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Abstract

Positron emission tomography (PET) is an in vivo imaging method essential for studying the 

neurochemical pathophysiology of psychiatric and neurological disease. However, its high cost 

and exposure of participants to radiation make it unfeasible to employ large sample sizes. The 

major shortcoming of PET imaging is therefore its lack of power for studying clinically-relevant 

research questions. Here, we introduce a new method for performing PET quantification and 

analysis called SiMBA, which helps to alleviate these issues by improving the efficiency of 

PET analysis by exploiting similarities between both individuals and regions within individuals. 

In simulated [11C]WAY100635 data, SiMBA greatly improves both statistical power and the 

consistency of effect size estimation without affecting the false positive rate. This approach makes 

use of hierarchical, multifactor, multivariate Bayesian modelling to effectively borrow strength 

across the whole dataset to improve stability and robustness to measurement error. In so doing, 

parameter identifiability and estimation are improved, without sacrificing model interpretability. 

This comes at the cost of increased computational overhead, however this is practically negligible 

relative to the time taken to collect PET data. This method has the potential to make it possible 

to test clinically-relevant hypotheses which could never be studied before given the practical 

constraints. Furthermore, because this method does not require any additional information over 

and above that required for traditional analysis, it makes it possible to re-examine data which 

has already previously been collected at great expense. In the absence of dramatic advancements 

in PET image data quality, radiotracer development, or data sharing, PET imaging has been 

fundamentally limited in the scope of research hypotheses which could be studied. This method, 

especially combined with the recent steps taken by the PET imaging community to embrace data 
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sharing, will make it possible to greatly improve the research possibilities and clinical relevance of 

PET neuroimaging.

1. Introduction

PET quantification involves fitting pharmacokinetic (PK) models to a series of radioactivity 

concentrations in a region of the brain over time, called a time activity curve (TAC). Fitting 

these models provide estimates of binding, which are generally assumed to be proportional 

to the density of the target molecule. Typically, these models are first fitted separately to 

each TAC from each brain region of each individual to derive estimates of binding, and 

these binding estimates are subsequently compared between individuals. While statistically 

valid, this approach represents an inefficient use of the acquired data due to the fact that 

no information can be retained between TACs: the model effectively forgets everything it 

has learnt when presented with each new TAC from each new individual (McElreath, 2016; 

2017). Allowing a model to make use of more data at once is a natural strategy by which 

to improve the ability of PET imaging to infer upon difficult-to-estimate-parameters. For 

instance, Simultaneous Estimation of VND, SIME-VND (Ogden et al., 2015) is a method 

designed to estimate the degree of nondisplaceable binding at the individual level, which is 

otherwise estimated poorly, by fitting data from multiple regions at once and assuming a 

common value of this parameter.

The conventional strategy of fitting a unique set of parameters to each TAC independently 
of all the others, is therefore referred to as a “no pooling” approach. The opposite extreme 

is that of “complete pooling,” in which a common parameter, or set of parameters, are fitted 

to all TACs simultaneously, which considers all TACs as effectively interchangeable for the 

estimation of completely pooled parameters. SIME-VND (Ogden et al., 2015), for example, 

makes use of complete pooling between regions for the estimation of nondisplaceable 

binding, and no pooling for the estimation of the remaining parameters. However, in most 

circumstances, it is neither appropriate to assume complete independence nor complete 

interchangeability of pharmacokinetic parameters between regions or individuals.

“Partial pooling” serves to make a compromise between these two approaches, by 

considering individual parameters to be drawn from a common overarching population 

distribution. By estimating both population and individual parameters simultaneously, the 

model is able to flexibly determine the degree of pooling consistent with the observed 

data. This results in adaptively regularised estimates which are shrunk towards the global 

mean, thereby achieving a balance between the above two strategies; considering the data 

as neither completely independent nor completely interchangeable. This allows the model 

to exploit similarities between data from different sources, i.e., from different regions and 

individuals, within the sample, and thereby “borrow strength,” leading to improved estimates 

and predictions, as well as increased power for hypothesis testing (Gelman and Hill, 2007). 

Hierarchical or mixed effects modelling, which make use of partial pooling, is routinely 

applied in numerous and diverse fields of research, and is often regarded as a more sensible 

default method by which to perform statistical inference in general whenever a common 

overarching distribution can be assumed (McElreath, 2017).

Matheson and Ogden Page 2

Neuroimage. Author manuscript; available in PMC 2022 September 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In addition to improved estimation, a further advantage of these types of models is that 

estimation and statistical analysis can be performed simultaneously. The conventional 

strategy can be described as a two stage approach: first, parameters are estimated from each 

individual TAC, and subsequently statistical analysis is performed using the point estimate 

of the relevant estimated parameter, e.g. comparing estimates of specific binding between 

groups of patients and controls. Combining estimation and statistical analysis within a 

hierarchical model has several advantages. Firstly, this allows the uncertainty in estimated 

parameters to be propagated to the statistical analysis, resulting in improved power. 

Secondly, this allows for the covariance structure between the estimated pharmacokinetic 

parameters to be utilised to stabilise one another during the statistical analysis, i.e. if two 

pharmacokinetic parameters are highly correlated with one another, then the estimate for 

the first parameter provides the model with relevant information with which to guide the 

estimation of the second parameter. Taken together, in contrast to the two-stage approach, 

a hierarchical modelling strategy is able to gain additional statistical power by performing 

parameter estimation and statistical modelling simultaneously, over and above the increases 

in power gained from improved parameter estimation owing to partial pooling.

Almost all PET PK models used in practice are simplifications of more complex, but more 

biologically appropriate models. While more complex models likely reflect the underlying 

biology more accurately, their complexity, i.e. the number of parameters fitted, impedes 

their stability and accuracy. For this reason, almost all kinetic modelling innovations impose 

additional assumptions to reduce the number of free parameters estimated, and thereby fit 

a simpler model to estimate the same thing as the more complex model, but with greater 

robustness. For instance, the simplified reference tissue model (Lammertsma and Hume, 

1996; Salinas et al., 2014) assumes that one-tissue compartment model dynamics hold in 

both the target and reference regions in order to eliminate one of the parameters of the 

full reference tissue model (Cunningham et al., 1991). These assumptions are rarely, if 

ever, strictly true; however they allow the model to better compensate for measurement 

noise and the limited information available in any single TAC to provide more stable 

estimates of binding. In other words, we tolerate the hopefully negligible bias induced 

by these assumptions in order to reduce the variance of our estimates by reducing the 

complexity of our models. Model complexity can be characterised as an overfitting risk, 

and is described by the penalty term in the calculation of information criteria: in the 

Akaike Information Criterion for example, this penalty is proportional to the number of 

free parameters in the model (Gelman et al., 2014). However, in the context of hierarchical 

modelling or informative priors in a Bayesian setting, the imposed regularisation lowers the 

risk of overfitting, and improves the identifiability and stability of parameter estimation. 

Hence, despite, in the case of hierarchical modelling, an increased number of estimated 

parameters in absolute terms due to estimation of both population and individual parameters; 

the number of effective parameters can be reduced considerably due to the adaptive 

regularisation imposed by the partial pooling. This therefore has the same effect as model 

simplification, but without making compromises at the level of the pharmacokinetic model 

itself.

A new preliminary application of partial pooling for PET PK modelling, with simultaneous 

parameter estimation and statistical comparison, was recently developed and evaluated 

Matheson and Ogden Page 3

Neuroimage. Author manuscript; available in PMC 2022 September 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Chen et al., 2019). This approach demonstrated marked improvements over the 

conventional approach in both simulated and real data. However, its implementation using 

existing nonlinear mixed effects tooling (Pinheiro et al., 2021) has limited flexibility, thereby 

limiting the scope and complexity of the data-generating process which can be modelled 

using this approach. This means that it is only possible to apply this approach across either 

individuals in one region, or across regions within one individual. However, it is known that 

there is a great deal of additional information available from different regions of the brain 

within each individual, which is exploited by several different PK models (Ogden et al., 

2015; Schain et al., 2017; 2018; Slifstein et al., 2015).

