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The use of biological networks such as protein–protein interaction and transcriptional
regulatory networks is becoming an integral part of genomics research. However, these
networks are not static, and during phenotypic transitions like disease onset, they can
acquire new “communities” (or highly interacting groups) of genes that carry out cellular
processes. Disease communities can be detected by maximizing a modularity-based
score, but since biological systems and network inference algorithms are inherently
noisy, it remains a challenge to determine whether these changes represent real
cellular responses or whether they appeared by random chance. Here, we introduce
Constrained Random Alteration of Network Edges (CRANE), a method for randomizing
networks with fixed node strengths. CRANE can be used to generate a null distribution
of gene regulatory networks that can in turn be used to rank the most significant
changes in candidate disease communities. Compared to other approaches, such
as consensus clustering or commonly used generative models, CRANE emulates
biologically realistic networks and recovers simulated disease modules with higher
accuracy. When applied to breast and ovarian cancer networks, CRANE improves the
identification of cancer-relevant GO terms while reducing the signal from non-specific
housekeeping processes.

Keywords: network, community significance, community robustness, network community, community detection,
regulatory network, community structure, cancer

INTRODUCTION

Finding the underlying molecular mechanisms that drive complex disease remains a difficult
problem. Complex diseases appear to be caused by many perturbations scattered around the gene
regulatory network, which creates a considerable amount of variability in disease susceptibility
(Schadt et al., 2009; Califano et al., 2012; Pickrell, 2014). Network analysis has therefore become a
popular approach to model molecular interactions in the cell and prioritize candidate disease genes
(Greene et al., 2015; Marbach et al., 2016; Santolini and Barabasi, 2018). Many of these methods
capitalize on the idea that biological networks are composed of “communities,” or modules, of
genes that work in concert to carry out cellular functions and cause a disease (Hartwell et al.,
1999; Menche et al., 2015; Platig et al., 2016). A module in a biological network typically refers to
a set of genes that is densely interconnected in the network, function together, or are co-regulated
(Girvan and Newman, 2002; Segal et al., 2003; Ghiassian et al., 2015). Identifying the changes in
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network structure associated with disease onset can reveal more
mechanistic insights than standard approaches like differential
expression analysis; this approach is often called “differential
network biology” (Ideker and Krogan, 2012). A wide variety of
tools have been developed to identify the changes in network
edges and network structure that accompany disease (Gill
et al., 2010; Tesson et al., 2010; Gambardella et al., 2013; Van
Landeghem et al., 2016).

However, evaluating the robustness and significance of
changes in network structure remains a challenge. Gene
regulatory networks are often inferred from transcriptomic data
using imperfect inference tools, with no easy way of assessing
their underlying variance (Lancichinetti et al., 2011; Menche
et al., 2015; Choobdar et al., 2019; Palowitch, 2019). Moreover,
community detection algorithms can lead to multiple solutions
corresponding to local optima of the fitness function (Newman,
2006; Blondel et al., 2008; Campigotto et al., 2014). Two types
of approaches are often used to judge the quality of network
communities: consensus clustering and statistical significance
(Lancichinetti et al., 2011; Lancichinetti and Fortunato, 2012;
Menche et al., 2015; Zitnik and Leskovec, 2018; Palowitch, 2019).
The consensus approach combines multiple solutions from
the optimization algorithm to find the most likely assignment
of genes to communities (Lancichinetti and Fortunato, 2012;
Choobdar et al., 2019). Alternatively, the statistical significance
of individual communities can be estimated by comparing them
with a null distribution derived from randomized networks with
the same degree characteristics as the original network (Ideker
et al., 2002; Emmert-Streib, 2007; Lancichinetti et al., 2011; Mall
et al., 2017; Kojaku and Masuda, 2018; Newman, 2018). Network
randomization is typically carried out using generative models.

