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Abstract: Experimental evolution with Drosophila melanogaster has been used extensively for decades
to study aging and longevity. In recent years, the addition of DNA and RNA sequencing to this
framework has allowed researchers to leverage the statistical power inherent to experimental evo-
lution to study the genetic basis of longevity itself. Here, we incorporated metabolomic data into
to this framework to generate even deeper insights into the physiological and genetic mechanisms
underlying longevity differences in three groups of experimentally evolved D. melanogaster popu-
lations with different aging and longevity patterns. Our metabolomic analysis found that aging
alters mitochondrial metabolism through increased consumption of NAD+ and increased usage
of the TCA cycle. Combining our genomic and metabolomic data produced a list of biologically
relevant candidate genes. Among these candidates, we found significant enrichment for genes and
pathways associated with neurological development and function, and carbohydrate metabolism.
While we do not explicitly find enrichment for aging canonical genes, neurological dysregulation
and carbohydrate metabolism are both known to be associated with accelerated aging and reduced
longevity. Taken together, our results provide plausible genetic mechanisms for what might be
driving longevity differences in this experimental system. More broadly, our findings demonstrate
the value of combining multiple types of omic data with experimental evolution when attempting to
dissect mechanisms underlying complex and highly polygenic traits such as aging.

Keywords: metabolomics; aging; mitochondria; evolve and resequence; Drosophila melanogaster;
experimental evolution; life history traits; genomics

1. Introduction

Understanding the factors that drive differences in life history between individuals,
populations, and species is a major area of interest for evolutionary biologists [1–4]. Within
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this area of research, experimental evolution is a powerful tool for addressing fundamental
questions about how natural selection shapes life history. Drosophila melanogaster is an
extensively used, powerful, genetically tractable model system for studying life histories.
For instance, there is a large body of work devoted to subjecting D. melanogaster popu-
lations to selection regimes that target variables thought to be important in life history
evolution to test theoretical predictions [5–9]. Comparisons between populations selected
for radically different life histories have also been successfully used to study the physiolog-
ical and genetic mechanisms underlying observed differences in traits such as longevity,
developmental rates, and reproductive output [10]. Here, we are primarily interested
in longevity.

Many studies using experimental evolution to study physiological mechanisms under-
lying longevity differences have focused on the relationship between stress tolerance and
life span. For instance, selection for decreased rates of senescence and increased longevity
have repeatably been shown to associate with improved desiccation and starvation re-
sistance and vice versa [11–15]. Physiological assays have then shown that differences
in longevity associated stress tolerances in these systems are tied to differences in lipid,
glycogen, and water content [15–19]. However, deeper, more fine-scale investigations into
what other physiological factors are driving differences in these types of experimental
systems are currently lacking.

More recently, combining experimental evolution with next-generation sequencing
technologies, termed “evolve and resequence” or “E&R”, has emerged as a powerful gen-
eral tool for dissecting the underlying genetic architecture of complex traits [20,21]. Using
this framework, evolutionary biologists can study the genetic basis of longevity by simply
comparing patterns of genetic differentiation between groups of evolved populations with
significant differences in mean longevity. Through these comparisons, statistical associa-
tions can be made between genetic variants and longevity or related phenotypes. Here,
it is important to note that using evolution to drive phenotypes in opposite directions
generates increased statistical power when making these associations [22]. Combined with
the population-level replication featured in most studies, this approach allows for more
powerful statistical inferences to be drawn than what is typically seen in conventional
genome-wide association studies [23].

At present, several genomic [15,24–27] and transcriptomic [28,29] E&R studies have
generated insights into the genetics of increased longevity and related stress resistances.
The integration of other types of “omic” data into this framework can potentially yield
similarly powerful insights. Here, we aim to do so by incorporating metabolomic data into
the E&R framework. Specifically, we explore metabolomic differences between Drosophila
populations where dozens to hundreds of generations of selection have produced large
differences in longevity and life history traits. Our study also represents a more nuanced
investigation of the physiological mechanisms driving observed differences than previous
studies which have been largely limited to assaying broad differences in total lipid and
glycogen contents.

Metabolomic studies characterize differences in the prevalence of small-molecule
metabolites in biological systems along some axis of interest. These collections of metabo-
lites are viewed as one of the intermediary layers between the genome and expressed
phenotypes, and thus represent a key component to understanding how phenotypes are
determined. This general approach is already being used to explore the mechanisms
driving physiological declines associated with advanced age [30], and Drosophila-based
studies are already part of this effort [31]. For instance, Hoffman et al., 2014 [32] analyzed
changes in metabolomic profiles over time in different genetic backgrounds to identify
aging-associated metabolic pathways. Taking a different approach, Laye et al., 2015 [33]
examined how dietary restriction, a proven intervention strategy for extending lifespan in
fruit flies, alters the metabolome to slow aging-related physiological declines. Here, we
built on these efforts using an evolution-based approach, where, like in the E&R studies de-
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scribed above, we used selection and replicate populations to amplify signals and identify
relationships between metabolomic profiles and different aging patterns.

In this study, we investigated differences in metabolomic profiles among three groups
of experimentally evolved D. melanogaster populations: populations where selection for
rapid development has resulted in reduced longevity (A), and where selection for delayed
reproduction (C) and starvation resistance (S) has led to increased longevity. We believe
this represents a significant advancement compared to previous studies that have been
limited to broad-scale measures of lipid, glycogen, and water content [15–19]. In the
past, the C populations have been used as controls for both the A and S populations.
Studies comparing the C and A populations focused on the evolution and genetics of
developmental rates, reproductive rates, and longevity [9,29], while work with the C
and S populations focused more on understanding physiological changes associated with
starvation resistance [15]. However, with respect to longevity, we find similar mean
lifespans in the C and S populations while the A populations tend to die at much younger
ages (Figure 1A). Here, it should be noted Figure 1A was generated using data from
independent morality assays. However, all assays were conducted in the Rose Lab at
UC Irvine and efforts were led by the same researchers. The C populations which were
assayed in both studies also show similar mean longevities (~49 and ~52 days); as such,
it is unlikely the observed patters are artifacts of assay conditions. Additionally, as all
populations are ultimately derived from a single ancestral population, differences between
groups are known to be the result of selection on standing genetic variation [15,26], and
populations cluster genetically based on treatment (Figure 1B). As such, comparisons across
the three groups have the potential to isolate and identify differences specifically associated
with longevity (i.e., elements that overlap between the C and S populations but differ in
A). Using metabolomic data from these populations we aimed to: (1) identify metabolites
associated with longevity differences based on patterns of overlap and differentiation
between groups, and (2) identify genetic variants underlying these differences based on
statistical associations between patterns of genomic and metabolomic differentiation. To
the best of our knowledge, this is the first effort of this kind using experimentally evolved
D. melanogaster populations.