In this study, we present a novel hierarchical PK modelling framework, called SiMBA: 

Simultaneous Multifactor Bayesian Analysis. This framework allows for the application 

of the two-tissue compartment using a hierarchical multifactor model, meaning that 

partial pooling is applied across multiple, overlapping hierarchies of individuals, regions, 

and regions within individuals, while simultaneously performing statistical inference of 

pharmacokinetic parameters. We make use of Bayesian techniques in order to allow us to 

make use of complex variance-covariance structures, as well as to be able to incorporate 

prior information. We demonstrate our results in both simulated and real data.

2. Methods

2.1. Pharmacokinetic model

The TAC measured by the PET system consists of a series of measurements of the 

concentration of radioactivity over time (t). In PET modelling, the TAC is conceptualised 

as the total (T) radioactivity concentration (C) within the region of interest, i.e. CT(t). 

This also includes a fractional blood volume contribution (νB) from the small proportion 

of the volume comprised of blood. Hence, the model includes measurements of the 

radioactivity concentration in whole blood (CB(t)) which are measured at same time as 

the PET examination from drawn blood. The concentration in the tissue is described by 

the convolution of an arterial input function (AIF) and an impulse response function (IRF). 

The AIF, like the TAC, consists of a series of measurements over time of the concentration 

of radioactivity in the arterial plasma (CP(t)), after correction to account for the proportion 

of this radioactivity which is attributable to unmetabolized parent compound. The AIF 

therefore represents the concentration of the tracer which is available to enter the brain 

at each time point (although this does not account for plasma binding). The general PET 

pharmacokinetic modelling framework is therefore described as follows:

CT(t) = 1 − vB IRF ⊗ CP (t) + vBCB(t) = TCM(θ, t) (1)

The whole tissue compartment model is abbreviated TCM, with the parameters contained 

within the vector θ.

The AIF, the whole blood radioactivity, and the TAC are measured, while the IRF may only 

be estimated from these other quantities, providing a description of the behaviour of the 

compound in the tissue as a function of its binding. In this study, we focus on the two-tissue 
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compartment (2TC) model with five free parameters: rate constants K1, k2, k3, k4 and blood 

volume fraction νB (Fig. 1) Innis et al. (2007).

In this model the compartments represent the non-displaceable (ND) compartment, 

itself comprised of non-specifically bound and free compartments, and the specific (S) 

compartment. Their volumes of distribution (V) refer to the concentration of a given 

compartment (represented by the subscript) at equilibrium relative to the metabolite-

corrected arterial plasma (P). Alternatively, binding potential (BP) refers to the specific 

binding defined relative to the concentration of other compartments, represented by 

subscripts, at equilibrium. These quantities of biological interest can also be expressed as 

functions of the rate constants:

V T = K1
k2

1 + k3
k4

V ND = K1
k2

BPP = V S = K1k3
k2k4

BPND = k3
k4

(2)

2.2. Generalised model framework

Traditionally, the pharmacokinetic model would be fitted to each TAC individually using 

weighted nonlinear least squares (NLS). The weights are usually calculated such that they 

are approximately proportional to the inverse variance of the measurement error in each 

frame, and there exist several different proposed methods for calculating weights (Thiele 

and Buchert, 2008). The estimated set of parameters thus represent the maximum likelihood 

estimate, i.e., the set of parameter values which maximise the likelihood of the data, P 
(data|θ), which, when a Gaussian distribution is assumed for the observations, minimises the 

sum of squared weighted residuals. We can hence describe the theoretical data generating 

process for the model described in Eq. 1, here considering a single region of interest (ROI) 

from a single subject, for each time frame i, as follows:

CT t[i] Normal(μ[i], σ[i]
2 )

μ[i] = TCM θ, t[i]

σ[i] = 1
w[i]

σ

where μ represents the estimated TAC value, and σ the standard deviation of the error of the 

TAC, where σ[i] refers to the error for the each frame of the PET measurement. The model 

weights, w, are calculated a priori.
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Indices are presented in square brackets throughout to avoid ambiguity in later equations 

where pharmacokinetic parameters are also specified as subscripts.

The model presented in Chen et al. (2019) is a hierarchical model in that it makes use 

of partial pooling across individuals by considering them to be drawn from a common 

overarching population distribution. In Fig. 2A, this model applies partial pooling across 

rows, but not columns.

For each time frame i and subject j, this model can be described as follows:

CT t[i, j] Normal(μ[i, j], σ[i, j]
2 )

μ[i, j] = TCM θj, t[i, j]

θ[j] MVNormal(θ, Σ) + Xβ

Σ =
σ1 0 0
0 ⋱ 0
0 0 σ5

R
σ1 0 0
0 ⋱ 0
0 0 σ5

σ[i, j] = 1
w[i]

σ

where Σ is the 5 × 5 covariance matrix for all of the pharmacokinetic parameters within 

the theta vector, which is decomposed into a correlation matrix R and a diagonal matrix 

of the standard deviations of each parameter. MVNormal refers to a multivariate normal 

distribution. Covariates, X, are represented by a n × p matrix multiplied by the 1 × p 

coefficient vector, β, where n represents the number of data points, and p represents the 

number of parameters. These covariates are unpooled parameters which are commonly 

referred to as fixed effects, in contrast to the partially pooled estimation of differences 

between individuals which are commonly referred to as random effects. Owing to substantial 

ambiguity between different fields in the use of these terms (Betancourt, 2020a), we will use 

the terms partially pooled and unpooled whenever possible to improve clarity.

Here, we extend this framework to accommodate not only TAC data from multiple subjects, 

but also multiple regions within each subject. To this end, we specify a multifactor model 

for each parameter within θ, defining a global mean intercept (α), a covariate vector (β) 

multiplied by a covariate matrix (X), and an additive sequence of residuals for each of the 

separate hierarchies (Betancourt, 2021): across individuals (τ[j]), across regions (υ[k]), and 

(ϕ[j,k]) for the interaction of regions and individuals, i.e. individual TACs.
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θ[j, k] = αθ + Xβθ + τθ[j] + vθ[k] + ϕθ[j, k]

τ MVNormal [0], ΣSubject

v MVNormal [0], ΣRegion

ϕ MVNormal [0], ΣTAC

With respect to Fig. 2A, τ parameters are estimated in common for all rows across each 

column, υ parameters are estimated in common for all columns across each row, and finally 

ϕ parameters are estimated in common for each individual curve within the grey squares. 

In this way, the model defines a global average set of parameters for a hypothetical average 

individual and average region, together with individual deviations for a hypothetical average 

region, regional deviations for a hypothetical average individual, and finally any residual 

differences at the level of individual TAC curves, i.e. regions within individuals.

Similarly, the standard deviation of the measurement error, σ is log transformed and defined 

by a linear model, with a global mean intercept, covariate vector and matrix, and a sequence 

of terms for individual-specific, region-specific and TAC-specific differences. To account for 

differences in measurement error between the different frames within each TAC, a weighting 

function is also incorporated into the model. The optimal weights for weighted least squares 

estimation are proportional to the inverse variance of the measurement error (i.e.w ∝ 1
σ2 ), so 

calculated weights values can be incorporated by first transforming them to measurement 

error (i.e. 1
w ), taking their natural logarithm so that they can be a linear predictor for the 

log-transformed measurement error term, and centering them by subtracting the mean value 

within each individual. This weights-derived term is referred to below as w*. Region sizes 

and injected radioactivity can also be included in the covariate matrix.

log σ[i, j, k] = ασ + w[i, j, k]* + Xβσ + τσ[j] + vσ[k] + ϕσ[j, k]

τσ Normal(0, σIndividual
2 )

vσ Normal(0, σRegion
2 )
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ϕσ Normal(0, σTAC
2 )

2.3. Model fitting

We make use of Bayesian hierarchical modelling to fit the model described above. 

In maximum likelihood estimation, a set of parameters are selected which maximise 

the likelihood of the data, i.e. P(data|θ). In contrast, Bayesian modelling assesses the 

probability of each set of parameters conditional on the data, i.e., P(θ|data). This allows full 

quantification of uncertainty of all parameters simultaneously, as well as for incorporating 

this uncertainty in the statistical analysis. Bayesian modelling is commonly performed using 

Markov Chain Monte Carlo (MCMC) sampling, which provides a great deal of flexibility 

for fitting large and complex models with complex covariance structures, which is required 

for fitting the complex multifactor model described above. This flexibility comes with some 

cost, however, as MCMC is highly computationally intensive.

