Special Article

An Introduction to Artificial Intelligence in Developmental and

Behavioral Pediatrics

Brandon S. Aylward, PhD,* Halim Abbas, MsC,* Sharief Taraman, MD,*t%§]| |
Carmela Salomon, PhD,* Diana Gal-Szabo, PhD,* Colleen Kraft, MD, FAAP *{**
Louis Ehwerhemuepha, PhD,t§|| Anthony Chang, MD, MBA, MPH, MS,t%| |

Dennis P. Wall, PhD*tt

ABSTRACT: Technological breakthroughs, together with the rapid growth of medical information and improved
data connectivity, are creating dramatic shifts in the health care landscape, including the field of developmental
and behavioral pediatrics. While medical information took an estimated 50 years to double in 1950, by 2020, it
was projected to double every 73 days. Artificial intelligence (Al)-powered health technologies, once consid-
ered theoretical or research-exclusive concepts, are increasingly being granted regulatory approval and in-
tegrated into clinical care. In the United States, the Food and Drug Administration has cleared or approved over
160 health-related Al-based devices to date. These trends are only likely to accelerate as economic investment
in Al health care outstrips investment in other sectors. The exponential increase in peer-reviewed Al-focused
health care publications year over year highlights the speed of growth in this sector. As health care moves
toward an era of intelligent technology powered by rich medical information, pediatricians will increasingly be
asked to engage with tools and systems underpinned by Al. However, medical students and practicing clinicians
receive insufficient training and lack preparedness for transitioning into a more Al-informed future. This article
provides a brief primer on Al in health care. Underlying Al principles and key performance metrics are de-
scribed, and the clinical potential of Al-driven technology together with potential pitfalls is explored within the

developmental and behavioral pediatric health context.
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OVERVIEW OF ARTIFICIAL INTELLIGENCE

First coined'™"” in 1956 by John McCarthy, artificial
intelligence (AD is an interdisciplinary field of computer
science that involves the use of computers to develop
systems able to perform tasks that are generally associ-
ated with intelligence in the intuitive sense. The rise of
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“big data,” alongside the development of increasingly
complex algorithms and enhanced computational power
and storage capabilities, has contributed to the recent
surge in Al-based technologies.! Al operates on a con-
tinuum, variously assisting, augmenting, or autonomizing
task performance. Automating repetitive tasks, for exam-
ple, may only require an “assisted” form of intelligence.'
On the other end of the human-machine continuum,
however, an “autonomous” form of intelligence is re-
quired for machines to independently make decisions in
adaptive intelligent systems.' Within the health care con-
text, Al is not envisioned as a technology that would su-
persede the need for skilled human clinicians. Rather, AI-
based technologies will likely play pivotal roles in aug-
menting existing diagnostic and therapeutic toolkits to
improve outcomes. While pediatricians may have limited
familiarity with Al in a health care context, they are likely
already making use of Al-powered technologies in their
daily lives. Email spam filters, e-commerce platforms, and
entertainment recommendation systems, for example, all
rely on Al

Machine Learning: Underlying Principles

Machine learning (ML) refers specifically to Al meth-
odologies that incorporate an adaptive element wherein
systems have the ability to “learn” using data to improve
overall accuracy. At a basic level, all ML involves an
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input, a function (or some mathematical calculations),
and an output. In ML models, the independent variables
are termed inputs or features (e.g., age, gender, medical
history, clinical symptom) and the dependent variable is
referred to as the output label or target variable (e.g.,
diagnostic label, disease level, survival time). Both
structured and unstructured data can be used to train ML
models (see Fig. 1). While statistical and ML techniques
overlap, they are distinguishable by their underlying
goals. Statistical learning is usually hypothesis-driven
with the goal of inferring relationships between vari-
ables. ML is method-driven with the goal of building a
model that makes actionable predictions.