Figure 1. Lifespan comparison for the A, C, and S populations (A), and PCA plot showing how
populations cluster based differences and similarities in SNP frequencies across the genome (B). Plots
were generated using data from Burke et al., (2016), Graves et al., (2017), and Kezos et al., (2019).

2. Results
2.1. Metabolomic Results

To identify metabolic changes associated with life history, a detailed characterization
of whole-body metabolism was undertaken in A, C, and S populations using both GC–MS
and LC–MS.
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2.1.1. Characterization of GC–MS Metabolomic Profiling of A, C, and S Populations

GC–MS analysis returned 104 metabolites, 48 of which were significantly changed
between populations. Principal component analysis (PCA) of metabolites revealed three
distinct metabolic populations, with PC1 and PC2 explaining 47.8% and 14.1% of the vari-
ability, respectively (Figure 2A). The S and C populations were similar to one another and
distant from A along PC1. Visualization of the top 25 most significant metabolites revealed
a distinct inverse relationship between A and S metabolomic profiles, with the C profile
appearing intermediate (Figure 2B). Enrichment analysis revealed propanoate metabolism,
the pentose phosphate pathway, histidine metabolism, and valine, leucine, and isoleucine
degradation as the top metabolic hits associated with life history (Figure 2C). Closer in-
spection of propanoate metabolism revealed that C and S populations had decreased
2-hydroxybuterate and glutamate, and increased beta-alanine compared to A (Figure 2Di).
In the pentose phosphate pathway, fructose 6-phosphate, 6-phosphogluconate, and glu-
cose 6-phosphate were elevated in the C and S populations compared to A (Figure 2Dii).
Histidine was decreased in C and S populations compared to A (Figure 2Diii). Isoleucine,
leucine, and valine were elevated in C and S compared to A (Figure 2Div). Components
of the tricarboxylic acid (TCA) cycle, a critical pathway for aerobic respiration, were also
significantly associated with life history (Figure 2E). Citrate and isocitrate levels decreased
in a stair-step manner from A to S. Interestingly, succinate, fumarate, and malate levels were
not significantly different between A and C populations. In the S population, succinate
levels were higher while fumarate and malate levels were lower than A and C populations.

2.1.2. Characterization of LC–MS Metabolomic Profiling of A, C, and S Populations

To broaden our metabolic characterization of A, C, and S populations, we also used
liquid chromatography mass spectrometry (LC–MS) for better characterization of non-
volatile, thermally unstable, and higher-molecular-weight species. LC–MS analysis re-
turned 38 metabolites which were significantly changed between populations. PCA re-
vealed a much greater degree of separation among these metabolites than that uncovered
by GC–MS. PC1 and PC2 explained 51.2% and 16.6% of variability, respectively (Figure 3A).
There was less distinction between C and S populations along PC1, with most variability
between the two explained by PC2. The A type population remained separate and distinct
(Figure 3A). Accordingly, visualization of the top 25 significant metabolites revealed similar
profiles among C and S populations and both appeared to have an inverse relationship to
that of the A (Figure 3B). Fatty acid metabolism, beta-oxidation of long- and short-chain
fatty acids, and methionine metabolism were the top enriched metabolic processes iden-
tified (Figure 3C). Short- and long-chain species of carnitine were significantly lower in
the A population compared to the C and S populations (Figure 3D). Similarly, methionine
levels were significantly lower in the A population compared to C and S populations
(Figure 3D). Key metabolic co-factors, FAD, NAD+, and NADP+, were also identified
among the top 25 significant metabolites (Figure 3E). FAD and NAD+ levels among the C
and S populations were elevated compared to A, while NADP+ levels were decreased.

2.2. Genome to Metabolome

Linking patterns of SNP variation between the A, C, and S populations to top candi-
date aging metabolites was a multistep process (see Figure 4 for an overview). Conventional
statistical methods were first used to identify significantly differentiated SNPs between
the three groups. This resulted in a list of ~76K SNPs. However, as many of SNPs are
likely neutral variants linked to causative sites, this list was reduced to the most signifi-
cant SNP in every 50KB genomic window with at least 3 significant SNPs which yielded
1827 SNP markers. FLAM, a statistical learning approach, was then used to determine
which markers best predicted patterns of differentiation across the A, C, and S populations
for each of candidate metabolite. This resulted in a total of 221unique SNP markers with
values ranging for 3 to 36 top predictors per metabolite (Supplementary Table S1). These
top candidates were found across all major chromosome arms, and there was no clear
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relationship with chromosome length and number of candidates (Supplementary Figure S1
and Supplementary Table S2). Looking at the mean SNP frequencies for each marker in
each group of populations, we typically find the expected pattern where C and S are similar
in value and different from A (Supplementary Figure S1). Next, unique markers identified
by FLAM were converted to a gene list based on genes present in 5-kb windows around
each marker. This resulted in a list of 494 candidate genes (Supplementary Table S3 for a
list of all genes and associated GO terms).

Figure 2. GC–MS metabolomic profiling of A, C, and S populations. PCA plot of A, C, and S
metabolite profiles (A). Heatmap comparison of top 25 changed low energy state metabolites among
A, C, and S populations (B). Top 25 enriched metabolic pathways (C). Quantification of metabolites
from the top 4 enriched metabolic pathways among A, C, and S populations (D). Key components
of the TCA cycle (E) were among the top 25 changed metabolites. Mean ± SD; n = 6; significant
differences are indicated by asterisks; *, **, *** and **** indicate p ≤ 0.05, p ≤ 0.01, p ≤ 0.001 and
p ≤ 0.0001, respectively.
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Figure 3. LC–MS metabolomic profiling of A, C, and S populations. PCA plot of A, C, and S
populations high energy state metabolite profiles (A). Heatmap comparison of top 25 changed high
energy state metabolites among A, C, and S populations (B). Top 25 enriched metabolic pathways
(C). Quantification of metabolites in select enriched pathways from A, C, and S populations (D).
Select important metabolic co-factors (E). Mean ± SD; n = 6 runs, 5 flies/run/group; significant
differences are indicated by asterisks; *, **, *** and **** indicate p ≤ 0.05, p ≤ 0.01, p ≤ 0.001 and
p ≤ 0.0001, respectively.