3. Implementation

While the above section describes the general properties of such a model in theory, in this 

section we describe how it was implemented in practice.

3.1. Modelling of blood data

Arterial plasma radioactivity measurements and parent fraction measurements were 

collected as previously described (Parsey et al. (2005, 2010, 2000)). Parent fraction data 

were fitted using a Hill model, and a metabolite-corrected arterial plasma curve was created 

by taking the product of the estimated unmetabolised parent fraction and the arterial plasma 

radioactivity measurements. This curve was fitted using a linear rise followed by a sum of 

three exponentials to create the arterial input function (AIF).

AIF (t) =

0 t < t0
b t − t0 t0 ≤ t ≤ tp

∑i = 1
3 Aie−λi t − t0 t > tp

The parameters include a delay term (t0, i.e., when the rise begins), a linear rise to the peak 

(gradient b, peaktime tp), followed by a sum of three exponential decay functions. The AIF 

was modelled using this function in order to make use of an analytical convolution with 

the IRF in the functional definition of the 2TC pharmacokinetic model for computational 

efficiency. Convolution using the Fast-Fourier Transform is not currently possible using 

the STAN modelling language (Carpenter et al., 2017), and numerical convolution is too 

inefficient to be considered a plausible alternative. In a future release, we hope to include the 

possibility of modelling the AIF using a spline function, analytically convolved with IRF for 

increased flexibility of SiMBA.
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Whole blood radioactivity was not measured, so we made use of arterial plasma without 

parent fraction correction as a substitute for the whole blood radioactivity. Because the 

concentration of [11C]WAY100635 in red blood cells is negligible (Oikonen et al., 2000), 

this implies that the whole-blood-to-plasma ratio will remain constant throughout the 

measurement, and that the shape of the whole blood curve will not differ from that of 

the plasma. To avoid confusion with the metabolite-corrected arterial plasma, we will refer 

to this whole plasma curve as the whole blood curve. For kinetic modelling, we calculated 

average whole blood values for each PET time frame. For this, we fit the whole blood curve 

using the kinfitr spline blood model function (Matheson, 2019), which fits two splines: one 

for the rise to the peak, and another for the descent.

The fitted curve was then interpolated, and divided into segments corresponding to each 

frame of the PET examination after correcting for the delay between the curves. Mean whole 

blood concentrations during the course of each PET frame were calculated, which were used 

to represent the whole blood radioactivity for each frame during kinetic modelling.

The delay between the arterial input function and the TAC was fitted using the first 9 frames 

from the first six minutes of the PET measurement fit with a two-tissue compartment model 

(2TC) and an additional parameter for the delay using kinfitr (Matheson, 2019; Tjerkaski 

et al., 2020). Correspondence between the AIF and TAC were visually inspected, and 

when inadequate, the delay was selected using a semi-automatic approach in kinfitr, which 

identifies all local minima across a grid of potential delay values using a linearised 2TC 

model (Gjedde and Wong, 1990).

3.2. Pharmacokinetic model

For the purpose of facilitating the definition of priors, we parameterised the model to 

estimate K1, VND, BPND, k4 and νB using the relationships described in (2). VND and BPND 

were preferred over k2 and k3 since they have a more biologically interpretable meaning. 

This assists with the definition of priors in several ways. Firstly, VND, in contrast to K1 or 

k2, is often assumed to be the same or similar between regions (Gunn et al., 2001; Ogden et 

al., 2015), or across individuals (Cunningham et al., 2009; Veronese et al., 2016). Secondly, 

BPND is theoretically proportional to the concentration of the target protein, assuming a 

same or similar VND, and differences between groups can therefore be expressed in terms 

of a difference in BPND. Additionally, this also served to allow for the setting of more 

conservative upper and lower limits in the traditional NLS analysis, thereby reducing the 

variability of outcome measures calculated from the pharmacokinetic rate constants.

Next, all parameters were transformed to their natural logarithms, serving two purposes. 

First, this naturally constrains all parameters to be positive, corresponding with their 

natural constraints as rate constants and biological quantities. Secondly, this serves to 

define additive differences within the model specification as proportional changes of the 

untransformed values. This is helpful because biological differences or changes in PET 

are typically assumed to exhibit similar proportional, but not absolute, differences between 

different regions, as the concentration of the protein of interest in different regions of the 

brain can differ by orders of magnitude. Indeed, multiplicative, as opposed to additive, 

relationships are more commonly observed in biology more generally (Gingerich, 2000; 
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Xiao et al., 2011). Lastly, as a consequence of the log transformation, we are able to assume 

a common variance between regions, as the variance describes proportional differences, 

rather than absolute differences.

We made use of the two-tissue compartment model using an analytical convolution of the 

IRF with the parameters of the tri-exponential AIF, as well as the estimated scalar WB 

concentration values as described above.

3.3. Model specification

Section 2.2 laid out the most general framework for applying a 2TC kinetic model 

simultaneously across regions and across individuals. Next, we will illustrate the use of this 

model through one specific implementation and application to data. To adapt this general 

model to this particular situation, we describe here some specific choices we made.

As a general strategy, we estimated pharmacokinetic parameters from multivariate 

distributions in order to allow parameters to influence the estimation of one another through 

the correlation matrix. However, we opted to separate the blood volume fraction from the 

variance-covariance matrices of the other pharmacokinetic parameters because the former 

parameter is theoretically biologically independent of the other pharmacokinetic parameters, 

and should not be able to influence their estimation. Instead, the blood volume fraction and 

measurement error parameters were estimated using univariate partial pooling.

K1 and BPND are known to exhibit a substantial degree of heterogeneity between different 

regions as a result of well-understood biological differences, which can differ by orders of 

magnitude for some tracers and combinations of regions. For this reason, shrinking these 

regional differences towards a common mean (across regions) would not be appropriate. We 

therefore opted to estimate regional differences in K1 and BPND as unpooled parameters, 

i.e. fixed effects, by including regional differences as dummy variables within the covariate 

matrix. This estimates, for example, that the mean BPND in region B is 50% higher than for 

region A, but without considering a distribution of these differences. For VND, k4 and νB 

on the other hand, there is no biological motivation, to our knowledge, to motivate extreme 

differences between regions. In fact, one model made use of complete pooling of both VND 

and k4 across regions (Slifstein et al., 2015), and νB is often estimated once per individual 

using a large region, or even set to 5% across an entire sample. Hence partial pooling of 

regional means was considered appropriate for these parameters.

Because the measurement error and blood volume fraction were not of primary interest, 

we made use of the expectation values estimated across regions and individuals, and did 

not estimate further residuals for TAC-specific differences. In other words, their ϕ[k] terms 

were set to 0. For example, in Fig. 2, subject 3 appears to exhibit greater measurement 

error compared to the other individuals, hence τσ[S3] would be positive. Similarly the dorsal 

raphe nucleus (DRN) appears to exhibit greater measurement error than the other regions 

on average, and so υσ[DRN] would also be positive. The mean expectation value for the 

measurement error for the DRN of subject 3, before accounting for frame-to-frame variation, 

would therefore be equal to the sum of the average intercept value, the average individual 
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deviation and the average regional deviation, but no further adjustment would be made for 

the particular DRN TAC recorded for subject 3 specifically.

For differences in the standard deviation of the measurement error, σ, across time, i.e. 

between the different frames within the measured TACs, we needed to select an appropriate 

weighting function, as a function of the measurement error. The measurement error should, 

in theory, be a function of the duration of each frame and the radioactivity counts 

observed, however there is no generally agreed-upon method by which to quantify noise 

in PET images. As such, many different weighting schemes exist (Muzic and Christian, 

2006; Normandin et al., 2012; Thiele and Buchert, 2008; Yaqub et al., 2006), whose 

performance can vary between different radioligands and model parameters (Thiele and 

Buchert, 2008). Instead of selecting any one particular function, we estimated a weighting 

function simultaneously within the multifactor model using a smooth function over time 

f(t) to describe the standard deviation of the measurement error. For this, we used a 

penalised regression spline using a thin plate regression spline basis with 8 basis functions, 

implemented using the brms R package (Bürkner, 2017).