In the present study, we set out to rank the most
robust disease-driven changes in the community structure of
gene regulatory networks. We first inferred weighted bipartite
networks by integrating transcription factor (TF) binding motifs
and gene expression data, and then optimized a modularity-
based score to identify candidate modules more active in disease
conditions than in matched controls (Padi and Quackenbush,
2018). Other approaches for differential network analysis could
be used, including DiffCoEx, DINA, DNA, and Diffany (Gill
et al., 2010; Tesson et al., 2010; Gambardella et al., 2013; Van
Landeghem et al., 2016), but these methods are limited to either
identifying individual correlation-based edges or examining pre-
defined gene sets and network features, making them less
generalizable to multiple types of questions and networks.
Modularity optimization methods can help reveal new biological
insights across multiple contexts, but they typically result in
multiple solutions and cannot provide information about which
disease modules are the most robust or significant.

We tried applying existing methods to rank the most
significant genes within our candidate disease modules.
Consistent with previous observations, consensus clustering
led to a loss of resolution and an inability to detect smaller
gene sets annotated to more informative biological pathways
(Lancichinetti and Fortunato, 2012; Jeub et al., 2018). Next,
we estimated the significance of the disease modules relative to
a null distribution for the control network created using two

popular generative models – the configuration model (Gabrielli
et al., 2019) and the stochastic block model (SBM) (Aicher et al.,
2015). However, these models could not realistically simulate
the characteristics of a gene regulatory network. Transcriptional
regulation is strongly constrained by the fact that any given TF
regulates a limited number of genes, depending on TF binding
sites, activators/repressors, and epigenetic state (Roeder, 1996;
Ptashne and Gann, 1997; Lee and Young, 2000; Teif and Rippe,
2009; Gerstein et al., 2012). Both the configuration model and
SBM ignore this restriction and assume that each TF node can
influence all genes in the network (configuration) or all genes in
a community (SBM), which leads to improper sampling of edge
weight variance.

Therefore, we identified a need for a new, computationally
efficient generative model that accounts for the known
constraints of gene regulation (Proulx et al., 2005; Bansal
et al., 2009; Sah et al., 2014; Fosdick et al., 2018). It is challenging
to randomize weighted networks while imposing multiple
constraints, because each modification propagates to the rest
of the network, leading to extreme edge weights if they are
not properly controlled. There is no accepted method for
generating ensembles of weighted bipartite networks with
fixed node strengths (the total weight of edges adjoining each
node) (Fosdick et al., 2018). Here we present a new algorithm
for network randomization called Constrained Random
Alteration of Network Edges (CRANE). CRANE can produce
ensembles of unipartite or bipartite weighted networks with
fixed node strengths that resemble gene regulatory networks.
These ensembles can be used as null distributions to evaluate the
importance of genes and regulators in candidate disease modules.
To demonstrate the utility of CRANE, we apply it to simulated
disease modules, as well as transcriptional networks derived
from angiogenic ovarian tumors and hormone receptor-positive
breast cancers. In simulations, CRANE performs better than all
comparable approaches in finding the “true” disease module.
When applied to breast and ovarian cancer networks, several
methods are able to improve identification of cancer-related
processes in specific cases, but CRANE is the only one that
consistently reveals biological insights across multiple networks
and conditions while also reducing background noise from
non-specific housekeeping processes. Our study demonstrates
that CRANE can evaluate candidate disease modules to identify
a subset of genes that is robustly associated to the disease.

MATERIALS AND METHODS

General Workflow
To rank significant nodes in disease modules, we use the
following general procedure (Figure 1A): we first construct
disease and matched control networks from gene expression data
(e.g., RNA-seq) using a network inference algorithm. Next, we
identify disease-specific network features (e.g., disease modules)
using network analysis methods. Our main goal is to evaluate
the significance of these disease-specific features. To do this, we
compare their associated scores in the disease network to a null
distribution created from the control network using a network
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FIGURE 1 | General workflow and results of consensus clustering. (A) We identify significant changes in network structure by comparing disease-specific network
features against a null distribution. We first construct disease-specific and matched control networks from gene expression data (e.g., RNA-seq) using a network
inference algorithm. Next, we compare the networks to extract disease-specific network features. Independently, we apply network randomization to the control
network to create a null distribution. The disease-specific network features are then compared against the null distribution to evaluate statistical significance. (B) The
Sankey plot shows community assignments from seven separate runs of ALPACA on angiogenic vs. non-angiogenic ovarian cancer networks. Each column
represents an ALPACA solution with the far-right column showing the result from consensus clustering of 1,000 different ALPACA solutions. The height of each box
and ribbons indicates the size of each module and the number of shared nodes between corresponding modules, respectively.

randomization algorithm. For large data sets (n > 300), a “true”
null distribution can be generated by subsetting the expression
profiles for the matched controls (n = 50 for each subsample) and
constructing independent “replicate” control networks.