Machine Learning Workflow

Clinicians familiar with the development and validation
of existing behavioral screening and diagnostic tools will
already have a general sense of product development
workflow. Specific to the ML workflow, however, is an
ability to learn from exposure to data, without the level of
prespecified instructions or prior assumptions required in
traditional product development. The likelihood of dis-
covering new features and associations is therefore higher
because workflow does not require the product designer
to determine in advance which variables may be impor-
tant. When building predictive ML models, the full data set
must first be split into parts. Typically, the largest of these
parts is the “training set” used for initial model training. A
smaller portion of the data, the “validation set,” is then
used to support hyperparameter tuning and model selec-
tion. Ultimately, the data sets help “train” the system to
learn from similar patients, clinical features, or outcomes,
which helps the algorithm become more accurate over

Structured Data

time as data increase and more tests are conducted. At the
end of this iterative process, a “test” set may be used to
test the model’s generalizability to data that was not pre-
viously seen during any prior aspect of the model’s de-
velopment. Prospective clinical validation studies may
then be conducted to test the real-world performance
of the model on data that were not previously available
to model developers. Figure 2 illustrates a typical ML
workflow.

Machine Learning Approaches

Data type, structure, and number of features, along
with the nature of the clinical questions being explored,
all inform the type of ML approach that may be taken.
Classical ML, which includes supervised learning and
unsupervised learning, is generally applied to less
complex data sets and clinical scenarios with a small
number of features.' Table 1 provides a brief descriptive
summary of these approaches.

Neural Networks and Deep Learning

While the ML techniques described above are suitable
for many clinical problems, in cases in which nonlinear
and complex relationships need to be mapped, net-
works and deep learning techniques may be more ap-
propriate. An artificial neural network is a complex form
of ML model designed to mimic how the neurons in the
brain work. This is achieved through multiple layers of
aggregation nodes known as neurons because they sim-
ulate the function of biological neurons with mathe-
matical functions guiding when each node neuron
would fire a signal to another. Features can be multiplied
or added together repeatedly. The mathematical formu-
lation of neural networks is such that complex nonlinear

Unstructured Data

Structured data are commonly input into
the model as a list (or vector) of numbers
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Patient’s Lab Values

Diagnosis Codes

R
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Images and Videos
(e.g. radiological and cardiac imaging)
Images are input as grids of numbers each
representing an intensity at a given pixel location.

=

BP Readings

Medical Prescriptions

Figure 1.
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=

Natural Language
(e.g. digital and paper clinical notes)
Embeddings and bag of words are examples of
unstructured natural language constructs.

Examples of structured and unstructured data that can be used to train machine learning models.
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Figure 2. (1) Data are selected based on the type of prediction task to
be undertaken. (2) Data are processed to prepare them for use and to
address any inadequacies such as missing or biased data or incorrectly
formatted data fields. (3) Features expected to contain the information
most relevant to the prediction task are selected or formulated and
extracted from the full feature set. (4) The data set is split into training
and validation sets. Before model deployment, if sufficient data exist, a
third “test set” may also be used to test the model’s performance with
novel data. (5) After iterative improvement, the model is deployed in real-
world scenarios.
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relationships can be modeled efficiently before an output
layer that depends on the prediction task. Given the
complexity and volume of health care data, this tech-
nique is becoming increasingly popular. Figure 3 illus-
trates both simple neural network and deep learning
neural network.
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Evaluating Model Performance

The ability to explain the output of a model and assess its
performance, both in the clinical context and in relation to
its intended purpose, will increasingly become part of the
future clinician’s role. Key performance metrics relevant to
ML are summarized in Table 2. We should note that these
metrics do not always provide a straightforward in-
terpretation of the performance of a model'® because they
can be biased by the nature of the data; the end result
should be determined by whether clinical value can be
obtained from the model. The model’s accuracy and
threshold, along with the disease prevalence and the mod-
el's performance compared with existing “gold-standard”
non-Al-informed approaches, should all be considered.'

ARTIFICIAL INTELLIGENCE IN DEVELOPMENTAL
AND BEHAVIORAL PEDIATRICS: OPPORTUNITIES
AND CHALLENGES
Opportunities

In the field of developmental and behavioral pediat-
rics, artificial intelligence (AI) can assist with a broad
array of tasks including diagnosis, risk prediction and
stratification, treatment, administration, and regula-
tion.'® Core analytic tasks that may fall under the Al
umbrella are depicted in Figure 4.