Metascape, which clusters terms into groups based on similarity, was used to identify
enriched GO terms and pathways given our list of candidate genes. For enriched GO term
clusters, there was a common trend of terms associated with development and growth, es-
pecially with regard to the nervous system (Figure 5A and Supplementary Table S4 for more
details). We also identified several GO terms associated with metabolism (e.g., regulation of
RNA metabolic processes and glycolytic processes). Examining the relationships between
these clusters, we found a pattern where nodes representing development, growth, and
nervous system-related clusters largely grouped together while terms related to metabolic
processes were more distal or even unconnected like in the case of the glycolytic processes
cluster (Figure 5B). In addition to GO term enrichment, we also used Metascape to perform
Protein Network and MCODE Component analyses. Here, we again found similar trends
with enriched terms from the Protein Network analysis being associated with neurological
development, and terms from the MCODE component analysis being associated with
metabolic processes (Table 1).
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Figure 4. A flowchart outlining methods to identify candidate genes associated with differences in
candidate metabolites.
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Figure 5. Heatmap of top 20 enriched GO clusters (A), and a network showing relationships between
clusters (B).
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Table 1. Results of protein–protein enrichment analysis and MCODE component analysis.

GO Description log (p Value)

Protein-protein
interaction network GO:0030182 neuron differentiation −16.5

GO:0048666 neuron development −15.5

GO:0048667 cell morphogenesis involved in
neuron differentiation −12.3

MCODE Cluster

MCODE networks R-DME-70171 Glycolysis −6.6 MCODE_1

R-DME-70326 Glucose metabolism −6 MCODE_1

R-DME-6798695 Neutrophil degranulation −5.8 MCODE_1

R-DME-5620924 Intraflagellar transport −8.8 MCODE_2

R-DME-5617833 Cilium Assembly −7.7 MCODE_2

GO:0007018 microtubule-based movement −7.7 MCODE_2

R-DME-983168 Antigen processing: Ubiquitination &
Proteasome degradation −4.7 MCODE_4

R-DME-983169 Class I MHC mediated antigen
processing & presentation −4.7 MCODE_4

GO:0043161 proteasome-mediated ubiquitin-dependent
protein catabolic process −4.5 MCODE_4

R-DME-72312 rRNA processing −5.9 MCODE_5

R-DME-8868773 rRNA processing in the nucleus and cytosol −5.9 MCODE_5

R-DME-6791226 Major pathway of rRNA processing in the
nucleolus and cytosol −5.9 MCODE_5

R-DME-156827 L13a-mediated translational silencing of
Ceruloplasmin expression −5.7 MCODE_6

R-DME-72613 Eukaryotic Translation Initiation −5.6 MCODE_6

R-DME-72737 Cap-dependent Translation Initiation −5.6 MCODE_6

R-DME-8856828 Clathrin-mediated endocytosis −8.4 MCODE_7

GO:0072583 clathrin-dependent endocytosis −7.4 MCODE_7

GO:0006898 receptor-mediated endocytosis −6.4 MCODE_7

dme03020 RNA polymerase −7.9 MCODE_8

ko03020 RNA polymerase −7.9 MCODE_8

ko00240 Pyrimidine metabolism −6.5 MCODE_8

R-DME-8877627 Vitamin E −8.4 MCODE_9

R-DME-6806667 Metabolism of fat-soluble vitamins −8 MCODE_9

R-DME-196854 Metabolism of vitamins and cofactors −5.8 MCODE_9

GO:0045944 positive regulation of transcription by RNA
polymerase II −4.7 MCODE_10

GO:1902680 positive regulation of RNA
biosynthetic process −4.3 MCODE_10

GO:1903508 positive regulation of nucleic
acid-templated transcription −4.3 MCODE_10
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3. Discussion
3.1. Metabolomic Characterization

One of the primary objectives of this study was to identify metabolomic profiles
associated with longevity differences by incorporating metabolomic characterization into
the E&R framework (GC–MS: Figure 2 and LC–MS: Figure 3). GC–MS is the gold standard
for identifying compounds that are volatile and thermostable. At the same time, LC–
MS is more adept at identifying non-volatile, thermally unstable, and more significant
compounds [34]. Metabolites returned from GC–MS analysis were, to a degree, able to
differentiate between A and S populations. For most metabolites returned, these two groups
were inversely related, suggesting these metabolites are essential for understanding the
driving mechanisms for starvation-resistant longevity (Figure 2B). However, care should be
taken in the selectivity of these metabolites in association with longevity as the metabolic
profile of the long-lived C population oscillated between that of the A and S populations.
For example, 60% of TCA metabolites in the C population correlated with that of the
short-lived A population (Figure 2E), whereas 67% of branched amino acids correlated
with that of the long-lived S population (Figure 2D(i–v)).

Deepening the metabolic characterization through LC–MS, we identified profiles that
better reflected lifespan (Figure 3). Metabolites returned from this analysis showed cluster-
ing of both long-lived populations (C and S) and greater separation from the short-lived
population (A) (Figure 3A). Of the top 25 significant metabolites identified, ~70% correlated
between C and S populations, suggesting that further analysis and exploration of these
hits could yield greater insights into mechanisms underlying longevity differences in this
system. For example, NAD+ is an abundant coenzyme that acts as the oxidizing-reducing
agent inside the cell [30,35,36]. NAD+ plays a necessary role for hydrogen transfer in redox
reactions through accepting hydride from metabolic processes, including glycolysis, the
TCA cycle, and fatty acid oxidation (FAO), to form NADH. NADH serves as a central
hydride donor to ATP synthesis through mitochondrial oxidative phosphorylation, leading
to the generation of reactive oxygen species. Studies have shown that NAD+ concentrations
decline with age in worms, flies, mice, and humans [37–44]. For instance, decreasing NAD+

levels in C. elegans results in a reduction in lifespan [45–47]. The depletion of NAD+ is
linked to mitochondrial dysfunction, mtDNA genomic instability, and deregulated nutrient
sensing [41,48,49]. This suggests that the maintenance of higher NAD+ levels is beneficial,
potentially through maintenance of mitochondrial homeostasis.