Using CRANE or Other Methods to
Evaluate Disease Modules: Basic
Procedure
Here, we describe the basic procedure for ranking significant
genes in disease modules using network randomization
algorithms. We provide callouts to other subsections of Section
“Materials and Methods” where more details can be found.

We first create disease and matched control networks,
either from gene expression data using a network inference
algorithm (see “Data preprocessing and network inference”),
or by simulating networks with artificial disease modules (see

“Simulated networks”). Second, we compare the two networks
using ALPACA with default parameters, as implemented in the R
package (freely available1), to identify candidate disease modules
(Padi and Quackenbush, 2018). We choose to use ALPACA,
but one can use any network analysis tool that groups nodes
together, including standard community detection techniques
like modularity maximization and differential analysis tools like
DiffCoEx, DINA, DNA, and Diffany (Gill et al., 2010; Tesson
et al., 2010; Gambardella et al., 2013; Van Landeghem et al., 2016).
ALPACA outputs a vector consisting of a module assignment
K0

node and differential modularity score S0
node for each node. S0

node
quantifies how much the node contributes to the global change
in modularity between the disease and control networks. Next,
we use a network randomization algorithm – either CRANE with

1github.com/PadiLab/ALPACA
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α in the range of 0.1 to 0.4 (see section “CRANE Algorithm”),
SBM (see section “Stochastic Block Model”), configuration
model (see section “Configuration Model”), random edge weight
permutation (see section “Random Edge Weight Permutation”)
or data subsampling – on the control network

(
N0) to obtain a

null distribution for S0
node. To do this, we perform the following

steps:

(i) Use network randomization algorithm to generate a
perturbed network (NP) starting from the control
network

(
N0 ).

(ii) Compute a “null” differential modularity matrix DP
ij

for each NP by comparing NP to the original
control network N0 using an in-built function in the
ALPACA R package.

(iii) Score each node according to its contribution to the
differential modularity DP

ij of the module defined by
K0

node, to get its score SP
node under the null hypothesis that

the observed change in network structure is only due to
measurement noise.

We repeat (i)–(iii) for 1,000 perturbed networks and use the
resulting vector of SP

node values to fit a null distribution Tnode for
each node. Finally, we compute the p-value for each node (i.e., its
significance as a member of a true disease module) by assuming
Tnode follows a normal distribution:

P − value = 1−8

(
S0

node −mean(Tnode)

sd(Tnode)

)

where 8 is the normal cumulative distribution function, and
mean and sd represent the mean and standard deviation of the
node score distribution. To evaluate the results of each network
randomization algorithm, we ranked all the genes in the network
by their p-value and either statistically compared this ranking
against the true disease genes (in the case of simulated networks;
see section “Simulated Networks”), or evaluated the top-ranked
genes within each module for functional enrichment (in the
case of real cancer data). In the latter case, in order to make
our conclusions threshold-independent, we evaluated the top 25,
50, 75, etc., up to 500 core genes (for example, in one typical
module, this would correspond to genes with adjusted p-values
less than 10−23, 10−21, 10−19, etc. up to 0.01) from each module
to identify enriched GO terms at different cutoffs. All significant
GO terms (Padj < 0.05) across all cutoffs were included in the
final result for each module (see “Module-Specific Functional
Enrichment Analysis” section below for more details). GO term
enrichment was calculated using the R package GOstats (v2.54.0),
with the following parameters: the gene universe is the set of
all possible target genes in the initial networks and the p-value
calculation is conditioned on the GO hierarchy structure. In
each module, the GOstats p-values were adjusted for multiple
testing using the Benjamini–Hochberg method. We note that all
genes can be ranked together by their p-values (with adjusted
p-value < 0.05 as significant) to combine signals from all modules
across the whole network, or top-ranked genes from each module

can be kept separate and interpreted as smaller sets of tightly
interacting genes.