Enhancing Clinical Decision-Making, Risk
Prediction, and Diagnosis

Massive and constantly expanding quantities of med-
ical data including electronic medical records (EMRs),
high-resolution medical images, public health data sets,
genomics, and wearables have exceeded the limits of
human analysis.'® Al offers opportunities to harness and
derive clinically meaningful insights from this ever-
growing volume of health care data in ways that tradi-
tional analytic techniques cannot. Neural networks, for
example, trained on much larger quantities of data than
any single clinician could possibly be exposed to in the
course of their career, can support the identification of
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lllustration of a simple neural network and a deep learning neural network. Compared with the simple neural network (A) that contains only

1 hidden layer, deep learning networks (B) contain multiple hidden layers. The more layers that are added, the “deeper” the model becomes. Inputs can
be multiplied and added together many times. The outputs of this process then become the inputs that are fed into the next hierarchical layer. The

process can be repeated many times before a prediction is made.
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Table 1. Examples of Machine Learning Approaches

Machine Learning Type

Supervised learning useful when the outcome variable of
interest in the training data set is known (e.g., presence or
absence of disorder)

Key Features

Task-driven classification or regression: We ‘supenvise’ the
program’s learning by giving it labeled input (or ‘features’) and lesions
corresponding output (or ‘farget variables’). The program then ‘leams’

Clinical Example

Distinguish between benign and malignant

the relafionship between them. Leaming depends on a mathematical
function (the loss function) that estimates the goodness of fit that is used
to determine adjustments required to improve model performance. The
goal is to use the training data to minimize erors such as
misclassification. If successful, the model can eventually be used to
predict an outcome such as the presence or absence of a disease from

new data.

Unsupervised learning useful when the outcome of interest is
unknown, unlabeled, or undefined or when we want fo
explore and identify patterns within the data

Data-driven clustering: The model examines a collection of unlabeled
examples, then groups them in an ‘unsupervised’ manner based on some
shared commonalifies it defects. Unsupervised learning can include
clustering and/or dimensionality reduction. In dimensionality reduction,
the goal is to reduce the number of variables of the data set while

A researcher who is inferested in how symptoms
or features of ADHD in a data set tend to
cluster together may use unsupervised
learning techniques to identify groups of
patients.

keeping the principal ones that explain the most variation in the data.
Ultimately, the output of unsupervised leaming can serve as inference and

inputs for supervised learning.

ADHD = attention-deficit/hyperactivity disorder.

subtle nonlinear data patterns. Such approaches promise
to significantly enhance interpretation of medical scans,
pathology slides, and other imaging data that rely on
pattern recognition.'® By observing subtle nonlinear cor-
relations in the data,'”'® machine learning (ML) ap-
proaches have potential to augment risk prediction and
diagnostic processes and ultimately provide an enhanced
quality of care.

A number of studies within the field of developmental
and behavioral pediatrics demonstrate the potential for
Al to enhance risk prediction practices. ML techniques
were used, for example, to analyze the EMRs of over a
million individuals to identify risk for Fragile X based on
associations with comorbid medical conditions. The
resulting predictive model was able to flag Fragile X
cases 5 years earlier than current practice without re-
lying on genetic or familial data."® A similar approach
was taken to predict autism spectrum disorder (ASD) risk
based on high-prevalence comorbidity clusters detected
in EMRs.*® Digital biomarkers inferred from deep
comorbidity patterns have also been leveraged to de-
velop an ASD comorbid risk score with a superior pre-
dictive performance than some questionnaire-based
screening tools.”' Automated speech analysis was com-
bined with ML in another study to accurately predict risk
for psychosis onset in clinically vulnerable youths.** In
this proof-of-principle study, speech features from tran-
scripts of interviews with at-risk youth were fed into a
classification algorithm to assess their predictive value
for psychosis.

