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Abstract

The analysis of mutualistic networks has become a central tool in answering theoretical and applied questions
regarding our understanding of ecological processes. Significant gaps in knowledge do however need to be bridged
in order to effectively and accurately be able to describe networks. Main concern are the incorporation of species
level information, accounting for sampling limitations and understanding linkage rules. Here I propose a simple
method to combine plant pollinator effort-limited sampling with information about plant community to gain
understanding of what drives linkage rules, while accounting for possible undetected linkages. I use hierarchical
models to estimate the probability of detection of each plant-pollinator interaction in 12 Mediterranean plant-pollinator
networks. As it is possible to incorporate plant traits as co-variables in the models, this method has the potential to be
used for predictive purposes, such as identifying undetected links among existing species, as well as potential
interactions with new plant species. Results show that pollinator detectability is very skewed and usually low.
Nevertheless, 84% of the models are enhanced by the inclusion of co-variables, with flower abundance and
inflorescence type being the most commonly retained co-variables. The predicted networks increase network
Connectance by 13%, but not Nestedness, which is known to be robust to sampling effects. However, 46% of the
pollinator interactions in the studied networks comprised a single observation and hence could not be modeled. The
hierarchical modeling approach suggested here is highly flexible and can be used on binary or frequency networks,
accommodate different observers or include collection day weather variables as confounding factors. An R script is
provided for a rapid adoption of this method.
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Introduction

Complex networks of biotic interactions such as predation,
parasitism and pollination play an important role in shaping and
maintaining biodiversity [1]. They can mediate important
ecosystem functions, including those ecosystem services on
which human well-being is dependent [2]. Our understanding of
the structure and functioning of interactions has been
accelerated by the use of network theory [1,3]. In particular,
mutualistic interactions such as pollination, has received a lot
of attention due to their functional importance. Mutualistic
interaction networks are not randomly organized, but present
some common properties. For example, the number of links
per species tends to follow a truncated power law distribution
[4] and the interaction web is usually nested, meaning that
there is a core of generalist plant and pollinator species, and an
asymmetric dependence between them [5,6]. As a

consequence, plant-pollinator networks tend to be more robust
to simulated extinctions than random networks [7].

Despite the clear benefits of using a network approach to
investigate mutualistic interactions at the community level
[8–13], limitations are evident [14–16]. First, the structure of
plant-pollinator networks implies that the number of possible
interactions increases exponentially with network size.
Accurately detecting all interactions that are occurring in
realistic large networks would require an enormous sampling
effort, which is beyond the budget and time allocation of most
projects [17]. In fact, the few studies that evaluate the sampling
completeness of a plant-pollinator networks show that after four
years of sampling, networks had not reached saturation [18].
Although many principal network metrics are robust to
sampling bias [19,20], under-sampled communities may
produce results that are difficult to interpret [15,21]. This is of
less importance when comparisons among networks are
relative, but under-sampling becomes more important when
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attempting to describe species roles within a network, such as
specialization, or to predict ecological processes, such as
susceptibility to extinction [7]. For example, rarity can be
confounded with specialization and /or may drive observed
patterns if overlooked [21,22]. Second, some researchers have
claimed that network analysis is usually decoupled from
ecological relevance [15], in that species are treated as nodes
regardless of their life history characteristics. For example,
despite the fact that flower morphology, abundance and
rewards offered may influence attractiveness to pollinators
[23,24] this information is usually not incorporated into network
analysises. However, the use of species traits to inform the
linkage rules of plants and pollinators is a developing field
[25–29].

Interaction detectability (i.e. the probability to detect an
interaction between a plant and its pollinator) can be enhanced
by a number of methods. While most communities are sampled
with a phytocentric approach (i.e. observing flowers and
recording animal visits), including a zoocentric approach (i.e.
sampling pollinators and measuring pollen loads [30]) can
increase detectability and thus network Connectance (i.e. the
number of links realized out of all possible links [31]). Similarly,
using pollen stored in bee nests to infer visitation can increase
the number of links for those species [22]. These approaches,
are however time consuming and not feasible for most bee
species, some of which are too rare to collect in sufficient
numbers or nest in inaccessible substrates. In addition, other
statistical methods proposed to account for undetected links
[32,33] require independent data on both plant and pollinators,
or data collected at the individual level to be implemented. This
information is usually not available in published networks.