In addition to this basic procedure, we motivated the
development of CRANE by performing consensus clustering on
multiple stochastic runs of ALPACA, which uses the Louvain
method for community detection (see section “Consensus
Clustering” for more details). We also quantified the similarity
between networks created by CRANE by computing the
normalized mutual information (see section “Computing NMI”
for more details).

Module-Specific Functional Enrichment
Analysis
The following steps were taken to evaluate and compare
the performance of each network randomization method at
uncovering module-specific disease-relevant GO terms in cancer
networks:

(i) Take all genes assigned to one module and rank them
by their network randomization score (e.g., CRANE
p-value).

(ii-a) Extract the top 25 genes (e.g., genes with CRANE-
derived adjusted p-value < 10−23) and compute the
adjusted p-value for overlap with a disease relevant GO
term (e.g., “blood vessel development” for angiogenic
ovarian cancer) using a hypergeometric test.

(ii-b) Repeat (ii-a) with top 50 genes (e.g., genes with CRANE-
derived adjusted p-value < 10−21).

(iii) Repeat (ii) iteratively until top 500 genes (e.g., genes with
CRANE-derived adjusted p-value < 0.01).

(iv) All GO term p-values across all thresholds (20 p-values
per GO term) are collected and the average of the
corresponding−1 ∗ log10 p-value is reported.

Data Preprocessing and Network
Inference
Batch-corrected and normalized ovarian PanCancer TCGA
RNA-seq values were downloaded from cBioPortal (Cancer
Genome Atlas Research Network, 2011; Cerami et al., 2012; Gao
et al., 2013). Low-expressing genes were removed by keeping only
genes with at least 1 count per million in at least half of the total
samples using the R package edgeR (v3.26.5) and processed with
the voom function within the R package limma (v3.38.3) using
TMM normalization. Angiogenic (n = 124) and non-angiogenic
(n = 166) tumors were grouped as described in Glass et al. (2015).
Preprocessed METABRIC breast cancer expression data was
downloaded from cBioPortal (Cerami et al., 2012; Curtis et al.,
2012; Gao et al., 2013; Pereira et al., 2016), along with estrogen
receptor negative (ER−; n = 445) and estrogen receptor positive
(ER+; n = 1449) status as measured by immunohistochemistry.

Many methods are available to infer gene regulatory networks
from transcriptomic data, including ARACNE, CLR, MERLIN,
PANDA, and WGCNA, but there is no clear winner across
all contexts (Zhang and Horvath, 2005; Margolin et al., 2006;
Marbach et al., 2012; Glass et al., 2013; Zhang et al., 2016;
Siahpirani and Roy, 2017). For our analyses we chose to
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use PANDA (Passing Attributes between Networks for Data
Assimilation) and WGCNA.

PANDA
We chose to use PANDA to construct our gene regulatory
network because it can integrate known transcription factor (TF)
binding sites, and because it does not use TF mRNA level as a
proxy for TF activity, instead inferring this latent variable from
target gene co-expression, making it particularly appropriate for
mammalian contexts where TFs are often regulated by post-
translational modification, competitive binding, or localization.
Expression data from each subtype was integrated with
transcription factor binding sites using the network inference
algorithm PANDA with default parameters to create subtype-
specific regulatory networks (Glass et al., 2013). Subsampled
networks were inferred by selecting random subsets of 50 subjects
without replacement from the gene expression of each respective
subtype. A prior network of binding sites for 730 TFs was defined
as the occurrence of the corresponding motif in a [−750,+250]
bp window around the transcription start site (Sonawane et al.,
2017). The following formula was applied for analyses requiring
exponentially transformed PANDA edge weights (Sonawane
et al., 2017), where wij are the initial z-score edge weights output
by PANDA, and Wij are the final transformed edge weights:

Wij = ln
(
ewij + 1

)
WGCNA
We constructed signed weighted gene co-expression networks
using the R package WGCNA (v1.69) (Zhang and Horvath,
2005). Input for the co-expression network consisted of
normalized expression values from 1,000 randomly selected
genes and random subsets of 50 subjects chosen without
replacement from the ER+METABRIC breast cancer expression
data. For all subsampled WGCNA networks, a soft thresholding
power of eight was used.