Research has also highlighted the potential for Al to
streamline diagnostic pathways for conditions such as
ASD and attention-deficit/hyperactivity disorder (ADHD).
Such research is promising given that streamlining
diagnosis could allow for earlier treatment initiation
during the critical neurodevelopmental window. For ex-
ample, researchers have used ML to examine behavioral

Vol. 44, No. 2, February/March 2023

phenotypes of children with ASD with a high rate of
accuracy and to shorten the time for observation-based
screening and diagnosis.>>*’ In addition, ML has been
used to differentiate between ASD and ADHD with high
accuracy using a small number of measured behaviors.?®
Research has also explored facial expression analysis
based on dynamic deep learning and 3D behavior analysis
to detect and distinguish between ADHD, ASD, and
comorbid ADHD/ASD presentations.*’

Expanding Treatment Options

Along with risk prediction and diagnostics, Al holds
potential to enhance treatment delivery in the field of
developmental and behavioral pediatrics. Al robots have
been used in a number of intervention studies to en-
hance social skill acquisition and spontaneous language
development in children with ASD.>>*! The potential
utility of Al-enabled technologies to treat disruptive be-
haviors and mood and anxiety disorders in children®? is
also being explored. In the field of ADHD, a number of
emerging technologies show promise to infer behaviors
that can then be used to tailor feedback to enhance self-
regulation.% For example, in 1 study, a neural network
was used to learn behavioral intervention delivery tech-
niques based on human demonstrations. The trained
network then enabled a robot to autonomously deliver a
similar intervention to children with ADHD.**

As health data infrastructure expands in size and so-
phistication, future AI technologies could potentially
support increasingly personalized treatment options.6
Once comprehensive and integrated biologic, anatomic,
physiologic, environmental, socioeconomic, behavioral,
and pharmacogenomic patient data become routinely
available, Al-based nearest-neighbor analysis could be
used to identify “digital twins.”'® Patients with similar
genomic and clinical features could be identified and
clustered, for example, to allow for highly targeted
treatments.>> Such approaches, while currently largely

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. €129



Table 2. Common Metrics Used in Machine Learning Model Evaluation

Metric

Precision: (correctly predicted positive) /(total predicted positive) = TP/Tp + FP

Precision is also referred fo as positive predictive value (PPV)

Recall: (correctly predicted posifive) /(total correct posifive observation) = TP/Tp + FN.
In a binary clossification, recall is also referred to as “sensitivity”
Speificity: (correctly predicted negative) /(total correct negative observation) = TN/TN + FP

Accuracy: The number of correctly clossified examples (TP + TN) /the total number of examples
tht were classified (TP + TN + FP + FN)

F1 score: The harmonic mean of the Precision and Recall scores

The receiver operating characteristic curve (ROC curve): A graph that displays the
sensifivity of the model on the y-uxis and the false positive ratio on the x-axis. The graph plots
these metrics at different classification thresholds.

The area under the ROC curve (ROC-AUC or AUROC): A single number that summarizes
the efficacy of the algorithm as measured by the ROC curve. Ranges in value from 0 to 1.

Precision recall curve (AUPRC): A graph that displays precision on the y-uxis and recall on the
x-0xis at various thresholds. Unlike the ROC curve, the PR curve does not use the number of true-
negative results.

Clinical Utility

Used together to help provide an indicator of the effectiveness of an algorithm’s
performance. These metrics usually work in opposition. In other words, increasing
recall will decrease precision and vice versa.

Precision, also known as PPV, tells us the percentage of the cases our model identified
as posifive that were actually truly positive. For example, if o model tesfing for
presence or absence of a disease had a precision of 91%, this would indicate that
91% of people whom the model determined to have the disease actually had it.

Recall tells us the proportion of cases that were truly positive that our model managed
to correctly identify as such.

This figure tells us the proportion of all the negative cases we were able to correctly
identify as negative.

The fraction of predictions the model made correctly. Accuracy on its own should not be
used to evaluate model performance, especially in cases in which there are
significant differences in the number of posifive and negative cases in a population.