NAD+ is also a co-substrate for numerous enzymes including sirtuins [50,51], PARPs,
CD38, CD157, CD73, and SARM1 [52,53]. NAD+ serves as a required substrate for the
deacetylase activity of the sirtuin family of proteins (SIRTs). Mitochondrial SIRTs, SIRT3, -4,
and -5, are connected in metabolism, mitochondrial fidelity, and cell stress. SIRT3, SIRT4,
and SIRT5 are found primarily located in the mitochondria, and are implicated in several of
the principal processes of this organelle. SIRT3 has been the subject of serious investigation
and is fundamentally a deacetylase estimated to function as a mitochondrial fidelity protein,
with roles in mitochondrial substrate metabolism, protection against oxidative stress, and
cell survival pathways [54–56]. Less is known about the useful targets of SIRT4, which has
deacetylase, ADP-ribosylase, and a newly defined lipoamidase function [57–59]. SIRT5
modulates acyl modifications including succinylation, malonylation, and glutarylation
in both mitochondrial and extra-mitochondrial compartments. However, the functional
significance of SIRT5 in the regulation of many of its proposed target proteins remains to
be discovered [60–62]. Sustained mitochondrial stress leads to mitochondrial unfolded
protein stress response stress and ER stress [63–67]. Data suggest that the short-lived flies
would have accelerated mtUPR and sustained levels of ER stress, whereas the C and S,
longer-lived groups would have a blunted effect. Our findings here suggest a potential
elevation in NAD+ consumption or decrease in synthesis in the A population compared
to C and/or S (Figure 3E). Paired with a decreased presence of beta oxidation products
and elevated TCA cycle substrates, our findings may suggest decreased mitochondrial
function in the A population (Figures 3E and 4). Thus, decreased NAD+ availability may be
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a contributing and modifiable factor in age-related diseases. The mechanisms controlling
its levels in aging, however, remain incompletely understood.

NAD+, through SIRT1, can regulate the mTOR pathway [62]. Mechanistic target of
rapamycin (mTOR), or TOR in Drosophila, is a key regulator of metabolism. mTOR is composed
of two distinct kinase complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2), which are
characterized by the signature components Raptor and Rictor, respectively [62,68–70]. Branched
chain amino acids (BCAA), including leucine, isoleucine, and valine, play a crucial role
in the activation of the TOR pathway [71]. Mitochondrial stress can be regulated by Tor
through activation of ATF4 to induce the integrated stress response and activation of GCN2
to increase amino acid availability [72–80], which we believe to be a protective response. We
hypothesize that the lower BCAA levels in the A population (Figure 2D(i)) indicate that they
are not able to effectively activate this pathway. We believe the elevated BCAAs in the long-
lived populations (Figure 2D(iv)) suggest greater TOR activation may be associated with
longevity [81]. suggests that the A populations may have reduced levels of ATF4 activation
which inhibits the cells’ ability to regulate stress responses and cellular homeostatic process
(Figure 2D(iv)). Equally, under physiological glucose concentrations, mTORC1 is stimulated
and leads to a number of proteins and enzymes being altered. These altered proteins are
involved in anabolic processes, while restricting the autophagic process. Conversely, when
glucose levels are low, mTORC1 is inhibited, in turn leading to the repression of numerous
anabolic processes, sparing ATP and antioxidants. However, in the S populations, there
are high levels of glucose and high levels of amino acids (Figures 3 and 4). Therefore,
suggesting that prolonged activation of mTOR leads to beneficial autophagy.

Our conclusion that longevity differences in this system are tied to mitochondrial
function and increased TCA cycle activity is supported by a number of metabolomic
studies across different systems and species. For instance, results from work comparing
metabolomic variation across eleven Drosophila species reports evidence that age and lifes-
pan are associated with TCA cycle activity [82]. Another phylogenetic study comparing
metabolomic and transcriptomic profiles across seventy-six wild yeast isolates also finds
associations between replicative lifespan and TCA cycle activity and mitochondrial func-
tion [83]. Lastly, in a mouse model, metabolomic profiling of young and old individuals
also points towards differences in mitochondrial function as a hallmark of aging [84]. We
believe this agreement across studies is such disparate systems greatly substantiates our
interpretation of the mechanisms driving longevity differences between the A, C, and
S populations.

3.2. Genomics to Metabolomics

In addition to characterizing metabolomic profiles, another major goal of this study
was to explore the relationship between patterns of genetic differentiation and differences in
candidate aging metabolites. In our two-step analysis, we sought to filter out uninformative
sites and identify regions of the genome that best predict focal patterns of metabolite
differentiation (Figure 4). This ultimately yielded several hundred candidate genes, which
suggests the underlying genetic architecture for observed metabolomic differences is highly
polygenic (Supplementary Table S3). This is in keeping with findings from experimental
evolution studies in sexually reproducing eukaryotes and studies on the genetics of complex
traits as a whole [21,85,86]. However, it is worth noting that focusing on genomic regions
that best predict candidate metabolite differentiation narrowed candidates to hundreds of
genes from thousands if we had relied solely on SNP differentiation between groups. As
such, there appears to be some real value in combining different types of omic data when
attempting to parse the genetic architecture of complex phenotypes such as longevity.

Although longevity is a major axis of differentiation between the A, C, and S pop-
ulations and our metabolomic analysis was structured to identify longevity associated
metabolites, we did not find significant enrichment for genes directedly related to ag-
ing looking across our candidate genes (Figure 5A and Table 1). The failure to find an
overrepresentation of canonical aging genes is not uncommon in E&R studies focused
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on longevity [28,29,87]. This is perhaps due to a lack of segregating genetic variation at
related loci as Fabian et al. [87] suggests, and relates to the context-dependent and complex
nature of genotype to phenotype map. That aside, looking across our list of candidates,
we do indefinity three major canonical aging genes: Tor, Atg7, and Kermit. Tor and Atg7 in
particular have clear links to our metabolomic results; Tor through its many well-defined
aging-related functions [88–90] and Atg7 though its effects on autophagic activity and
relationship to mitochondrial function and turnover [91–93]. kermit, while less obviously
connected to our metabolomic results, is a gene required for proper locomotive activity
that when inhibited or overexpressed has strong negative impacts on longevity and sur-
vival [94,95]. So, while we do not observe an overrepresentation of canonical aging, the
ones present seem likely to be biologically meaningful.