CRANE Algorithm
CRANE takes a weighted network as input and provides a
perturbed version of that network as output. In the following,
we will describe the procedure for bipartite networks. We
first compute the strength of node i as the sum of the edge
weights adjoining that node, or Si =

∑
j

wij (As an optional step

to increase network variance further, noise can be added to
the original sequence of node strengths by adding normally
distributed random numbers with mean 0 and standard deviation
estimated from subsampled networks). Given m is the total
number of TFs and n is the total number of genes, Aij is the
m × n adjacency matrix of the input network where rows (TFs)
and columns (genes) are ordered randomly. We create an empty
m × n adjacency matrix Bij that will become the perturbed
network. The first row (first TF) of Bij is initialized with edge
weights from the first row of Aij. Then for each TFl, where
l = [1, . . . , m− 1], we apply the following steps: we perturb the
current (lth) row Blj by adding normally distributed random
numbers with mean 0 and standard deviation computed from
the original edge weights for TFl, i.e., sd(Alj). This perturbation

is multiplied by a parameter α, giving the user the ability to
adjust the magnitude of the perturbation. The Blj edge weights

are multiplied by a factor of
n∑

j=1
Alj/

n∑
j=1

Blj to ensure the TF

strength in Blj is equal to Alj. We compute initial values for Bl+1,j

(edge weights for the next TF) by computing
l+1∑
i=1

Aij −
l∑

i=1
Bij, thus

keeping the node strengths in Bij equal to the node strengths in
Aij. After the initial Bl+1,j have been determined, we check if any
edge weights within Bl+1,j fall outside of the global maximum or
minimum of the original edge weights in Aij. For any values in
Bl+1,j greater than max(Aij) edge weight, we add the difference in
value between Bl+1,jand max(Aij) to the corresponding Blj. For
any values Bl+1,j less than min(Aij) we subtract the difference
in value between Bl+1,j and min(Aij) to the corresponding Blj.
Then the modified edge weights in Blj are normalized to maintain
the correct TF strength and a new set of Bl+1,j are computed.
We repeat the correction process until all values are within the
range of Aij.

Note that α is the only user-adjustable parameter in CRANE;
in the Results section, we provide a robustness analysis and
guidance for choosing an appropriate value of α. A more detailed
description of CRANE, including pseudocode, can be found in
the Supplementary Methods. A unipartite version of CRANE is
also available for use. CRANE is freely available as an R package
at https://github.com/PadiLab/CRANE.

Configuration Model
The configuration model is a method for generating random
networks from a given node degree or strength sequence
(Garlaschelli, 2009; Mastrandrea et al., 2014; Gabrielli et al.,
2019). For weighted networks, the configuration model is
typically constructed as an exponential random graph. To fit the
configuration model to the PANDA network, we transformed
z-score edge weights to positive weights using the formula given
in the “Data Preprocessing and Network Inference” section.
Based on the fact that PANDA is a fully connected graph, the
configuration model can be written as described in Gabrielli et al.
(2019), i.e.,

P (A) =
∏

ij

e−(θi+θj)aij(θi + θj)

where P is the probability of a network with adjacency matrix
A and edge weights given by its entries aij, and the θ parameters
are Lagrange multipliers that need to be estimated. The Maximal
Likelihood (ML) function then constrains the θ parameters by the
given node strength sequence:∑

j

(
θi + θj

)−1
=

∑
j

aij = Si

where Si represents the strength of node i, which is defined
as the summation of edge weights adjoining node i. We used
Barzilai–Borwein spectral methods for directly solving this ML
system of equations using the R package BB (v 2019.10.1)
(Varadhan and Gilbert, 2009).