With all these considered, the model is described, as above with a global mean intercept 

(α), a covariate vector (β) multiplied with a covariate matrix (X), and an additive sequence 

of residuals for each of the separate hierarchies across individuals (τ[j]), across regions 

(υ[k]) and for the interaction of regions and individuals, i.e. individual TACs (ϕ[j,k]). For the 

measurement error, we include an additional smooth function over time (f(t)), indexed by 

frame i.

log K1[j, k] = αK1
Intercept

+ XK1βK1
Covariates

+ τK1[j]
Individual

vV ND[k]
Region

ϕK1[j, k]
TAC Smooth function

log V ND[j, k] = αV ND +XV NDβV ND +τV ND[j] +vV ND[k] +ϕV ND[j, k]

log BPND[j, k] = αBPND +XBPNDβBPND +τBPND[j] +ϕBPND[j, k]

log k4[j, k] = αk4 +τk4[j] +vk4[k] +ϕk4[j, k]

log vB[j, k] = αvB +XvBβvB +τvB[j] +vvB[k]

log σ[i, j, k] = ασ +Xσβσ +τσ[j] +vσ[k] +f t[i]

τK1
τV ND

τBPND
τk4

MVNormal

0
0
0
0

, ΣSubject

τvB Normal(0, σvB, Subject
2 )
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τσ Normal(0, σσ, Subject
2 )

vV ND
vk4

MVNormal 0
0 , ΣRegion

vvB Normal(0, σvB, Region
2 )

vσ Normal(0, σσ, Region
2 )

ϕK1
ϕV ND

ϕBPND
ϕk4

MVNormal

0
0
0
0

, ΣTAC

Predictors are included within the covariate matrices, including age, sex and patient group 

for pharmacokinetic parameters. Different parameters can have different sets of parameters: 

for instance, we might reasonably expect K1 to differ by age, but not k4. Model comparison 

methods, such as the LOOIC (leave one out information criterion) (Vehtari et al., 2017) 

are useful for evaluating whether additional predictors improve the performance of the 

model, for instance, to evaluate whether the addition of patient group as a predictor for VND 

improves the performance of the model.

3.4. Model fitting

The model was implemented using the STAN probabilistic programming language 

(Carpenter et al., 2017), which applies Hamiltonian Monte Carlo (HMC) for Markov Chain 

Monte Carlo (MCMC) simulation (Betancourt, 2018), using CmdStan v2.26.1, rstan 2.21.2 

and brms 2.15.0 (Bürkner, 2017).

In the simulations, SiMBA was found not to converge in approximately 10% of the datasets. 

In all cases, this could be resolved by rerunning the model on the same data, but using 

a different random seed (i.e. by resetting the random number generator to a new state). 

Convergence was defined as there being no single parameter estimated by the model with an 

Rhat (Vehtari et al., 2021) value above 1.25, and no more than 2% of the parameters having 

an Rhat value above 1.05.

3.4.1. Prior specification—In the definition of priors, our goal was not to greatly 

inform the model, but rather to exclude domains of parameter space which could a priori 
be deemed as extremely unlikely based on domain knowledge. For instance, the likelihood 
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of several-fold inter-regional variability in VND or k4 can be rejected before seeing any 

data based on what these quantities represent. The primary goal of the priors, rather, was 

to restrict our model to sensible ranges of parameter space, and to equip our model with a 

skepticism for extreme outcomes.

For the distributional definitions of priors, we used normal distributions for most parameters, 

and student t distributions with 3 degrees of freedom when fatter tails (i.e. greater 

leptokurtosis) were required. Moderately informative priors were specified for the global 

intercept (α) terms to ensure that the model fitting procedure initialises in approximately the 

correct neighbourhood of the posterior. This can be justified because these values can easily 

be approximated from previous studies.

Zero-centred regularising priors were defined over the standard deviation of the pooled 

effects of subject, region and TAC, with progressively smaller standard deviation, owing 

to the expected decreasing magnitudes of these differences. This has the effect of 

informing our model a priori that no variation at all in the outcomes across the relevant 

hierarchy is the most likely outcome; and that larger values of the variance should be 

treated with an increasing degree of skepticism. This implies that for parameters such 

as VND and νB, which are typically assumed equal between regions within individuals, 

our model is encouraged to comply with this assumption, but that deviations from this 

simplistic assumption are also allowed. These assumptions, however, are almost certainly 

oversimplifications: there is regional variation in the density of brain vasculature (i.e. 

affecting νB) (Huck et al., 2019), and regional variation in VND has also been reported 

(Rossano et al., 2019).

LKJ priors (Lewandowski et al., 2009) were defined for the correlation matrices for each of 

these three multivariate normal distributions, with η = 1 for the pooling across individuals, 

and η = 2 for the pooling across regions and TACs, implying less and greater skepticism for 

extreme correlations respectively. Regularising priors were also defined for all covariates, 

including the unpooled regional differences in K1 and BPND. For a more detailed description 

of the prior distributions, see the Supplementary Materials S1.

3.4.2. Model comparison and diagnostics—To evaluate model performance, we 

made use of the loo package in R (Vehtari et al., 2020), which implements Pareto smoothed 

importance sampling (PSIS) leave-one-out cross-validation to derive the LOOIC (Vehtari et 

al., 2017). Information criteria are measures of predictive accuracy which are commonly 

used to assess whether the addition of greater complexity to a model improves or impedes 

the model’s predictive performance. Information criteria are measures of the expected log 

pointwise predictive density (ELPPD), often expressed on the deviance scale (i.e. −2 × 

ELPPD). The ELPPD is calculated by subtracting a penalty term for model complexity from 

the log pointwise predictive density (LPPD, also called the log likelihood).

The penalty term for model complexity is equal to the difference between the LPPD and the 

ELPPD, measuring the degree to which the prediction of future data is worse compared to 

the observed data. For a more flexible model, there is a greater risk of overfitting, and hence 

the prediction of future data is less accurate, and so this can be thought of as an overfitting 
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penalty (Gelman et al., 2014; McElreath, 2016). In the Akaike Information Criterion (AIC), 

this penalty term is simply equal to the total number of fitted parameters. However, for 

models with informative priors or hierarchical structure, the overfitting risk does not scale 

in the same way with the number of parameters. In these cases, the number of parameters 

is replaced with a data-based bias correction, which is often referred to as the effective 
number of parameters (peff) by analogy to the AIC. This term is dependent on the degree 

of constraint imposed on the estimation of the parameter. For instance, using uniform priors 

between (−∞ ∶ ∞), peff reduces to the total number of parameters. However for a highly 

informative prior, or in the context of hierarchical structure, peff can be considerably less 

than the total number of estimated parameters.

In hierarchical modelling, partial pooling is meant to establish a suitable compromise 

between no pooling and complete pooling of estimates, such that estimates are shrunk 

towards a global mean. When the precision of individual estimates is very poor relative to 

the group variance, the partial pooling approaches complete pooling, and peff is low. On the 

other hand, when the precision of individual estimates is high relative to the variance, then 

the partial pooling approaches no pooling, and peff is high. For more details see Gelman et 

al. (2014) and Vehtari et al. (2017). We make use of peff as an estimate of the complexity 

and the degree to which overfitting risk is reduced using our model relative to the traditional 

approach.

3.5. Data and code availability statement

The R and STAN code used to apply this method are provided in an open repository 

(https://github.com/mathesong/SiMBA_Materials), including a sample simulated dataset. 

The measured data used in the application section is drawn from previous studies (Chen 

et al., 2019).

4. Simulations

For the purpose of assessing the measurement properties of this approach, we generated 

simulated datasets to compare the performance of the proposed methodology to that of the 

conventional approach.

