques to gather potential candidates and the
evidence needed to support or refute the assignment of
the missing activity to that gene. The review proposes the
approach to be used by experimentalists in identifying
missing genes, but does not propose a computational
method. Our method employs a similar approach for
gathering candidates and evidence, but then combines
these elements in a way that can be efficiently applied to
large-scale predictions.

Reed et al. [28] have completed a "network gap analysis"
for E. coli similar to our search for missing enzymes to fill
pathway holes. As a result of this analysis, they made
putative functional assignments to 55 ORFs in the E. coli
K-12 genome, using an approach similar to the candidate
identification step of our algorithm. For a particular hole
of interest, a set of orthologous sequences was used to find
sequences with that function in the E. coli genome. Their
approach differs from ours in that they used MEME [29]
and ClustalW [27] to generate profiles for the set of
orthologous sequences. These profiles were then used
with MAST [30] and HMMER [31] to query the genome
rather than searching the genome with each sequence
individually. Search results were inspected manually to
confirm the putative functional assignments, and the
three top-scoring hits were reported for putative reannota-
tions. The study provided no specific evaluation criteria
for recommended reannotations (e.g., E-value cutoff)
besides the appearance of the sequence within the top
three hits for a search.

Our algorithm provides several improvements over this
approach. Our Bayesian network can be used
programmatically to rigorously combine disparate
sources of evidence including sequence-based and non-

sequence-based sources. MAST and HMMER consider
only sequence-based information, and Reed et al. do not
provide an automated means of combining the evidence
from their searches. Following the identification of candi-
date sequences, our program calculates a probability from
homology-, operon-, and pathway-based data. The proba-
bility P(has-function) gives a clear indication of how
likely it is that each candidate provides a particular func-
tion; thus, for each reaction, the set of potential candi-
dates can be directly compared to each other based on all
of the evidence included in our network. Comparing E-
values from MAST and HMMER excludes valuable contex-
tual information. Instead of gauging the likelihood that a
sequence has the desired function, E-values reflect the
likelihood that each match might be found by chance in
the database, which is not the question most searches
intend to ask. Also, our method does not restrict the
search to only the elements common to all sequences used
to build the profile (i.e., the query sequences are not
assumed to be evolutionarily related), nor does it require
multiple sequences. The program evaluates candidates
found by a single query sequence or multiple query
sequences in the same way. The Shotgun-score node
appropriately adjusts the P(has-function) based on the
number of query sequences identifying a candidate.

To compare the two methods, we used our program to
identify enzymes for a subset of the reactions evaluated by
Reed et al. and currently included in EcoCyc [32]. Table 5
compares predictions for five reactions for which a gene
has been experimentally identified. In one case, E.C.#
1.3.99.3, neither method correctly classifies the enzyme
known to possess acyl CoA dehydrogenase activity
(b0221). For the four remaining reactions, both methods
agree on the enzymes that have been experimentally con-
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E.C# Bnumber MAST HMMER E- P(has function) best-E- average- avg-frac- pathway- adjacent-
E-value value value rank aligned directon rxns

1.2.7.1 b1378 6e-8 3e-16 0.18 le-36 2.5 0.75 F F

28.1.2 bl757 2e-4 4e-12 0.05 7e-16 2.0 0.92 F F

3.2.1.68 b3431 le-11 4e-9 0.97 2e-69 1.0 0.74 T F

firmed (i.e., those shown in bold). Discrepancies between
the two methods appear in classifying additional candi-
dates. The profile method makes several putative assign-
ments to reactions 1.3.99.3, 1.6.6.9, 2.7.1.23, and 2.8.1.2
where our program has computed a probability of less
than 0.2 for all of those assignments (shown in italics in
Table 5), suggesting that they are false hits.

The results for E.C.#'s 1.2.7.1, 3.2.1.68, and 2.8.1.2 dem-
onstrate the power of our method to discriminate
between likely true and false hits. Results from our pro-
gram and from the profile-based method for these three
reactions are shown in Table 6. The MAST and HMMER E-
values for the three candidates (b1378, b3431, and
b1757) are comparable; however, the values for P(has-
function) calculated by our program differ substantially
between b3431 and the other two. With a threshold of P
> 0.9, our program assigns isoamylase activity to b3431,
but classifies b1378 as a false hit for pyruvate synthase,
and b1757 as a false hit for 3-mercaptopyruvate sul-
furtransferase. While the profile-based E-values agree, the
features used by our network (specifically average-rank
and pathway-directon) do not, resulting in distinct classi-
fications for the candidates.

Limitations of the predictor

The distributions used to determine P(has-function | evi-
dence) for each candidate protein are calculated from the
data collected for the known reactions in the PGDB.
Proteins linked to reactions by PathoLogic may have
stronger similarity to the set of query isozymes than the
proteins that should be assigned to missing reactions.
Hence, the probability distributions calculated from
known reactions may not accurately reflect the distribu-
tions for missing reactions.

The classifier structure in Figure 4 assumes conditional
independence among the evidence nodes. Obviously, the
average-rank of a hit and the percent of the query
sequence aligned are likely to correlate with the best-E-
value of the hit. Like several other Bayesian models
applied to biological problems, the violation of the con-
ditional independence assumption does not preclude our
model from adequately classifying potential enzymes.
Future work will include learning the structure of the

model, thereby incorporating the appropriate dependen-
cies among the evidence nodes.

Our predictor is generally applicable to any organism's
PGDB and is useful not only for developing a more com-
plete picture of the organism's metabolism, but also for
identifying the function of ORFs and clarifying incom-
plete or nonspecific annotations. We currently incorpo-
rate evidence from homology, operon, and metabolic
pathway relationships into our candidate evaluation step,
but those candidates are identified based solely on
homology to known proteins in SWISS-PROT or PIR.
With this limitation, our program will not identify
enzymes for any reaction catalyzed by an enzyme with an
extremely divergent sequence or an enzyme whose activity
is the result of convergent evolution. Also, reactions cata-
lyzed by enzymes lacking sequenced isozymes in other
organisms will not be identified by our program. Incorpo-
rating non-homology-based data will help to address
these limitations. Fortunately, given the simple structure
of the classifier, additional evidence nodes can be easily
integrated. Expression data and phylogenetic profiles [33]
might enhance the accuracy of the predictions and allow
identification of candidate proteins with little to no
homology to known sequences.

Conclusions

Our pathway hole filler provides an effective, computa-
tional method for combining evidence from homology
data, operon-based data, and pathway context to identify
missing reactions in a Pathway/Genome database. By
identifying missing enzymes in a genome, we can not only
increase the completeness of the PGDB, but we can also
improve existing genome annotations by identifying func-
tions for previously unannotated proteins and clarifying
non-specific annotations. With the completion of addi-
tional pathways in PGDBs and improvements in func-
tional annotation provided by our approach,
experimental and computational researchers will benefit
from PGDBs that include more accurate and relevant
information.

Availability and requirements
The pathway hole filler is available as part of the Pathway
Tools software which is freely available freely to academ-
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ics. Contact (ptools-support@ai.sri.com) for information

on obtaining the software.
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