Frontiers in Genetics | www.frontiersin.org 5 January 2021 | Volume 11 | Article 603264

https://github.com/PadiLab/CRANE
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-603264 January 8, 2021 Time: 9:31 # 6

Lim et al. Evaluating the Robustness of Disease Modules

Stochastic Block Model
The stochastic block model (SBM) is a random graph generative
model. The SBM defines a probability distribution over networks
by assuming pre-existing communities or “blocks” where the
intracommunity edges are stronger (larger edge weights) than
intercommunity edges. This probability distribution can be
used to produce random graphs with pre-defined inter- and
intra-community edge densities. Fitting a stochastic block
model (SBM) to the PANDA network is very time consuming
(Aicher et al., 2015). To efficiently test the performance
of SBM, we introduced a strong assumption of equivalence
between modularity optimization and SBM maximum likelihood
(Newman, 2016). Thus, the network community structure found
by CONDOR (Complex Network Description of Regulators)
(Platig et al., 2016) – a modularity maximization method for
weighted bipartite networks – was directly used to generate the
block structure in the SBM. We assumed a normal distribution
for the edge weights as the PANDA network edge weights
represent z-scores. The parameters for every block can then be
estimated directly using the sample mean and sample variance of
the corresponding edge bundles.

Random Edge Weight Permutation
We wanted to compare CRANE against a naïve method of
randomizing a gene regulatory network by permuting its edge
weights. Fully permuting the network leads to unrealistic results
due to destruction of prior motif information and community
structure. To retain as much of the prior biological information
as possible, the edges in the network were first divided into
motif-positive and motif-negative groups based on whether they
were included in the prior network of binding sites for 730 TFs.
Next, communities were detected using CONDOR (Platig et al.,
2016). Finally, the inter- and intra-community edge weights were
grouped together by motif status and randomly shuffled.

Simulated Networks
To simulate disease modules, we first took a random subset of 50
subjects out of 445 subjects from the estrogen receptor negative
(ER-) METABRIC breast cancer expression data and constructed
a baseline PANDA network. We then inserted high edge weights
(edge weight = 5) between randomly selected TFs and genes to
create a simulated disease network. The new module consisted of
between 3 and 20 TFs, and five times as many genes as TFs. The
simulated disease network was compared to a second “replicate”
baseline network inferred from an independent random subset
of 50 subjects from the ER- breast tumors. We applied a panel
of methods – including ALPACA, consensus clustering, CRANE
(α = 0.1–0.4), configuration model, SBM, and random edge
weight permutation – and evaluated the results of each method
by comparing the ranks of true positives (the known genes in the
disease module) against a background consisting of genes not in
the disease module. Kolmogorov–Smirnov and Wilcoxon rank-
sum tests were used to compute the p-value for the difference in
the distribution of the ranks. Both tests gave similar results, and
so in the figures, we present the Wilcoxon p-values. F-scores were
also computed to evaluate the accuracy of each method using the

following formula:

F =
True Positives

True Positives+ 0.5(False Positives+ False Negatives)

Positives were defined as the top 1% of ranked nodes.

Consensus Clustering
To generate consensus clusters, we first repeated ALPACA
1,000 times on the same pair of transcriptional networks, as
described in Padi and Quackenbush (2018) but with the n nodes
ordered randomly in each iteration of the Louvain algorithm.
We combined the 1,000 resulting partitions to create an n × n
consensus matrix C with each entry Cij indicating the number of
partitions in which nodes i and j of the network were assigned to
the same cluster, divided by the total number of partitions (1,000).
For the final step, we applied the Louvain algorithm (R package
igraph v1.2.4.1) on C to find the consensus cluster membership
for each node (Csardi and Nepusz, 2006; Blondel et al., 2008).