Given that our metabolomic results point to towards differences in mitochondrial
function as a major force driving longevity differences between the A, C, and S populations,
we queried our list of candidate genes for related term (see Supplementary Table S3 for
genes and associated terms). As with aging, we do not find enrichment for genes associated
with mitochondrial function. However, in addition to the previously mentioned Atg7 and
Tor, we find a number of genes directly or predicted to be associated with mitochondrial
function (e.g., ND-B14, COX6AL, and CG15386) and maintenance (mtDNA-helicase, mre11,
CG11975, and larp). We also find a number of genes directly or predicted to be associated
with endoplasmic reticulum stress (CG9934, CG8405, S2P), which as explained above can
also impact mitochondrial function. So, while we do not find clear overrepresentation,
we nevertheless again find some concordance between specific candidate genes and our
metabolomic characterization. Additionally, the lack of enrichment could once again be due
to a general lack of relevant segregating genetic variation at loci related to mitochondrial
function. Strong purifying selection at such loci should perhaps be expected given the
importance of maintaining mitochondrial function.

Focusing on our enrichment results (Figure 5 and Table 1) and total list of candidate
genes (Supplementary Table S3), we find clear overrepresentation of candidates associated
with nervous system development and maintenance. With the exception of Atg7 and kermit,
the genes in these clusters are not explicitly defined as aging genes based on past studies.
However, decades of research has established a clear link between longevity and nervous
system development, regulation and function [85,86,96–99]. As such, we can reasonably
interpret our findings as evidence that longevity differences between the A, C, and S
populations are at least in part due to genes impacting the nervous system and these effects
are reflected in the populations’ metabolomic profiles. Additionally, while less pronounced,
we find evidence of many candidate genes (Supplementary Table S3) and enriched clusters
(Figure 5 and Table 1) associated with various forms of carbohydrate metabolism (e.g.,
glucose metabolism, glycolytic processes, amino sugar metabolic processes, and glutathione
metabolic processes). This ties directly into the metabolomic results described above, and
such process again have clear links to aging and longevity [100,101].

Comparing our results to work done by Barter et al. [29] which used the A and C
populations to study the genetic basis of longevity and development yields mixed results.
For instance, while there is still a major theme of development, it comes in primarily
the form of somatic muscle development and ecdysteroid metabolic processes instead.
Enrichment for genes associated ecdysteroid metabolic processes are particularly suggestive
given that ecdysteroids play an important role in guiding developmental transitions in
insects [102]. Presumably the lack of enrichment for such genes in this present study is due
to our inclusion of the S populations to hone in specifically on longevity associated genes. To
that point, looking at the results from Kezos et al. [15] which used the C and S populations
to study the genetic basis of starvation resistance, we primarily find enrichment for genes
associated with metabolic processes and not development terms. Here, we speculate
that these contrasts suggest that our three treatment approaches and the incorporation of
metabolomic data have indeed allowed us to better focus on longevity candidates.
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While there are presently no other Drosophila E&R studies on aging incorporating
metabolomics we can directly compare our results to, there are a number of “traditional”
E&R we can use for points of comparison: Fabian et al. [87], Carnes et al. [25], and
Remolina et al. [28]. These three studies all selected for longevity differences by manipulat-
ing reproductive timing in a similar fashion to what was done in the A and C populations.
With regard to patterns of enrichment between studies, we do find a great deal of concor-
dance. For instance, while there are examples of individual canonical aging genes being
identified in all of these studies, like us they do not find overrepresentation. All of these
studies also report evidence for candidates associated with metabolism. Running their
results through Metascape for a more direct comparison to our results, we also see that
Carnes et al. [25] and Fabian et al. [87] identify candidates enriched for genes associated
with nervous system development and function (Supplementary Figure S2). Here, it should
be noted that the population studied by Carnes et al. [25], while different than our own in
terms of exact selective pressures and housed outside of the Rose Lab at UC Irvine for many
generations, is ultimately derived from same ancestral population as the A, C, and S popu-
lations. However, this is not the case for the populations studied by Fabian et al. [87]. As
such, this pattern cannot simply be dismissed as idiosyncratic to systems derived from the
Ives’s domesticated laboratory population. In sum, we would argue that these similarities
between our studies further support the idea we are capturing true signals.

That being said, the overlap between the results of Carnes et al. [25], Remolina et al. [28]
and Fabian et al. [87] and our study is not perfect. For instance, these studies all report
that genes associated with immune function appear to be major drivers of differentiation
between their populations. We do not find clear evidence of this in our study. Patterns of
overlap between the lists of candidate genes in particular also complicate interpretation.
Despite the overlap in enrichment for functional categories we do observe, actual gene
overlap is modest (Figure 6, note this figure was made using the UpSetR [103] package in
R). Pairwise comparisons typically yield a few dozen shared genes and these numbers drop
further when we compare across more than two studies. In fact, only two genes, cac and
shakB, are shared across all three studies and our own. We believe this discordance between
studies speaks to the complex and context-dependent genetics of traits such as longevity.
It also supports the idea that phenotypic outcomes for polygenic traits can be reached
through different combinations of genetic variants due to genetic redundancies [104].

Figure 6. An UpSet plot showing patterns of overlap between candidate genes from the present
study, Remolina et al., 2012, Carnes et al., 2015, and Fabian et al., 2018.



Int. J. Mol. Sci. 2022, 23, 1067 14 of 24

4. Materials and Methods
4.1. Experimental Populations

This study involved 30 large outbred, experimentally evolved D. melanogaster popu-
lations evenly split between three treatments (A, C, and S). All populations trace back to
a single ancestral laboratory population created by Phillip Ives by sampling 200 females
from a wild population in Amherst, Massachusetts [105]. In 1980, samples were taken
from this now laboratory adapted population by Michael Rose and Brian Charlesworth
for use in selection experiments to study life history evolution [7,106,107]. This has since
expanded to an experimental radiation consisting of dozens of populations split across a
wide array of selection treatments maintained in the Rose Lab at UC Irvine. The A and C
populations are described in depth in Burke et al. [9] and Graves et al. [26]. Briefly, selection
in these treatments is defined by optimization around different reproductive windows. The
A populations are maintained on a discrete 10 day generation cycle, while the C popula-
tions are maintained on a 28 day cycle. Over generations, this has resulted in accelerated
development and reduced longevity in the A populations relative to the C populations
(see Burke et al., 2016 for in-depth phenotypic characterizations [9]). Populations are also
maintained at a minimum census size of ~2000 individuals to avoid inbreeding. Both the A
and C groups consist of two sub-groups: ACO1-5/AO1-5 and CO1-5/nCO1-5, respectively.
The primary difference between these groups is the number of generations under selection;
AO and nCO were more recently derived than the ACO and CO populations. At the time
of sampling for this project, the ACO and AO populations had ~1000 and ~490 gener-
ations under selection, respectively, while the CO and nCO populations have ~415 and
~160 generations. The broad differences between the A and C groups are due to the fact
generation length is shorter in the former than the latter (10 vs. 28 days). Within a group,
previous efforts have found extreme phenotypic [9], genomic [26], and transcriptomic [29]
convergence between subgroups within a given treatment (e.g., there are no statistically
significant differences between the ACO and AO populations). As such, we now simply
recognize them as the A and C populations.