The probability of detecting an organism in time and space
(i.e. detectability) is an important issue in other fields of
research, like wildlife management [34]. Assessing the
occupancy by a given species in a patch (i.e. presence/
absence or frequency of this species in a predefined area) is
complicated because imperfect detection of individuals or
species can introduce substantial measurement error and
obscure underlying ecological relationships if ignored.
Recently, however, a broad class of hierarchical models has
been developed [35,36]. Those methods offer a unified
framework for analysis by formally recognizing that
observations are generated by a combination of (1) a state
process determining abundance or species occurrence at each
site and (2) a detection process that yields observations
conditional on the state process. The model for the state
process describes abundance or occurrence at each site, but
due to imperfect detection, these quantities cannot be
observed directly and are regarded as latent variables.
Moreover, parameters governing occurrence and detection
processes can be modeled as functions of covariates [37].
Because these models have a straightforward interpretation
paralleling mechanisms under which the data arose (i.e.
detectability), they have recently gained popularity. While these
tools have been designed to deal with species’ occurrence and
abundance, its translation to interaction occurrences or
frequency is straightforward. Here, we treat plant species as
sites that the pollinators occupy or do not occupy, in a given
sampling event. The two main assumptions of the models are:

(1) the interaction or interaction frequency of a given pollinator
species with each plant species remains constant during a
sampling season and (2) repeated sampling periods at each
plant are independent. Plant-pollinator networks fulfill both of
these assumptions as they are usually treated as static
snapshots along short time periods (i.e. season), where several
independent sampling events are performed on each plant
species. These models are advantageous in that instead of
pooling interactions across sampling events on the same plant
species, they account for multiple sampling events to estimate
the probability of detecting a particular pollinator visiting each
plant species. Further, the use of these estimated variables
(i.e. detectability) enable estimation of the real number of
interactions received by each plant.

This approach addresses significant knowledge gaps with
respect to the structure of plant-animal interaction networks,
and presents two major advantages over existing methods.
First, the method allows for modeling the detection error of
each species. Second, it enables the inclusion of covariates
relating to collection conditions (e.g. site and weather
information), and plant information (e.g. traits and abundance).
Both plant abundance within the community and plant floral
traits could determine attractiveness to different pollinators [21],
but their relative contribution is not clear. The inclusion of these
variables enhances the interpretation of model results and
connects networks with relevant ecological information. These
models are flexible in that they can be used on both presence-
absence or abundance weighted data [35] and can use data
obtained by standard collection methods.

Here, I use 12 published networks collected in
Mediterranean shrub-lands to investigate the relative
importance of covariates such as plant abundance and
functional traits, to explain the plant-pollinator linkage rules,
while accounting for pollinator species detectability. I then use
the model outputs to predict the number of links between plants
and pollinators and how this may modify network properties.
Finally, I predict the response of such networks to potential
changes in community composition, such as the invasion of an
exotic plant species or simulated extinction patterns.

I ask three questions:

1. Can plant traits explain plant-pollinator interaction patterns
(i.e. linkage rules)?

2. Is network structure robust to undetected links?
3. Can we predict pollinator visitation to new plant species

(e.g. invasive species)?

Material and Methods

• Networks used in this study:

I used 12 plant-pollinator networks sampled within
Mediterranean scrublands in 2005 [38]. Each site was visited
several times in consecutive weeks alternating visits in the
morning and afternoon. Six coastal sites were sampled six
times in March–April and the remaining six sites were sampled
four times in May. Plant composition within sites did not change
during this time frame. I randomly selected equal areas of
target plants to observe each plant species for a total of six
minutes per each round where visitation frequency of each
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pollinator species was recorded. All plants were sampled
equally regardless of abundance. Voucher specimens of insect
visitors were collected with a hand net for identification
purposes after visitor observations were conducted. Plant
flower abundance in the community was recorded in four 50 m
transects. The mean flower abundance for each species at site
level was used as covariates of the models in analyses. Flower
units were defined as a single flower or an umbel, spike or
capitulum on multi-flowered stems. Flower traits were gathered
from the literature following Bosch et al. classification [19].
These included Inflorescence type (solitary, in raceme or
composite flowers); Morphology (actinomorphic and
zygomorphic); Shape (disc-bowl shaped corolla, restrictive
tubular corolla, very restrictive papilionaceous corolla); and
Colour (yellow, white, purple, green and blue). Data and traits
are available at http://figshare.com/articles/
Plant_Pollinator_Network_Data/154863 . Details on sampling
protocol can be found in Bartomeus et al. [38].

In order to assess whether the identification of plant-
pollinator interactions are dependent on sampling intensity, I
calculated species accumulation curves with a Chao 2
estimator, both for the number of pollinator species sampled
and the number of interactions sampled [18]. The difference
between observed and estimated species richness or number
of interactions was calculated as a percentage following
Chacoff et al. [18].