Computing NMI
The algorithm CONDOR with default parameters was used to
detect the community structure of weighted bipartite networks
(Greene et al., 2015; Platig et al., 2016). Using CONDOR
community assignments as input, the normalized mutual info
(NMI) score between two networks was computed using the
“compare” function in the R package igraph (v1.2.4.1) (Danon
et al., 2005; Csardi and Nepusz, 2006).

ALPACA and CRANE Pipeline
Implementation
To implement the ALPACA and CRANE analysis pipeline
presented, first gene regulatory networks for the disease and the
control conditions should be inferred from gene expression using
PANDA (Glass et al., 2013). The “alpaca.crane” function within
the R package CRANE2 will automatically run ALPACA (also
available separately3) to compare the two networks and output
the module membership and the significance of the nodes.

RESULTS

Existing Methods for Evaluating
Significance of Disease Modules
We tried applying the most popular available methods for
identifying significant changes in community structure –
namely, consensus clustering and comparing against randomized
networks – on cancer networks. To apply these methods, we
first need to define the networks and candidate disease modules
(Figure 1A). PANDA was applied as described in the “Materials
and Methods” section (“Data preprocessing and network
inference”) to TCGA data from angiogenic and non-angiogenic
ovarian tumors (Cancer Genome Atlas Research Network, 2011)

2https://github.com/PadiLab/CRANE
3https://github.com/PadiLab/ALPACA
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and to METABRIC breast cancer data (Curtis et al., 2012; Pereira
et al., 2016) to produce weighted bipartite networks.

We next needed to find a set of candidate disease modules, or
groups of genes that interact more with each other in one cancer
subtype than expected. To do this, we used ALPACA, a method
we previously developed that optimizes a differential modularity
score (DMS) to identify groups of nodes exhibiting higher inter-
node connectivity in a disease (e.g., angiogenic) network than
in a matched control (e.g., non-angiogenic) network (Padi and
Quackenbush, 2018). Although we chose to use PANDA and
ALPACA (other choices are described in section “Materials and
Methods”), we note that the following analyses – including
consensus clustering, comparison against randomized networks,
and CRANE – can be carried out for any networks (inferred
using any method) and any subset of nodes (or disease module)
that have stronger interactions in the disease network than in the
matched control.

To implement consensus clustering, we merged one thousand
partitions from individual ALPACA solutions derived by
comparing angiogenic vs. non-angiogenic ovarian tumor data
to generate a consensus co-membership matrix (see section
“Materials and Methods” for details). We then applied the
Louvain method to the consensus matrix to determine consensus
community assignment (Blondel et al., 2008). Consistent with
previous observations in the literature, we found that consensus
clustering led to a significant loss of resolution (Figure 1B)
(Lancichinetti and Fortunato, 2012; Choobdar et al., 2019) and
the inability to detect more specific disease pathways with richer
biological interpretations (Jeub et al., 2018).

Next, we used leading network generative models to create
a null distribution by randomizing the control network, against
which we can compare the disease module scores and estimate
their significance. We chose the configuration model (Gabrielli
et al., 2019) and the stochastic block model (SBM) (Aicher
et al., 2015) as they both have rigorous mathematical descriptions
and are two of the most commonly used generative models
(Saul and Filkov, 2007; Sah et al., 2014; Baum et al., 2019).
The configuration model constrains the expectation value of the
node strengths to match the original network, and assumes an
exponential distribution for the edge weights (Garlaschelli, 2009;
Mastrandrea et al., 2014; Gabrielli et al., 2019). The stochastic
block model defines a probability distribution over networks by
matching the pre-existing communities or “blocks” of closely
connected nodes found in the original network (Aicher et al.,
2015). To evaluate the accuracy of these generative models,
we chose to analyze METABRIC breast cancer expression data,
one of the few diseases in which there are enough expression
profiles to subsample eight independent sets of 50 baseline (ER−)
expression profiles and generate “biological replicate” PANDA
networks. We applied ALPACA to compare ER+ vs. ER− tumors
and identify candidate ER+ modules. We next constructed a
“true” null distribution of differential modularity scores for
each gene in the candidate modules using the eight “biological
replicate” networks. We then compared the characteristics of
this true null against ensembles of randomized ER- networks
produced by SBM and the configuration model (Figure 2; see
section “Materials and Methods” for details).