Unlike the A and C populations where selection is defined by shifting reproductive
windows, the S populations have been subjected to selection for increased starvation
resistance. A full description of the S populations and how they were created can be found
in Kezos et al. [15]. Briefly, the 10 S populations (SCO1-5a and SCO1-5b) were derived from
the CO1-5 populations with two replicates derived from each CO population (e.g., SCO1a
and SCO1b were derived from CO1). In terms starvation selection protocols, after 2 weeks
of development from eggs to adults in vials, approximately ~3000 flies are collected from
each population and split between Plexiglas cages. This two-cage approach is used to
maintain high census sizes through selection. At this point, flies are fed an agar media
prepared with cooked bananas, corn syrup, yeast, and barley malt (see Rose et al., 2004 for
exact recipe) [10]. On day 17 from egg, Petri dishes with banana agar media are removed
from cages and replaced with dishes containing media made with only agar and water (i.e.,
a nonnutritive media). This starvation condition is maintained until 75–80% of flies have
died. At this point, the two cages set up for each replicate are condensed into one cage.
Flies are then provided with banana agar media for days at which points eggs are collected
to start the next generation. From generation 50 onwards, starvation conditions typically
needed to be maintained for ~10 days to reach the 75–80% mortality threshold. At the time
of this study the S populations had experienced ~160 generations of selection.

Lastly, with 10 replicate populations per treatment group and dozens to hundreds of
generations under selection, we would expect this study to have a great deal of statistical
power in a traditional E&R context [108]. Additionally, while this type of theoretical power
analysis has not been done for studies combining experimental evolution and metabolomics,
it stands to reason that the statistical power stemming from population level replication
and using evolution to create patterns of differentiation should be similarly useful when
seeking to identify candidate metabolites.
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4.2. Collecting Flies for Metabolite Extraction

To collect samples for metabolomic characterization, we used the same sampling
procedures described in previous genomic studies [15,26]. Briefly, cohorts were derived
from each replicate population and reared on a 14-day culture cycle for two generation
to reduce the impact of maternal effects. Cohorts descended from the second cycle were
sampled for metabolite extraction. At creation, each cohort consisted of ~1500 flies in a
Plexiglas cage and were fed the standard banana-based media with food being changed
every two days. On day 21 from egg, 150 females were collected from each cohort, flash
frozen in liquid nitrogen, and stored at −80 ◦C until it was time for extraction.

The decision to collect samples on day 21 for metabolomic characterization was
motivated by the findings of Barter et al. [29]. Here, the authors compared gene expression
in the A and C populations at two time points, day 21 and day 14, and found that differences
much greater differences between the groups at the later timepoint. This was ultimately
attributed to the fact that in demographic terms, the populations are not yet aging at day
14 (i.e., there is no acceleration in mortality during this period). However, by day 21,
the A populations are clearly aging by this definition while the C populations are not [9].
Additionally, this is ultimately being reflected in patterns of differential gene expression at
different life stages with there being greater power to identify aging-related genes when
one group is in its aging phase and the other is not. Given this, it stands to reason that
comparing metabolomic differences at day 21 across between treatments should similarly
allow for more powerful identification of metabolic pathways underlying different rates of
aging between the groups.

4.3. Metabolomic Characterization
4.3.1. Gas Chromatography-Mass Spectrometry (GC–MS)

For metabolite extraction, samples were extracted in −80 ◦C 2:2:1 methanol/acetonitrile/
water that contained a mixture of nine internal standards (d4-Citric Acid, 13C5-Glutamine,
13C5-Glutamic Acid, 13C6-Lysine, 13C5-Methionine, 13C3-Serine, d4-Succinic Acid, 13C11-
Tryptophan, d8-Valine; Cambridge Isotope Laboratories) at a concentration of 1 µg/mL
each. The ratio of extraction solvent to sample volume was 18:1. Fly tissue samples
were lyophilized overnight prior to extraction. After the addition of extraction buffer, fly
tissues were homogenized using a ceramic bead mill homogenizer. The samples were
then incubated at −20 ◦C for 1 h followed by a 10 min centrifugation at maximum speed.
Supernatants were transferred to fresh tubes. Pooled quality control (QC) samples were
prepared by adding an equal volume of each sample to a fresh 1.5 mL microcentrifuge
tube. Processing blanks were utilized by adding extraction solvent to microcentrifuge tubes.
Samples, pooled QCs, and processing blanks were evaporated using a speed-vac, and
the resulting dried extracts were derivatized using methyoxyamine hydrochloride (MOX)
and N,O-Bis(trimethylsilyl)trifluoroacetamide (TMS) [both purchased from Sigma]. Briefly,
dried extracts were reconstituted in 30 µL of 11.4 mg/mL MOC in anhydrous pyridine
(VWR), vortexed for 10 min, and heated for 1 h at 60 ◦C. Next, 20 µL TMS was added
to each sample, and samples were vortexed for 1 min before heating for 30 min at 60 ◦C.
The derivatized samples, blanks, and pooled QCs were then immediately analyzed using
GC–MS.

GC chromatographic separation was conducted on a Thermo Trace 1300 GC with a
TraceGold TG-5SilMS column (0.25 um film thickness; 0.25 mm ID; 30 m in length). The
injection volume of 1 µL was used for all samples, blanks, and QCs. The GC was operated
in the split mode with the following settings: 20:1 split ratio, split flow: 24 µL/min, purge
flow: 5 mL/min, Carrier mode: Constant Flow, Carrier flow rate: 1.2 mL/min. The GC
inlet temperature was 250 ◦C. The GC oven temperature gradient was as follows: 80 ◦C
for 3 min, ramped at 20 ◦C/minute to a maximum temperature of 280 ◦C, which was held
for 8 min. The injection syringe was washed 3 times with pyridine between each sample.
Metabolites were detected using a Thermo ISQ single quadrupole mass spectrometer, and
data were acquired from 3.90 to 21.00 min in the EI mode (70 eV) by single-ion monitoring



Int. J. Mol. Sci. 2022, 23, 1067 16 of 24

(SIM). Metabolite profiling data were analyzed using TraceFinder 4.1 utilizing standard
verified peaks and retention times.