• Statistical analysis:

Hierarchical modeling approach
All analysis was performed at the pollinator species level. For

each pollinator species in each network, I constructed an
occupancy matrix comprising the recorded number of visits to
each plant species in each sampling round. This is a common
sampling design for obtaining interaction frequency information,
where the researcher repeatedly visits a sample of all flowering
plant species a number of times and record the number of
unique individuals observed at each plant species for each
time. I used the above-described matrices to fit hierarchical
models using the function pcount in the package “Unmarked” in
R [35]. This function uses repeated counts as detailed in Royle
[39]. Our frequency data was fitted with a Poisson distribution,
but “Unmarked” also supports negative binomial family
distributions [35]. Abundance is modeled through a log link to
enforce its positivity constraint and inference is based on the
integrated likelihood wherein the latent state variable (i.e.
interaction abundance) is marginalized out of the conditional
likelihood [35]. The model output is composed by an estimate
that defines the detection probability, and an estimate for each
co-variable included in the model. These estimates are
interpreted as in linear models and can be used to assess the
effect sizes of each co-variable. Hierarchical models are highly
flexible, and can also be used with binary networks (see
function occu in Unmarked package). A complete explanation
of the hierarchical models and the package used can be found
in Fiske and Chandler [35], including tests of its performance
under simulated scenarios.

Across the 12 networks, I identified 347 pollinator species.
Although some of these pollinator species overlapped across

networks, analyses were conducted independently for each
network. Of these, 46% were singletons whereby a single
individual of a pollinator species visited a single plant species.
These were not analyzed further with hierarchical models.
Overall, 186 models were analyzed, however, when re-
constructing the estimated networks, the singletons were re-
introduced and hence are included in all network metric
calculations.

Explaining linkage rules with plant traits
I explored a set of models including all co-variable

combinations. In order to test if plant family can be used as a
single predictor that captures floral trait differences, I also
conducted alternative and simpler models by substituting all
plant traits with the plant family information. Then, the model
with the lowest AIC was selected [40]. These models estimate
the pollinator species detectability, the probability that the
pollinator will visit each plant species (i.e. probability of
interactions, or occupancy in wildlife management literature)
and how this probability is influenced by the co-variables
retained in the model. For pollinators collected just once, the
models cannot be calculated. An example R code of the
analysis is provided in the Text S1.

Estimating missing links and network parameters
To estimate the non-detected links, the output of the models

was used to predict visitation to the plant community. Hence,
the estimates of the retained co-variables in each model were
used to determine the estimated interaction frequency. Network
parameters of each observed and estimated network were
calculated using the bipartite R-package [20]. These include
three commonly used qualitative indexes (i.e. based on binary
networks): Connectance, Linkage density and Nestedness; and
two quantitative indexes (i.e. based on frequency networks);
Specialization at the network level (H2’) and specialization at
the pollinator species level (d') [41]. These indexes were
chosen to represent a variety of commonly used indexes.
Finally, I calculated robustness to higher or lower level
extinctions[41]. I performed paired t-tests to assess the
differences between observed and estimated networks.

Predicting visitation to exotic plants
Six of the 12 networks have been invaded by an exotic plant

(three by Carpobrotus aff. acinaciformis and three by Opuntia
stricta). I used this information to predict the likelihood that
pollinator species in the non-invaded networks would visit a
hypothetical exotic plant by predicting the visitation to a new
plant with the exotic characteristics. I then compared to what
extent the predicted links matched the observed links in the
invaded network for the set of pollinator species present in both
networks.

Results

The observed network mean size was 9.4 plant x 29.6
pollinator species, which is typical of published network sizes
(i.e. 10 x 26; reviewed in 21). For pollinators, accumulations
curves were close to saturation and I detected a mean of 72%
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of the estimated pollinator species in our networks but only
59% of the estimated interactions were detected. Hence, our
networks are good candidates on which to test hierarchical
models that account for non-detected links. Note that this
under-sampling of interactions is common even in highly
sampled plant-pollinator networks [18]. The detectability of
analyzed pollinator interactions was very skewed (Figure 1),
and few pollinators had detectabilities at over 10%. The
proportion of plants visited (i.e. occupancy), detectability and
visitation frequency recorded were not correlated (Pearson
correlation range from 0.03 to 0.11; p-value > 0.05).