This score combines Precision and Recall to help measure the model’s accuracy. In
cases in which there is a class imbalance between negative and positive cases, the
F1 score can provide a better measure of the incorrectly classified cases than
accuracy. F1 scores range from 0 fo 1, with higher scores indicating better
performance of the model.

Allows us to visually assess how the model performs across ifs entire operating range
(i.e., with thresholds from 0.0 to 1.0).

Can help us to understand the tradeoff between sensitivity (frue-positive rate) and
specificity (1 false posifive rate) af different thresholds.

AUROC can help us to understand the probability that the model will rank a random
positive example higher than a random negative sample.

An AUC of 0.0 means the model’s predictions are wrong 100% of the time. An AUC of
1.0 indicates the model’s predictions are correct 100% of the time. An AUC of 0.5
indicates the model is no better than a completely random classifier. An AUC of 0.9 or
higher generally indicates good model classification performance.”

More robust to imbalanced data than ROC curves.

Typically, the higher of 2 curves appearing on a PR plot would likely represent the
better performing one. Like for the ROGAUC, an area under the PC curve can be
calculated (AUPRC).

oThis number will vary depending on context and condition.

theoretical, could help predict therapeutic and adverse
medication responses more accurately and also form an
evidence base for personalized treatment pathways.36

Streamlining Care and Enhancing Workplace
Efficiency

Artificial intelligence algorithms have potential to au-
tomate many arduous administrative tasks, thereby
streamlining care pathways and freeing clinicians to
spend more time with patients.>” Natural language pro-
cessing solutions, for example, are being developed to
decrease reliance on human scribes in clinical encoun-
ters.>® Such approaches may be used to process and
transform clinicalfree text into meaningful structured
outcomes,” automate some documentation practices
through text summarization,® and scan textbased re-
ports to support accurate and rapid diagnostic recom-
mendations.*! Natural language processing solutions
may prove particularly valuable in fields such as child
and adolescent psychiatry and developmental and be-
havioral pediatrics that are extremely text—heavy.a’6 De-
velopmental behavioral assessments often involve text-

€130 Al in Developmental and Behavioral Pediatrics

heavy tasks such as documentation of complex patient
histories, results of extensive testing, and collateral history
from multiple informants. Given the current national US
shortage of child and adolescent psychiatrists with a me-
dian of 11 psychiatrists per 100,000 children,** Albased
approaches that streamline and automate administrative
tasks seem particularly promising. Al-assisted image in-
terpretation has also shown potential to increase workplace
productivity and provide considerable cost savings over
current practice‘lo’“ Techniques to streamline medical re-
search and drug discovery by using natural language pro-
cessing to rapidly scan biomedical literature and data mine
molecular structures are also being developed.'®

Promoting Equity and Access

Artificial intelligence has potential to address several
bias and access disparities apparent in existing care
models. While access to developmental and behavioral
specialists is extremely limited in much of the world, it is
estimated that over 50% of the global population has
access to a smartphone.'56 Digital Al-based diagnostic
and treatment platforms could thus potentially expand

Journal of Developmental & Behavioral Pediatrics
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Figure 4. Core analytic tasks that may fall under the Al umbrella. Dx, diagnosis; Tx, therapeutic.

access to underserved and geographically remote pop-
ulations.® Thoughtful use of AI may also help to address
racial, socioeconomic, and gender biases. In the field of
developmental and behavioral pediatrics, for example, it
has been noted that despite ASD prevalence rates being
roughly equal across racial/ethnic and socioeconomic
groups, human clinicians are more likely to diagnose
Black, Latinx, and Asian children, as well as children
from low-income families, at a later date than White
children and children with a higher socioeconomic sta-
tus. 4 By integrating and training on large racial-conscious
and gender-conscious data sets, Al algorithms can assess
thousands of traits and features and build on the findings
to assist clinicians in making more accurate, timely, and
less biased ASD diagnosc:s.44

Challenges

While AI presents multiple opportunities to the field
of developmental and behavioral pediatrics, to date, a
very few Al-based technologies have been broadly in-
tegrated into clinical practice. Challenges to the wide-
spread deployment of Al in health care settings, along
with potential solutions, are outlined below.