Data were simulated in order to resemble the true PET data described in the next section, 

using the [11C]WAY100635 radiotracer. We extracted the posterior mean values for all 

estimated population parameters and used these as the “ground truth” to generate realistic 

parameter values. For variation across individuals and TACs (i.e. Region × Individuals), 

we sampled individual new parameter values from the univariate and multivariate normal 

distributions, while for variation across regions, we made use of the posterior mean values. 

In this way, we simulate from the same set of regions, but in a new set of individuals, 

with a new set of individual variations at the regional level. The simulation parameters are 

described in Supplementary Materials S2.

TACs were simulated using the two-tissue compartment model using these parameter 

values, with blood data randomly sampled from individuals (with replacement) from the 

measured data. Measurement error was added to the simulated curves using a normal 
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distribution with mean 0, and the standard deviation determined in a similar manner as for 

the pharmacokinetic parameters, i.e. using the posterior means for regional differences, but 

sampling individual differences from the univariate normal distribution. As before, this has 

the effect of simulating data from the same set of regions, but in a new set of individuals. To 

this, we added the global mean value of the SD of the measurement error, for which we used 

10% of the mean TAC value. Rather than using the value estimated from the data, we opted 

to select a value which facilitates comparison with other data sets, and which more closely 

resembles a worst-case scenario. This value is approximately double that estimated from the 

measured PET data. Finally, we also added the posterior mean value of the smooth function 

for each time point within each TAC.

In order to evaluate the sensitivity and specificity of the approach, we tested for group 

differences. To evaluate power, we simulated two groups, with a true global (i.e., across all 9 

regions) group difference of 20% in BPND (i.e., Δlog(BPND) = 0.182).

Based on the mean posterior standard deviation of BPND across individuals in the sample, 

this corresponds with a moderate effect size (Cohen’s d = 0.55).

To evaluate the potential for false positives, we also tested for group differences in simulated 

data sets for which there were no differences.

No additional covariates, such as age or sex, were included, other than that of group 

membership.

We simulated datasets with group sizes of multiples of 10 between 10 and 100 (i.e., for 

a group size of 20, there are 20 controls and 20 patients, and therefore 40 individuals 

included in the study). For the NLS models, we generated 1000 simulated studies for each 

condition, i.e. for groups of 50, this results in a number of TACs of 1000 × 2 conditions 

(group differences vs no group differences) × 50 individuals × 2 groups × 9 regions. For 

the estimation of NLS parameters, each TAC was fitted 10 times with randomly sampled 

starting parameters and the best fit was selected using the nls.multstart package (Padfield 

and Matheson, 2018), to ensure that fits were optimal. In all cases, outcome parameters 

were calculated directly using the rate constants, and not indirectly using a reference tissue, 

i.e.BPND =
k3
k4

. It should be noted that the calculation of BPND in this manner is not a 

recommended practice using NLS, as it is known to be prone to error (Parsey et al., 2000; 

Slifstein and Laruelle, 2001). However, as we show below, direct estimation of BPP is more 

accurate, and can be considered a better index of potential performance of NLS rather than 

BPND.

For SiMBA, fitting the model to so many datasets would have incurred a very large 

computational burden owing to the greater computational requirements. Instead, we limited 

sample sizes to group sizes of 10, 20 and 50, and generated only 50 simulated studies for 

each condition. Applying the model to these datasets resulted in approximately 1.5 core 

years of processing.
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4.1. Comparison of power for detecting group differences

Using the simulated data described above, we performed inference on group differences to 

determine the power or sensitivity, i.e., true positives, and specificity, i.e., false positives, of 

the model.

For inference for the NLS results, we performed both t-tests and linear mixed effects (LME) 

modelled using the generated outcome parameters after being transformed to their natural 

logarithms. Welch’s t-tests were fit for each region separately, while the LME model was 

applied across all regions, with fixed effects for region and for group membership, and a 

random intercept for individuals. These are both common strategies employed in clinical 

PET studies, which are used as a basis for comparison. Although for global differences the 

LME model is obviously more appropriate, t-tests are often employed in PET studies, even 

when differences are global: our intent was not to compare these two approaches with one 

another, but to provide an appropriate baseline comparison for the SiMBA model. P-values 

for the LME were calculated using the lmerTest package (Kuznetsova et al., 2017).

For the hierarchical Bayesian model, binary inferences were determined by assessing 

whether the 95% credible interval of the posterior estimate of the group difference included 

or excluded zero. Due to the small sample size, we fit logspline density functions (Stone 

et al., 1997) to both the upper and lower bounds of the 95% credible intervals across 

simulations, and estimated the proportion of the distributions for which the estimates would 

not include zero using their cumulative density functions. The logspline fits were visually 

assessed, and estimates were closely aligned with the empirical estimates (Supplementary 

Materials S3). For this reason, we have included 95% confidence intervals around the 

estimated power for SiMBA. Furthermore, in order to confirm that the different simulated 

datasets did not induce any bias, we also performed all NLS analyses using the same data to 

which SiMBA was applied, using both empirical and logspline estimation, which produced 

very similar results (Supplementary Materials S4). We calculated 95% confidence intervals 

for the power using bootstrap resampling, i.e., by repeating the logspline procedure for 1000 

samples of the 50 outcomes sampled with replacement.

As shown in Fig. 3, we show that the LME model exhibits greater power compared to 

regional t-tests as expected, and we show that the SiMBA model exhibits substantially 

increased power relative to both of these methods. This suggests that SiMBA demonstrates 

greater sensitivity to detect true differences between groups for the same sample size, 

exhibiting power equivalent to sample sizes of approximately double using NLS estimation 

and LME. We also show that no models exhibit a false positive rate that is significantly 

or substantially differ from 5% (Fig. 4). Taken together, this suggests that SiMBA is more 

sensitive than the traditional NLS methods, without sacrificing specificity

Although LME applied to BPND shows poor performance in Fig. 3, likely owing to 

poor estimation, LME applied to BPP exhibits similar or only marginally reduced power 

compared to when LME is applied to the true values. This supports direct estimation of BPP 

as a good index of specific binding using NLS.
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4.2. Effect size estimation

A secondary objective of this study was to assess how well this new approach estimates 

the magnitude of the “true” effect. In the simulations for which the true group difference 

in BPND was equal to 20%, we assessed the mean of the model estimates of the group 

differences and their standard deviation across the simulations. The results are shown in Fig. 

5.

We observe a small degree of negative bias in the model estimates with SiMBA for all 

outcome parameters and all sample sizes, which is greater for smaller sample sizes, and 

smaller for larger sample sizes. This was not present for BPP or VT in the NLS estimates, 

although there was a small negative bias in BPND estimates.

Beside the observed bias, we also compared the standard deviation of estimates of group 

difference between simulations with each method (error bars in Fig. 5, and in Supplementary 

Materials S5). We show reduced SD of group difference estimates between simulated 

datasets for the LME compared to the t-tests, as well as improved consistency of estimates 

using SiMBA compared to the NLS approaches, comparable to that observed in sample sizes 

of approximately four times larger using LME.

The observed bias in SiMBA estimates is small with respect to the standard deviation of 

estimates across simulated datasets: 53% for n=10, 36% for n=20 and 33% for n=50. This 

means that, given infinite repetitions of a study with sample sizes of n=10, estimated effect 

sizes will be still be higher than the true value in 30% of these repetitions. As such, this bias 

is practically negligible in an applied context.

4.3. Outcome parameter estimation

We also evaluated the accuracy of binding estimates for individual TACs, rather than for 

population group differences. We fit the NLS model to a new set of 1000 simulated TACs 

from each region. For SiMBA, we evaluated its accuracy in simulations of studies comprised 

of different sample sizes: this is because SiMBA utilises the total sample to estimate binding 

within each individual TAC, and its performance ought therefore to improve with larger 

sample sizes. For this reason, we extracted model estimates of individual binding values 

from the first 1000 individuals from the SiMBA simulations with n=10, n=20 and n=50 in 

which there were no differences between groups.

We observe greater correspondence between true simulated binding values and estimated 

values using SiMBA compared to the NLS estimates, in terms of both the root-mean-

squared error (RMSE) as a measure of absolute accuracy, as well Pearson’s r as a measure of 

the relative accuracy. The results are presented in Fig. 6.