Explaining linkage rules with plant traits
The 186 individual pollinator-network models retained a

median of 2 co-variables (range 0-4; no model retained all
possible 5 co-variables). Only 16% of the models did not retain
any co-variables. Most models included the number of flowers
and inflorescence type as important predictors for visitation,
while color was rarely retained (Figure 2). Surprisingly, none of
the models where plant family was included were selected as
the best-fit model, indicating that in these networks, family is a
poor substitute for plant traits.

Estimating missing links and network parameters
When I used model output to estimate the visitation

frequency of each plant species and constructed the estimated
networks (Figure 3), I found that estimated networks had a
higher Connectance (p < 0.001) and Linkage density (p <
0.001) than observed networks. Nestedness however was not
significantly different (p = 0.61). The specialization indexes (H2
and d') were lower in estimated networks (p < 0.001, p =
0.001). Robustness to plant extinctions was not different (p =
0.32), but robustness to pollinator extinctions increased
significantly when comparing estimated and observed networks
(p < 0.001; Figure 4).

Figure 1.  Histogram of the Detectability of each pollinator
modeled.  Despite some pollinator species show very high
detectability, most show values below 10%.
doi: 10.1371/journal.pone.0069200.g001

Predicting visitation to exotic plants
Of the pollinators present in non-invaded networks, 35%

were predicted to visit the invader according to the exotic plant
traits and abundance. For the pollinator species present in both
non-invaded and invaded networks, 64% of the predicted
interactions with the exotic plant were correct.

Discussion

The probability of detecting an interaction in a given
sampling event is lower than 10% for most interactions. This is
a common pattern in plant-pollinator network studies [18]. This
low detection probability has resulted in the pooling of
observed interactions across several repeated sampling
events. In this study I show that quantifying and incorporating
this detectability into models to estimate interactions enables a
greater understanding of the observed patterns. First, I show
that plant traits and flower abundance can help explain linkage
rules in most cases. For example, most pollinators respond to
flower abundance independently of other floral traits (22/186
models), or in combination with inflorescence type (50/186;
Figure 2). Moreover, when using this knowledge to estimate
missing links, I confirm that some network properties, like
Nestedness, are robust to sampling intensity [19] but also that
specialization levels and network robustness may be more
sensitive [16].

Interactions between plants and pollinators depend on a
variety of factors, such as pollinator species preference [42]
and how the community context (e.g. abundance, density and
spatial distribution of flowers) modulates these preferences
[43,44]. Floral traits are known to determine pollinator
preferences [23]. Flower abundance, for example may be
particularly relevant for social species that recruit workers [45].
In these Mediterranean networks, which include few strictly
specialist species, flower abundance is the best predictor for

Figure 2.  Frequency distribution of the number of models
including five different potential co-variables of pollinator
detectability (plus no covariate).  In grey the proportion of
models retaining only one co-variable. Note that most models
retained more than one co-variable (186 models; median of 2
variables retained; 30 models retained no co-variables).
doi: 10.1371/journal.pone.0069200.g002
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explaining most pollinator interactions. The sampling methods
used to sample each plant species were standardized [46], i.e.
each species was observed for the same amount of time.
Hence, the observed higher attractiveness for abundant flowers
is not an artifact of greater sampling effort to those flowers, but
a reflection of pollinator preference.

Other floral traits were also relevant in shaping the studied
networks, namely inflorescence type and morphology. Both
inflorescence type and morphology need different approaches
and handling strategies by pollinators [47]. Colour was only
relevant in a few models (Figure 2), probably due to the fact
that the colors as viewed by insects are different from those
captured in this analysis [48]. Surprisingly, plant family is a very
poor predictor of visitation. This may not be the case in a
community of many specialist species, but in our generalized
community, plant traits are better predictors than plant family.
Despite the fact that some traits are expected to be
phylogenetically correlated [49], the results of this study do not
support the use of plant family as an indicator of pollinator
visitation. Despite the high turnover among the pollinators

observed across networks, some pollinator species are
represented in several networks, enabling a greater
understanding of the generality of their associations with plant
traits. Social pollinators (Apis mellifera and Bombus terrestris)
were consistently influenced by flower abundance (in 5/6
networks for A. mellifera and 9/12 for B. terrestris). However,
other species, like Andrena sp10, were more variable in their
behavior (in 2/7 networks were influenced by traits, in 2/7 by
floral abundance and in 3/7 no co-variables were selected).
This variability may be explained by the context and is
consistent with other studies showing species with inconsistent
floral preferences among communities [42].