We used TraceFinder 4.1 to identify metabolites in extracted samples, blanks, and QCs
by comparing sample metabolite peaks against an in-house library of standards prepared
by processing and analyzing authentic standards via the method described above. We
created a database of retention times and three fragment ions for each metabolite standard:
a target peak/ion and two confirming peaks/ions. When running biological samples,
we identified metabolites that not only matched with the known retention times of the
authentic standard but also with its target and confirming peaks. TraceFinder was also used
for GC–MS peak integration to obtain peak areas for each metabolite. After TraceFinder
analysis, we corrected for instrument drift over time using local regression analysis as
described by Li et al. [109] We use the pooled QC samples, which were run in duplicate at
the beginning and end of the GC–MS run for this purpose. The data are then normalized to
an internal standard to control for extraction, derivatization, and/or loading effects.

4.3.2. Liquid Chromatography-Mass Spectrometry (LC–MS)

Fly samples were dried to make extracts. Dried extracts were reconstituted in 40 µL ace-
tonitrile/water (1:1 v/v), vortexed well, and transferred to LC–MS autosampler vials for analysis.
LC–MS data were acquired on a Thermo Q Exactive hybrid quadrupole Orbitrap mass spectrom-
eter with a Vanquish Flex UHPLC system or Vanquish Horizon UHPLC system. Notably, the LC
column used was a Millipore SeQuant ZIC-pHILIC (length area = 2.1 × 150 mm, 5 µm particle
size) with a ZIC-pHILIC guard column (length area = 20 × 2.1 mm). The injection volume
was 2 µL. The mobile phase was composed of solvent A (20 mM ammonium carbonate
[(NH4)2CO3] and 0.1% Ammonium Hydroxide [NH4OH]) and solvent B (Acetonitrile). The
mobile phase gradient started at 80% solvent B, decreased to 20% solvent B over 20 min,
returned to 80% solvent B in 0.5 min, and was held at 80% for 7 min. (PMID: 28388410).
The method was run at a flow rate of 0.150 mL/min. Subsequently, the mass spectrometer
was operated in the full-scan, polarity-switching mode from 1 to 20 min, with the spray
voltage set to 3.0 kV, the heated capillary held at 275 ◦C, and the HESI probe held at 350 ◦C.
The sheath gas flow was set to 40 units, the auxiliary gas flow was set to 15 units, and the
sweep gas flow was set to 1 unit. MS data acquisition was performed in a range of m/z
70–1000, with the resolution set at 70,000, the AGC target at 1 × 106, and the maximum
injection time at 200 ms [109].

For data analysis, acquired LC–MS data were processed by Thermo Scientific TraceFinder
4.1 software, and metabolites were identified based on the University of Iowa Metabolomics
Core facility standard-confirmed, in-house library. NOREVA was used for signal drift
correction [26,109]. Data were normalized to total ion signals, and MetaboAnalyst 4.0 was
used for further statistical processing and visualization [110,111].

4.3.3. Analyzing Metabolomic Data

We conducted analyses using the MetaboAnalyst 4.0 webservice (http://www.me
taboanalyst.ca, accessed on 20 July 2021). Metaboanalyst is a module that uses both sta-
tistical and machine learning methods to provide visualization for classifying our data
into groups. This program was utilized for principle component analysis (PCA), heat map-
ping, enrichment pathways, pathway analysis, and statistical analysis. Unless otherwise
noted, all data are reported as the mean ± SD. One-way ANOVA followed by Fisher’s
LSD and Tukey’s HSD multiple comparison test was utilized, with an adjusted p-value
(false discovery rate (FDR)) set to 0.01). A probability value of p ≤ 0.01 was considered
significantly different. Statistical calculations were performed using the GraphPad Prism
software (La Jolla, CA, USA). The selected metabolites were additionally subjected to a
Bonferroni test. Metabolites were only selected if they passed the Bonferroni correction
(p ≤ 1.2 × 10−5). To find the directions that best explain the variance in a dataset without
referring to class labels, an unsupervised method called PCA was used. Score plots provide
an overview of variances explained by the selected PCs. For the heatmap, a hierarchical
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cluster analysis was performed. Each sample begins as a separate cluster and the algorithm
will combine the samples until all samples belong to one cluster. The first parameter is
based on similarity measure using Euclidean distance. For the second parameter (clustering
algorithm), Ward’s linkage (clustering to minimize the sum of squares of any two clusters)
was used.

Metabolite set enrichment analysis (MSEA) is used to identify biologically meaningful
patterns in concentration changes for quantitative metabolomic studies. In conventional
approaches, metabolites are evaluated individually for their significance under conditions
of study. Compounds that pass a certain significance level are then combined to see if any
meaningful patterns can be discerned. In contrast, MSEA directly investigates if a group
of functionally related metabolites are significantly enriched, which eliminates the need
to preselect compounds based on some arbitrary cut-off threshold. Potentially, this can
identify “subtle but consistent” changes among a group of related compounds that may go
undetected with conventional approaches. In this study, the overrepresentation analysis
(ORA) or enrichment analysis was performed with the list of compound names that was
obtained from the previous metabolites with Bonferroni corrected P-values. ORA is useful
to analyze a group of compounds that exhibits similar concentration changes or patterns
and determines if certain groups of metabolites are represented more often than expected
by chance within a given metabolite list. Enrichment analysis was implemented using the
hypergeometric test to evaluate whether a particular metabolite set is represented more
than expected by chance within a given compound list. A reference metabolome (metabo-
lites measured by the analytical platform) was provided. In ORA, the fold-enrichment
is calculated by dividing the observed number of hits by the expected number of hits
(“Hits”/”Expected”). The p-value from ORA indicates the probability of seeing at least a
particular number of metabolites from a certain metabolite set in a given compound list.
After adjusting for multiple testing, one-tailed p-values are provided [112,113].