Differences between NLS and SiMBA were most pronounced for BPND and VND. This is 

likely attributable to the use of direct estimation using NLS (Parsey et al., 2000; Slifstein and 

Laruelle, 2001). However, even for VT, SiMBA exhibits marked improvements in estimation 

accuracy.
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We also show that with larger sample sizes, the accuracy of the MCMC increases, however 

these increases are subtle. This suggests that SiMBA improves accuracy even in small 

sample sizes.

4.4. Sensitivity to measurement error

Lastly, we assessed the sensitivity of the SiMBA model to varying degrees of measurement 

error. To this end, we simulated sets of 50 studies of simulated data as above with n = 

10 per group and group differences of 20%, but with the mean standard deviation of the 

measurement error set as equal to 2.5%, 5%, 10% and 20% of the mean TAC value. With 

increasing measurement error, the estimated power decreased (from 38% to 22%), and we 

observed increases in both the standard deviation of estimated group differences between 

the simulated studies, as well as the mean standard error of estimated group differences 

within simulated studies (Supplementary Materials S6). It is notable that even with 20% 

measurement error, the estimated power for SiMBA was still numerically higher compared 

to the NLS outcomes in Fig. 3 with half the measurement error.

4.5. Multivariate considerations

In Fig. 3, it is also apparent that SiMBA exhibits even higher power than the t-tests or 

LME models do when applied using the true simulated values of binding estimates. We 

considered this worthy of extra investigation to make sure that it was not indicative of 

pathological behaviour of the model - despite the lack of increase in the false positive 

rate. We tested two potential reasons for how this could occur: firstly, we tested whether 

this could be related to the multivariate nature of SiMBA, which allows the model to pool 

information across the different pharmacokinetic parameters through their intercorrelations, 

despite not testing for between-group differences in the other parameters. Secondly, we 

tested whether the improved power of SiMBA might be attributable to over-regularisation 

of BPND values, i.e. excessive shrinkage of the between-subject variation. While the over-

regularisation hypothesis would imply that the improved power is due to a pathological 

model specification, i.e. a “bug,” the multivariate hypothesis implies that it is advantageous, 

i.e. a “feature.”

To test for over-regularisation, we evaluated the distribution of standardised mean difference 

values of BPND in the simulated studies, i.e. Cohen’s d. If the model was excessively 

shrinking BPND values towards the mean, the separation between groups would be 

artificially increased and the Cohen’s d value would be inflated. When examining the 

data, however, we did not observe any inflation of Cohen’s d values: rather we observed 

close alignment between estimated values and the true standardised differences, and even a 

tendency for underestimation: for the true Cohen’s d = 0.55, the mean estimates were similar 

for each sample size. For n=10, mean d = 0.46 (95% CI: 0.04 – 1.18); n=20, d=0.52 (0.14 – 

0.97); and for n=50, d=0.54 (0.28 – 0.73). We therefore reject this hypothesis.

To test for whether this is an effect of the multivariate model specification, we used the 

simulated datasets to which SiMBA was applied with n=20 and a true difference of 20% 

in BPND (i.e. 0.182 in log(BPND)). Firstly, we fit a modified version of SiMBA using 

univariate normal distributions in place of multivariate normal distributions with all the 
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same priors. While the original multivariate SiMBA model showed 76.0% power for BPND 

(95% CI: 63.7 – 85.4%), the power of the univariate SiMBA model was reduced to 24.5% 

(95% CI: 14.8 – 36.4%). Furthermore, compared to the univariate SiMBA, the multivariate 

SiMBA exhibited less bias of the mean group difference (uni: 0.13, multi: 0.16), lower 

standard deviation of estimates between simulations (uni: 0.075, multi: 0.059), and lower 

standard error of group difference estimates (uni: 0.090, multi: 0.061). Secondly, we also 

fit univariate and multivariate multifactor Bayesian models, using the same priors, to the 

true values from the simulations, i.e. without modelling the TACs. In a similar fashion, the 

multivariate Bayesian analysis yields higher power (86.4%, 95% CI: 76.0 – 93.6%, as shown 

in Fig. 3) than the univariate analysis (20.6%, 95% CI: 11.5 – 30.1), as well as less bias of 

the mean (uni: 0.12, multi: 0.17), lower standard deviation (uni: 0.064, multi: 0.057), and 

lower standard error (uni: 0.090, multi: 0.056). We therefore conclude that the even better 

performance of SiMBA compared to the true values used in the conventional manner is 

explained by its exploiting the estimated correlations between parameters to better inform its 

inferences, and is not indicative of any issues with the model definition.

Lastly, we tested whether the observed correlations might be artefactual, i.e. induced 

by estimation inaccuracies rather than resulting from true correlations. To this end, we 

simulated datasets with n=20 in each group and with the same variances as the simulated 

data, but with no correlation between the simulated parameters in the individual or TAC 

hierarchies. At the TAC level, all bivariate correlations were centred around zero. At the 

individual level, all but one of the 6 correlations were centred around 0. The only exception 

was that of the correlation between BPND and VND, which even showed a tendency to 

be stronger than estimated in the datasets with true correlations. Nevertheless, despite the 

measurement error of the simulated data being more than twice as large as in the original 

data, eleven of the twelve tested associations were centred around zero, suggesting that 

the correlations estimated from the original data are unlikely to be completely artefactual, 

although they may be partially induced by estimation inaccuracies. For more information, 

see Supplementary Materials S7.

5. Application in measured data

The serotonin 1A receptor (5-HT1AR) is thought to play an important role in major 

depressive disorder (MDD) (Kaufman et al., 2016; Shrestha et al., 2012), as well as its 

treatment (Blier et al., 1987; Gray et al., 2013). The receptor itself functions both as an 

autoreceptor in the dorsal raphe nucleus (DRN), reducing the global release of serotonin 

in the brain, and as a postsynaptic heteroreceptor in projection regions of the brain. 

[11C]WAY100635 is the most commonly used PET tracer to image this receptor in the 

brain, however studies of MDD with [11C]WAY100635 have been complicated by several 

methodological considerations, primarily involving the inadequacy of the cerebellum as a 

reference region for the indirect calculation of BPP or BPND (Hirvonen et al., 2007; Shrestha 

et al., 2012). Our data consisted of PET data measured using [11C]WAY100635, acquired 

from 97 individuals. These data consist of 56 healthy controls and 41 patients with MDD, 

of whom 21 had recently been exposed to antidepressants (AE), while 20 were not recently 

medicated (NRM) (Parsey et al., 2010). All subjects gave written informed consent prior to 

participation, and all studies were approved by the regional ethics committees.
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PET measurements were collected for 115 minutes, with 20 frames of duration:3 × 1
3 , 3 × 

1, 3 × 2, 2 × 5, 9 × 10 min. We applied the model to TAC data extracted from 9 regions. 

Fourteen individuals were missing one or more frames due to technical issues, resulting in a 

total of 17,298 observations.

Additional covariates for the pharmacokinetic parameters include age and sex for K1, 

VND and BPND, and a region × diagnosis interaction for BPND to account for potential 

regional differences. For the measurement error (σ), average region size as well as injected 

radioactivity were included as covariates, both of which were first log-transformed and then 

centred.

SiMBA was applied to this data as described, and model estimates for the TACs of a 

randomly selected individual measurement are presented in Fig. 7. Using LOOCV, the 

effective number of parameters (peff) was estimated to be 1,879.5, corresponding to 2.2 

effective parameters per TAC. This can be contrasted with the 5 parameters per TAC 

that must be estimated when using the NLS approach. It should also be noted that this 

comparison is only approximate, as the number of parameters estimated by the SiMBA 

model includes not only the PK parameters, but also measurement error and all the 

covariates for all the parameters. The actual number of parameters estimated in both cases 

are 4240 for SiMBA, and 4365 for NLS. This number is lower for SiMBA is because of our 

decision not to estimate additional Region × Individual variation in νB, i.e.ϕvB, which would 

have accounted for another 873 parameters.

The inferences for the covariates (excluding regional differences) are presented in Table. 

1. For each variable, we present the estimate and its 89% credible intervals, following the 

recommendations of (McElreath, 2016). We also present the directional probability (Pd), 

indicating the posterior probability that the estimate is in the direction of the posterior 

median: as such this value lies between 0.5 and 1) (Makowski et al., 2019).