Second, I show that incorporating detectability to estimate
missing links, resulted in an increase in Connectance and
Linkage density. For example Connectance increased by 13%
on average. Similarly, the linkage density estimated (mean =
2.27) is more similar to the expected value in other networks of
similar size (i.e. 2.1; reviewed in 21) than the observed values.
Nestedness, however did not change. Nestedness has
previously been found to be one of the most robust metrics to

Figure 3.  Observed and estimated visualization for one network (network MED2 in Bartomeus et al. 2008).  Pollinators
(numbers) are represented in the upper level, and plants (letters) in the lower level. Box size is proportional to the total number of
visits recorded, and the link size to the frequency of this particular link. A) Observed data. B) Links estimated with the hierarchical
models, which incorporate pollinator detectabilities.
doi: 10.1371/journal.pone.0069200.g003
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characterize networks, and is not highly sensitive to sampling
[19]. The degree of specialization decreased as a result of
adding these new links. Results are consistent with the trends
reported by Bosch et al. [23] when incorporating a zoocentric
approach (see also 16).

A common approach to understand robustness to
disturbance is to remove species randomly and see how many
extinctions this produce. This metric is highly sensible to
sampling completeness, as well as “rewiring strategies” (i.e.
ability of pollinators to visit another plant when its preferred
plant is not present [50]). Adding the estimated links can be
seen both as increasing network completeness or accounting
for possible rewiring of links in case the preferred plant goes
extinct. In any case, we show that estimated networks are
significantly more robust to pollinator extinctions. Moreover,
estimated robustness values are very high (mean = 0.91;
values range from 0 to 1), indicating that nearly all pollinator
species need to be removed to identify effects at the plant
level. However, robustness to plant extinctions do not change
because these networks have a great amount of singletons
(46% overall), which are not included in the detectability
modeling, but are included into the estimated network. All
singletons are consequently counted as being extinct when
their unique partner is removed. This has a large influence on
robustness patterns to plant extinctions, which has been a
common problem in most studies to date [51].

Gibson et al [52] recently suggested that plant traits can be
used to predict exotic species integration into an existing plant
pollinator network (see also 53), such as when new plant
invaders enter the community. My analysis supports this
finding. I show that the estimated interactions of non-invaded
communities to exotic plants are accurately predicted in 64% of
the modeled interactions. This accuracy is reasonable high,
considering that I am comparing the predicted responses to
observations in a paired invaded community. Further, the
natural variability in plant pollinator interactions among sites is
usually high and the observed invaded community is probably
under-sampled.

There are limitations in the use of hierarchical models for this
purpose. First, singletons are not possible to model. This
reduces the species pool that can be analyzed, but do not
affect the models for the analyzed species. However, by
explicitly targeting these species, researchers are forced to
take singletons into account when interpreting and discussing
results. Second, as in all trait-based approaches, the selection
of the traits used can affect the results. For example, the
inclusion of flower color as seen by insects, or nectar quality
was not available for this study, but could enhance model
predictions. Finally, the assumptions of the model imply that
the different rounds of sampling should be completed within a
short time period, to avoid changes in community composition
over time.

Figure 4.  Network parameters of the observed networks, and its paired estimated network.  Different colors are used for
visualization purposes. A) Connectance, B) Linkage density, C) Nestedness, D) Robustness to pollinators extinction, E) Robustness
to Plant extinctions and F) Specialization H2 index.
doi: 10.1371/journal.pone.0069200.g004
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This method can be applied to networks collected over short
time periods and where the pollinator species sampling
completeness is high, but interaction sampling completeness is
low. While relative comparisons of networks collected under
the same protocols may not benefit from this method, there are
several questions that can take full advantage of it. First, when
study generalities with respect to pollinator plant preferences,
including the detection probability in the models allows to
remove part of the bias that undetected links can introduce
when assessing which plant traits are driving the strength of
the interactions. Second, when comparing networks with
different sampling effort, estimated interactions can minimize
the differences in detectability of interactions among networks.
Third, when there is an interest in understanding the
consequences of alterations to plant community composition
(e.g. plant invasions, changes in plant evenness, etc.), the
output of the models can be used for predictive purposes.

In conclusion, I show that hierarchical modeling may be used
to incorporate detectability and other co-variables in analyses
of plant-pollinator networks. Understanding linkage rules can
increase our ability to operate under a predictive framework
where linkage rules can be explored and undetected links can
be estimated. Moreover, more complex questions can be

addressed incorporating covariates to the estimation of
detectability, such as morning/afternoon sampling, weather
conditions or observer identity [37].

Supporting Information

Text S1.  R code to load the data and reproduce the
hierarchical modeling on a set of networks.
(DOCX)
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