Data Bias

Any Al algorithm is only as good as the data from
which it was derived. Simply put, the performance of the
algorithm and the quality of its prediction are dependent
on the quality of the data supplied. If the data are biased,
imbalanced, or otherwise an incomplete representation
of the target group, the derivative model’s generaliz-
ability will be limited.*> A class imbalance problem can
occur, for example, in cases in which the total number
of 1 class of data (i.e., “girls” or “disease positive status”)
is far less than the total number of another class of data
(i.e., “boys” or “disease negative status”). These biases
can sometimes be identified and addressed through

Vol. 44, No. 2, February/March 2023

techniques such as over- or undersampling, but at other
times with “black-box” learning, it is harder to detect and
fix the bias in the algorithm(s). Representative pop-
ulations for most conditions, including in pediatrics, are
not a homogeneous group. Thus, it is essential that the
data sets used to train these models include balanced data
with diverse representations of the clinical symptoms
across gender, age, and race in order for the model to be
generalizable. Without such safeguards, models may, in
fact, perpetuate or amplify stereotypes or biases.”%>

Data Sharing and Privacy Concerns

To robustly train an algorithm, sufficient data are re-
quired, yet pediatric data sets can be limited by small sam-
ple sizes, especially when split by age group. For the case of
rare pediatric diseases, extremely low prevalence rates
mean the amount and type of data available to train a model
on very limited.® Creative use of deep learning techniques
such as generative adversarial networks may be required in
such cases to counteract the lack of data.' Generative
adversarial networks pit one neural network against another
for the purpose of generating synthetic (yet realistic) data to
support a variety of tasks such as image and voice genera-
tion. While such techniques can be extremely useful when
appropriately applied, overreliance on synthetic data also
comes with its own set of risks.' Multiple data sets may also
be combined to produce a sufficient volume of data for
model training. However, combining data sets presents its
own set of challenges including data privacy and ownership
issues'® and difficulties integrating data with heterogeneous
features. Federated learning is an emerging ML technique
with potential to address some of these data sharing and
privacy concerns. Federated learning allows algorithms to
train across many decentralized servers or edge devices,
exchanging parameters (i.e., the models’ weights and bia-
ses) without explicitly exchanging the data samples them-
selves. This technique obviates many of the privacy issues

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. €131



engendered by uploading highly sensitive health data from
different sources onto a single server.?’

Algorithmic Transparency and Explainability

A lack of transparency in certain types of ML algo-
rithms such as deep neural networks has raised concern
about their clinical trustworthiness.’” Many models used
to analyze images and text, for example, include levels of
complexity and multidimensionality that exceed in-
tuitive understanding or intf:rprf:tation.48 In cases in
which a clinician is unable to understand how the algo-
rithm produces an output, should the algorithm be relied
on as part of their clinical decision-making process? Such
concerns have led to calls for algorithmic deconvolution
before use in health care settings.'® Other researchers™®
argue, however, that current approaches to explain-
ability disregard the reality that local explanations can be
unreliable or too superficial to be meaningful and that
rigorous model validation before deployment may be a
more important marker of trustworthiness.

Consumer and Clinician Preparedness

If patients and clinicians mistrust Al-based technolo-
gies, and/or lack sufficient training to understand, in
broad terms, how they function, clinical adoption may
be delayed. As with all new tools, implementation mat-
ters, and discipline is required to ensure safe deployment
of Al-based devices without loss of clinician skill. Over-
reliance on Al-based imaging at the expense of history
and physical examination, for example, should be avoi-
ded. Patient reservations that will require consideration
include safety, cost, choice, data bias, and data security
concerns.* While the American Medical Association has
called for research into how Al should be addressed in
medical education,”® current medical training lacks a
consistent approach to Al education, and key licensing
examinations do not test on this content.® Clinicians and
medical students alike have identified knowledge gaps
and reservations regarding the use of Al in health care.''”
'> A number of preliminary frameworks for integrating
Al curriculum into medical training have been pro-
posed®>>!; however, additional research is urgently re-
quired to develop and then integrate standardized Al
content into medical training pathways.