In frequentist statistics, the model estimates the probability of the data conditional upon 

different values of the estimated parameters, P(Data|θ). In contrast, the posterior probability 

distribution in Bayesian statistics represents our model’s updated degree of certainty, and 

uncertainty, regarding potential values of the model parameters, conditional upon the prior 

and the data (i.e. the likelihood), P(θ|Data, Prior), and can be interpreted as such. Hence we 

can interpret the results of the model as that, given the model, the prior and the data, there 

is a high probability that K1 values decrease with age, and are lower in males compared 

to females. Regarding the effects of MDD and antidepressant medication, there is an 89% 

probability that [11C]WAY100635 BPND is decreased following exposure to antidepressant 

medication in the DRN, and a 94% probability that it is increased in the same region in 

depressed patients who have not recently been medicated. In both cases, the mean parameter 

estimate is indicative of differences of a very small magnitude (4.4% and 5.5% changes in 

BPND respectively). However, estimated differences in the DRN are over twice as large as 

in any other region in both groups of patients, and the probability of changes in the other 

regions is low. These results correspond with empirical research, suggesting that depression 

may be associated with increased 5-HT1A autoreceptor function in the DRN, which reduces 
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serotonin release, which is reversed following exposure to antidepressant medication (Gray 

et al., 2013; Richardson-Jones et al., 2010). While previous PET imaging studies have 

observed increases in [11C]WAY100635 BPF in unmedicated patients compared to controls 

(Parsey et al., 2010; 2006), these studies have not observed differences in BPND, and they 

have made use of indirect quantification using the cerebellum as an imperfect reference 

region rather than estimating the binding potential directly.

6. Discussion

In this study, we demonstrate a new approach for fitting PET pharmacokinetic models to 

TAC data, using a Bayesian hierarchical multifactor model, which allows the model not 

only to borrow strength across both regions and individuals, but also simultaneously to 

perform statistical inference. This functions to incorporate all uncertainty of the estimates 

as well as gaining strength from intercorrelations between pharmacokinetic parameters. 

Using simulations, we demonstrate that this approach substantially improves the power to 

detect a true difference between groups - even beyond that which is possible using the true 

simulated values of the binding outcomes using conventional analysis - without affecting 

the false positive rate. We also show that, while this approach exhibits a small degree of 

bias, it is substantially more consistent in its estimation of effect sizes; and that it improves 

the estimation not only of population differences, but also of individual binding values. 

When applied to a real dataset, the model yields a good fit to TAC data, and parameter 

estimates which are biologically plausible. In sum, we believe that this approach presents a 

more efficient, accurate and robust method by which to perform PET kinetic modelling and 

analysis.

Making use of more data in a model is a commonly applied strategy for improving 

parameter estimation in PET modelling, either simultaneously (Endres et al., 2011; Ogden 

et al., 2015; Raylman et al., 1994; Slifstein et al., 2015) or by estimating one or more 

parameters in advance (Ichise et al., 2003; Logan et al., 1996; Wu and Carson, 2002). Partial 

pooling is a statistically principled technique which serves to establish the appropriate 

balance between estimating parameters independently, or as identical, and thereby optimises 

the pooling of information across the sample. Nonlinear partial pooling approaches have 

been applied in PET to estimate parent fraction concentrations (Varrone et al., 2020; 

Veronese et al., 2013), as well in modelling TACs either between individuals (Chen et 

al., 2019; Kågedal et al., 2012; van Rij et al., 2005; Syvänen et al., 2011) or between 

regions (Berges et al., 2013; Kågedal et al., 2015; Zamuner et al., 2002). The current study 

is the first, to our knowledge, in which PET TAC data has been modelled simultaneously 

using a multifactor model across both regions and individuals; both of which provide unique 

information with which the model can constrain and thereby improve estimation.

Reducing model complexity is the most common strategy for improving the robustness of 

PET kinetic models, but in the absence of partial pooling, this has always been accompanied 

by compromises and assumptions made at the level of the applied pharmacokinetic model. 

Here, estimating not only the pharmacokinetic parameters, but also the blood volume 

fraction, weighting function, and covariate parameters, the complexity of our model is 

reduced to the level of a one-tissue compartment (1TC) model estimated in the traditional 
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manner — or even simpler than the 1TC if the blood volume fraction is also fitted (i.e. as 

a 3-parameter model). This reduced complexity requires the assumption that individuals and 

regions can be modelled as originating from common overarching population distributions. 

However this assumption is inherently reasonable in most applications of PET, as the 

same assumption is also usually made when performing statistical analysis using the 

parameters estimated with the conventional approach, for example when comparing groups. 

We show that this reduced complexity is not accompanied by compromises at the level 

of parameter estimation: rather we show that estimation of both group differences and 

even individual participants’ parameters are improved, in both large and small samples. 

This makes it possible to apply more complex pharmacokinetic models which yield more 

detailed information, with greater stability and identifiability of the estimated parameters. 

This is likely to be useful in numerous applications of PET neuroimaging. For instance, 

for kinetic modelling of the recently-developed radiotracer [11C]UCB-J, despite the 2TC 

model being favoured by model comparison, its estimates of VT tend to be unstable: 

this has led to the 1TC being preferred in practice (Finnema et al., 2018). The current 

results suggest that SiMBA ought not only to stabilise the 2TC model, but also make it 

possible to reliably estimate BPND or BPP directly without the use of a reference region. 

In theory, SiMBA should provide improved estimation compared to the traditional approach 

provided that the distributional assumptions are met, however the degree to which SiMBA 

exhibits improvements over the traditional approach will likely depend on interregional 

and interindividual variance, as well as the strength of correlations between regions and 

parameters.

It can be argued that this approach formalises many of the typical strategies which PET 

modellers usually make use of in a more rudimentary and ad hoc fashion. Modellers must 

be vigilant for cases in which the model fitting algorithm has fallen into a local minimum 

and produces an incorrect, and unlikely, set of outcomes. One common example is observing 

an unusually high VT value originating from an uncharacteristically low k4 value, which is 

often caused by a small upward deviation in the TAC from one or more of the last frames 

of the measurement. In this case, PET modellers will usually check the fitted parameters 

for irregularities, and correct this by adjusting starting parameters, upper or lower limits, 

or choosing a more appropriate weighting function. In the case of hierarchical regression, 

individual estimates are shrunk towards the population mean value: this has the function of 

mathematically encoding a natural skepticism for extreme values in a statistically principled 

manner.

In our simulations BPND was only estimated using direct estimation for NLS, and not using 

indirect methods. This is not a recommended method for quantification of this parameter 

using NLS (Slifstein and Laruelle, 2001) owing to its poor stability. This is reflected in 

poor accuracy (Fig. 6), as well as low power (Fig. 3). Indirect quantification of BPND 

using [11C]WAY100635, using the cerebellum as a reference region, typically using the 

simplified reference tissue model (Lammertsma and Hume, 1996), is more common in 

practice, however this is not without issue owing to several troublesome properties of the 

cerebellum as a reference region for this tracer (Hirvonen et al., 2007; Parsey et al., 2000; 

Shrestha et al., 2012). Application of reference tissue modelling in our simulated data is 

problematic owing to the lack of regional correlation of the measurement error. On the other 
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hand, we observe that VT and BPP estimated directly exhibit similar power using LME 

compared to the true values. This implies that there are no substantive improvements of 

statistical power possible for this application using univariate LME. SiMBA is only able to 

outperform this owing to its multivariate specification.

There are several important limitations to this approach. The most obvious limitation is 

that Bayesian modelling requires significant computational resources. On average, using 3 

processors in parallel, the simulations took approximately 15 minutes per subject, i.e., 5 

hours to fit the data from 20 individuals in the n=10 simulations, and 25 hours for the n=50 

simulations. The simulations were also run with a relatively small number of iterations, so 

increasing the number of iterations to improve the estimation in real datasets would increase 

the computation time further in a linear fashion. For instance, when applying SiMBA to 

the real data in the Analysis section, we run approximately three times as many iterations. 