4.4. Linking Genome to Metabolome

Here, the goal was to identify patterns of SNP differentiation between the A, C, and
S populations that best predict key patterns of metabolomic differentiation. As a point of
clarification, while the genomic data featured in this study have been previously analyzed
and publish, the present analysis linking genomic to metabolomic differentiation is entirely
novel. For this analysis, efforts were focused on significantly differentiated metabolites
associated with the top ten enriched pathways from our GC–MS and LC–MS metabolomic
profiling (see Supplementary Table S1 for list of metabolites, and Figures S2C and S3C for
enriched pathways). SNP data came from previously published pool-seq DNA data from
the (see Graves et al., 2017 [26] for DNA extraction details for the A and C populations,
and Kezos et al., 2019 [15] for the S populations). Genomic data was reprocessed to
since the original studies used different version of the D. melanogaster reference genome.
However, processing steps were otherwise the same. Briefly, fastq files corresponding
to each population were mapped to the D. melanogaster reference genome (version 6.14)
with BWA [114] using bwa mem with default setting, and SAMtools [114] was used to
convert the resulting SAM files to BAM files, remove potential PCR duplicates, and merge
all BAM files into a single mpileup. PoPoolation2 [108] was used to convert this mpileup
file to a simplified file format that contains counts for all bases in the reference genome and
for all populations being analyzed. RepeatMasker V4.12 (http://www.repeatmasker.org;
accessed on 20 August 2018) and PoPoolation2 were then used to identify and remove
highly repetitive genomic regions where proper read mapping is difficult. Lastly, SNPs were
called based on the following criteria: minimum coverage of 20× and maximum of 200×
in each population, and a combined minor allele frequency of 2% across all populations.
This resulted in a SNP table with ~781 K sites.

Figure 4 outlines the analytic approach used to link patterns of metabolomic and
genomic differentiation. First, the Generalized Cochran–Mantel–Haenszel (CMH) test [115]
was used to identify SNPs that were significantly differentiated between the A, C, and
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S populations. This was done in R using the mantelhaentest function [116] tests were
performed for each SNP in the data set, correcting for multiple comparisons was essential.
To do this, the “plug in method” (Hastie et al., 2009) was used. Briefly, suppose we have M
total hypothesis tests, and we let V be the number of false positives and S be the number of
true positives, then the false discovery rate (FDR) is defined as V/(V + S). A critical test
statistic, C, can be chosen and the plug-in method computes the FDR for that critical point.
V + S is estimated to simply be the total number of test statistics from the M hypothesis tests
that exceed C. V can in turn be estimated through permutation. Here, that was done by
essentially shuffling population labels then performing the CMH test at each polymorphic
site in the permuted data set. The number of significant test statistics greater than all values
of C was then recorded. This was repeated 100 times to ensure accurate estimates of V for
values of C. Once V and V + S were estimated, the FDR was calculated for each value of C.
Using these results, we calibrated to a conservative FDR of 0.005 (i.e., significance threshold
is the value of C that gives an FDR of 0.005).

After identifying SNPs that were differentiated across our treatments, a statistical
learning approach called the “fused lasso additive model” or “FLAM” [117] was used
to determine which of the genomic regions these SNPs represent best predict patterns of
differentiation for our top candidate metabolites (note: this was done on a per metabolite
basis). Here, the assumption is that these genomic regions are the ones most to be casually
linked to relevant patterns of metabolite differentiation. Due to genetic linkage, it is not
necessary to consider individual significant SNP. Instead, a list of the most significant SNP
for every 50 KB genomic window and these markers were used in the FLAM analysis.
This mimics the implementation of FLAM as described in Muller et al. [23] where the
approach was validated using simulated and real data sets. It is also worth noting that
this implementation strategy differs from the original Petersen et al. [117] implementation
in one major way. As described in Mueller et al. [23], a single run of FLAM is limited to
finding N casual SNPs, where N is the number of populations in the study. As a result, the
order of potential predictor variables can impact results. Here, and in Muller et al. [23],
this is accounted for using a permutation procedure where each FLAM analysis is run
multiple times and the order of potential predictor variables is randomly shuffled. The
final list of “best predictors” consists of genetic loci that occur at commonly identified
across permutations. In this study, a total of 100 permutations were run for each metabolite,
and the final list of best predictors consisted of loci that showed up in at least 50% of
permutations of a given metabolite. Lastly, based on past validation, FLAM itself is
particularly well suited for the task of linking genomic and metabolomic differentiation
in an E&R context. A major consideration in these studies is the need to distinguish
between parallel differences with some underlying relationship with the phenotype of
interest, and differences simply due to chance. Muller et al. [23] suggests that FLAM has
the power to distinguish between these two groups based on subtle differences among
replicate populations within a treatment, which is not always possible with standard linear
model approaches.

After determining which genomic regions best predict observed differences in can-
didate metabolites, a list of genes associated with each region was generated. Given that
predictors are markers representing genomic regions, it cannot simply be assumed that
the SNP markers are themselves casual. However, given that the SNPs used in the FLAM
analyses are the most significant SNPs in their respective genomic region and the and the
level of replication featured in this study, we would expect them to be relatively close to
the true causative sites given theoretical work on the power of E&R studies to localize
candidate genes [118]. Candidate genes were ultimate defined as those in 5 KB windows
around each SNP marker with this in mind. After generating a list of candidate genes
associated with each candidate metabolite, Metascape [119] was used to perform gene
ontology (GO) term enrichment analysis, protein network analysis, and Molecular Complex
Detection (MCODE) Component analysis. All analyses were run using default settings.
Cytoscape [120] was used to visualize results.
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5. Conclusions

Broadly speaking, our effort to incorporate metabolomics into the E&R framework
has successfully generated insights into the factors underlying longevity differences in this
experimental system. On its own, comparing and contrasting metabolomic profiles between
our experimental populations revealed a number of key mechanisms shaping aging and
longevity differences across the system. Our findings also suggest that, with regard to
longevity, the relationship between the genome and the metabolome is complex and highly
polygenic. However, incorporating metabolomic results into our genomic analysis allowed
us to narrow our focus to a tractable, and potentially more impactful, subset of candidate
genes. The presence of key established aging genes and enrichment for functional gene
clusters and networks related to longevity also suggests we are capturing some meaningful
aspect of the genetic mechanisms underlying longevity differences in this system. Taken
together, this study serves as a proof of concept that combining different types of omic data
in the E&R context may have significant benefits when attempting to parse the physiological
and genetic mechanism shaping complex phenotypes such as longevity.

Our work also adds to the growing body of evidence that canonical genetic mecha-
nisms are not always the primary drivers of complex trait variation in “real” populations
or laboratory populations approximating real populations [28,29,121]. While these mecha-
nisms are highly relevant in certain contexts (i.e., mutant screens, studies in specific genetic
backgrounds, etc.), reality is more complex in outbred populations and other sources of
variation with perhaps smaller individual effect sizes are more relevant. Additionally, simi-
lar functional outcomes can be achieved through different genetic mechanisms. As such,
there is a clear need for approaches specifically designed to contend with this complexity
when seeking to understand complex trait variation in real populations.
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