Ethical Ambiguities

From an ethical standpoint, users of this technology
must consider the direct impact and unintended conse-
quences of Al implementation in general as well as spe-
cific implications within the clinical context.’* A number
of well-publicized non-health-related cases have illus-
trated Al data privacy concerns, along with the ethically
problematic potential for Al to amplify social, racial, and
gender biases.”® There are also ethical concerns around
the magnitude of harm that could occur if an ML algo-
rithm, deployed clinically at scale, were to malfunction;
associated impacts could far exceed the harm caused by
a single clinician’s malpractice.'® The use of Al for clin-
ical decision-making also raises questions of account-
ability, such as who is liable if unintended consequences
result from use of the technology (e.g., missed di-
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agnosis),52 or what course of action an autonomous
therapy chatbot might take if it detects speech patterns
indicative of risk for selfharm.* Ethical Al frameworks
addressing such concerns are under development,%’SS
and researchers are calling for Al technologies to un-
dergo robust simulation, validation, and prospective
scrutiny before clinical adoption.'’

Regulatory and Payment Barriers

Notwithstanding data, provider adoption, and ethical
safeguards, Al technologies face several systematic chal-
lenges to be readily implemented into clinical practice,
including regulatory, interoperability with EMRs and data
exchange, and payment barriers. Given that Al devices
can learn from data and alter their algorithms accord-
ingly, traditional medical device regulatory frameworks
might not be sufficient.>® As a result, the Food and Drug
Administration has developed a proposed regulatory
framework that includes a potential “Predetermined
Change Control Plan” for premarket submissions, in-
cluding “Software Pre-Specifications” and an “Algorithm
Change Protocol,” to address the iterative nature of Al/
ML-based Software as a Medical Device>’ technologies.
Health care organizations and practices will also need to
establish a data infrastructure and privacy policy for data
that are stored across multiple servers and sources (e.g.,
medical records, health sensors, medical devices, etc).
Development of new digital medical software and de-
vices that use Al are likely to outpace the current health
care payment structure. New billing codes associated
with new treatments and procedures require formal ap-
provals by national organizations with subsequent
adoption by insurances, both public and private. This
process can take many months to years. To facilitate
provider and patient adoption of new Al technologies
which may improve quality of care, streamlined de-
velopment of billing codes for technologies using Al
should be developed.

SUMMARY

Artificial intelligence (AD in health care is not just a fu-
turistic premise, and adoption has shifted from the “early
adopter” fringe to a mainstream concept.”> The conver-
gence of enhanced computational power and cloud stor-
age solutions, increasingly sophisticated machine learning
(ML) approaches and rapidly expanding volumes of digi-
tized health care data, has ushered in this new wave of Al-
based technologies.*® Strong economic investment in the
AT health care sector, together with the growing number of
Al-driven devices being granted regulatory approval, un-
derscores the increasing role of Al in the future health care
landscape.'® In the field of developmental and behavioral
pediatrics, we are at an inflection point at which Al-driven
technologies show potential to augment clinical decision-
making, risk prediction, diagnostics, and treatment de-
livery. In addition, AI may be leveraged to automate certain
time-intensive and arduous clinical tasks and to streamline
workflows. Future research is still needed to address
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impediments to widespread clinical adoption. These in-
clude data bias, privacy, ownership and integration issues,
disquietude over a perceived lack of algorithmic trans-
parency, regulatory and payer bottlenecks, ethical ambi-
guities, and lack of rigorous and standardized Alfocused
clinician training. Al technologies are not meant to replace
the practicing physician or his/her clinical judgment, nor
will they serve as a panacea to all the shortcomings of
modern health care. However, we are optimistic about the
future of Al in health care, including developmental and
behavioral pediatrics. By enhancing the efficiency and im-
pact of health care processes, Al approaches promise to
reduce barriers to care and maximize the time clinicians
are able to spend with their patients.
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