Secondly, SiMBA as it is currently implemented, is reliant on the parametric description of 

the arterial input function by a linear rise followed by a tri-exponential decay. The AIF of 

some tracers, however, cannot be described using this parameterisation, and therefore the 

model cannot, in its current form, be applied in these cases. We are hoping to develop an 

extension for this methodology which will be able to accommodate more complex AIF data.

A more general limitation of this approach is that it requires skills and expertise in Bayesian 

statistical modelling and the application of MCMC, but also for ongoing collaboration 

with domain experts. Optimal deployment of this approach should be accompanied by 

careful model specification and prior elicitation tailored to the specific application, involving 

ongoing collaboration between modellers/statisticians, clinicians and PET specialists to 

define principled priors, alongside iterative model development and checking in a Bayesian 

workflow (Betancourt, 2020b; Gelman et al., 2020). We would therefore strongly advise 

against the application of this model in a “default” manner. Optimal model specification and 

design is made simpler by the many recent advancements made in computational Bayesian 

methodology. We used STAN to apply MCMC, which itself applies an algorithm which is 

a variant of HMC. While HMC is renowned for being fast and efficient, it allows for the 

assessment of a host of diagnostics to identify degeneracies in the posterior distribution: in 

other words, it “fails loudly.” Recent advancements in Bayesian visualisation methodologies 

and tools also make it easier to quickly evaluate the model and its performance, and 

to identify insufficiencies in the model definition or estimation (Gabry et al., 2019). 

Additionally, the PSIS implemented in the loo package allows not only for model selection, 

but also model evaluation using Pareto k diagnostics, which provide an estimate of each 

observation’s influence on posterior distribution (Vehtari et al., 2020; 2017). This latter 

diagnostic makes it clear for which specific time points and in which specific individuals 

the model is performing most inadequately. For instance, this was helpful in identifying that 

regional variation in the blood volume fraction was necessary in our model.

An important advantage of this study is its implementation using R (R Core Team, 2022) 

and STAN (Carpenter et al., 2017). Both of these tools are open-source, and freely available. 

This makes it easier to apply this method in high-performance clusters, or through cloud 

computing infrastructure, and they can easily be incorporated into a Docker container for 
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example (Boettiger, 2015). The R and STAN code used to apply this method are provided in 

an open repository (https://github.com/mathesong/SiMBA_Materials).

The potential value of SiMBA is not limited to prospective studies; it is also highly 

promising for the retrospective re-evaluation of already-collected data. Due to the high costs 

of PET, alongside the numerous other constraints for imaging psychiatric or neurological 

patients, most clinical PET datasets have been rather small. We anticipate that this method 

will make it possible to study more clinically-relevant research questions which could not 

previously be answered with sufficient power in these datasets, and thereby to improve 

the clinical relevance of PET imaging. However, the potential benefits of retrospective 

re-analysis of existing data is considerably augmented in the context of recent steps taken 

within the field to promote data sharing, as well as to harmonise data storage, reporting 

and analysis procedures (Knudsen et al., 2020; Norgaard et al., 2022). Combined with the 

pooling of smaller datasets from individual research centres, we anticipate that the potential 

for SiMBA to reveal new, clinically-relevant associations will be even greater.

The SiMBA approach is by no means limited to its current implementation, and we plan 

to extend it in several ways. As discussed, we intend to implement functionality to make it 

possible to use SiMBA when the AIF cannot be described by a tri-exponential function. We 

are also working on extending SiMBA to make use of plasma free fraction measurements 

to estimate BPF rather than BPND. Furthermore, we will soon be implementing functionality 

to incorporate the estimation of receptor occupancy parameters within the SiMBA model. In 

summary, we hope that the current implementation of SiMBA serves not as an end point, but 

as a point of departure for new possibilities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Two tissue compartment model schematic diagram. K1, k2, k3 and k4 represent the 

rate constants representing the rate of transfer between compartments. C represents the 

concentration of radioactivity in each compartment, in the specific compartment (S), non-

displaceable compartment (ND), in the whole blood (B), and in the metabolite-corrected 

arterial plasma (P). The total (T) radioactivity concentration recorded using the PET system 

is represented with the green box. Blood vasculature is represented by the cross-section of 

the red artery, representing the blood volume fraction (vB) measured by the PET system, and 

included in CT.

Matheson and Ogden Page 29

Neuroimage. Author manuscript; available in PMC 2022 September 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
The structure of the data and of the model. Panel A: TACs are available for each region 

of each individual. The parameters of the model at the level of individuals are estimated in 

common for all regions (i.e. for columns across rows), while region parameters are estimated 

in common for all individuals (i.e. for rows across columns). Only for the Individuals × 

Regions hierarchy are parameters are estimated for each TAC within each grey box. Panel 

B: Parameters are estimated using either partial pooling (PP) or no pooling (NP). White 

squares represent no pooling, while coloured squares represent partial pooling, coloured by 

the particular one of the seven variance-covariance estimated matrices the parameter belongs 

to, i.e. parameters for which the other parameters with the same colour can influence their 

values through their correlation matrix. Black squares indicate that no additional estimation 

was performed, or that the variance was set to 0, i.e. estimates were completely pooled 

using the estimates made at other levels. Regional abbreviations are as follows: DLPFC is 

dorsolateral prefrontal cortex, MPFC is medial prefrontal cortex, ACC is anterior cingulate 

cortex, PCC is posterior cingulate cortex, and DRN is dorsal raphe nucleus.
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Fig. 3. 
Power is shown here for each method for a true effect size of 20% in BPND (Cohen’s d = 

0.55) for different sample sizes. The results of the other methods are shown in grey to assist 

with comparison. Dashed lines represent the power of each method when applied to the true 

simulated values for comparison, i.e. incorporating sampling variation, but without any error 

in the parameter estimation. Regional abbreviations are as follows: DLPFC is dorsolateral 

prefrontal cortex, MPFC is medial prefrontal cortex, ACC is anterior cingulate cortex, PCC 

is posterior cingulate cortex, and DRN is dorsal raphe nucleus.
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Fig. 4. 
False positive rate is shown here for each method for a true effect size of 0% in BPND 

for different sample sizes. Dotted lines represent a 5% false positive rate for comparison. 

The results of the other methods are shown in grey to assist with comparison. Regional 

abbreviations are as follows: DLPFC is dorsolateral prefrontal cortex, MPFC is medial 

prefrontal cortex, ACC is anterior cingulate cortex, PCC is posterior cingulate cortex, and 

DRN is dorsal raphe nucleus.
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Fig. 5. 
Mean estimated group differences shown for all methods. Error bars represent the standard 

deviation across simulations for each method. A full comparison of the standard deviation of 

the estimates is presented in Supplementary Materials S5. The results of the other methods 

are shown in grey to assist with comparison. The y axis has been truncated to emphasise 

the estimation bias as well as the differences in SD between LME and SiMBA. Regional 

abbreviations are as follows: DLPFC is dorsolateral prefrontal cortex, MPFC is medial 

prefrontal cortex, ACC is anterior cingulate cortex, PCC is posterior cingulate cortex, and 

DRN is dorsal raphe nucleus.
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Fig. 6. 
Correspondence between individual true binding outcome values and estimated outcomes. 

RMSE represents the root-mean-square error, a measure of absolute deviation from the 

true values. Correlation is the Pearson’s r correlation, used as a measure of relative 

correspondence between the true and measured values. The n represents the number of 

participants per group, i.e. n = 10 corresponds to a total sample size of n = 20. Regional 

abbreviations are as follows: DLPFC is dorsolateral prefrontal cortex, MPFC is medial 

prefrontal cortex, ACC is anterior cingulate cortex, PCC is posterior cingulate cortex, and 

DRN is dorsal raphe nucleus.
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Fig. 7. 
Representative TACs for one individual. Shown are the data points with mean posterior 

fitted line, surrounded by the 95% credible interval, which itself is surrounded by the 95% 

prediction interval. The credible intervals enclose the region in which 95% of the posterior 

probability is located for where the predicted curve lies, while the prediction intervals 

enclose the region in which the model assigns a 95% probability that the data will be 

observed.
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