We found that both SBM and the configuration model failed to
accurately recapitulate the true null distribution computed from
the subsampled networks (Figure 3A). Both methods appear
to overestimate the edge weight variance, probably because
they ignore the physical constraints (e.g., TF binding motifs or
chromatin accessibility patterns) by which cells specify patterns
of gene regulation (Aicher et al., 2015; Gabrielli et al., 2019).
To check whether this observation could hold more generally,
we repeated the analysis using a different, commonly used
network inference method called WGCNA (weighted gene co-
expression network analysis) which generates a matrix of gene
co-expression values and applies soft-thresholding to impose a
scale-free topology criterion (Zhang and Horvath, 2005). This
thresholding procedure converts the co-expression to a new value
that can be interpreted as a connection weight. We found that the
configuration model also fails to fit subsampled WGCNA breast
cancer networks (Supplementary Figure 1), likely because it puts
equal emphasis on all the edges and does not properly conserve
the highest-confidence regulatory interactions.

CRANE: New Method for Sampling
Weighted Networks
We developed a new algorithm, Constrained Random Alteration
of Network Edges (CRANE), that samples weighted networks
with fixed node strengths while retaining the underlying gene
regulatory structure. Fixing the node strengths preserves the
module resolution while creating more realistic variance in edge
weights and reducing bias from promiscuous hub TFs and
genes that seed modules associated with disease-independent
housekeeping processes (see section “Materials and Methods”
for details). We found that CRANE is better able to mimic the
“true” null distribution of differential modularity scores arising
from subsampled PANDA networks than the configuration
model and SBM (Figures 3A,B). Similarly, CRANE better
estimates the edge weight variance in WGCNA networks than
the configuration model (Supplementary Figure 1). In particular,
the mean of the CRANE-generated distribution remains in close
proximity to the “true” subsampled null distribution, while other
generative models have large deviations across multiple moments
of the distribution.

The magnitude of the perturbations in the network created by
CRANE is governed by a user-defined parameter α. To choose
this parameter appropriately, we compared the properties of
networks generated with different α values with the subsampled
networks from the previous section. We focused on the
distribution of differential modularity scores, the variance in edge
weights, and the similarity in community structure (as measured
by the normalized mutual information, or NMI) between the
original network and the randomized networks. As expected,
increasing the parameter α leads to decreasing NMI score (or
similarity) (Figure 3C) and increasing edge weight variance
(Figure 3D), but there is no single value of α that exactly mimics
the subsampled networks (Figure 3B). We decided to use a range
of values (α from 0.1 to 0.4) that provide a reasonably good fit
to the breast cancer patient data and test the robustness and
sensitivity to the exact value below. However, other values of α
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FIGURE 2 | Workflow for applying network generative models to rank genes in disease modules. To integrate ALPACA with generative models (network
randomization), we first construct transcriptional networks representing the “control” and “disease” networks by integrating known TF binding sites with gene
expression data. We then use ALPACA to identify putative disease modules and compute the differential modularity scores (DMS) for each node. We construct the
null distribution of the DMS by comparing the control network to randomized networks generated using the configuration model, SBM, permutation, or CRANE. The
p-value is calculated by comparing the true node DMS to the null distribution.

may be more appropriate in other contexts, depending on the
uncertainty in gene expression data and expression correlations.

Using CRANE to Identify Simulated
Disease Modules
We tested whether CRANE could find artificially created disease
modules in settings resembling real weighted biological networks.
To simulate the effect of measurement noise, we created two
independent sets of randomly subsampled (n = 50) gene
expression data from the same baseline condition, estrogen
receptor negative (ER−) breast cancer (BC), and used them to
infer two gene regulatory networks, BCN1 and BCN2. Keeping
BCN1 as the baseline network, an artificial disease module
was created in BCN2 by increasing the edge weights between
randomly selected subsets of transcription factors and genes,
ranging from 3 to 20 TFs in size, and five times as many genes.
We then applied a large panel of methods – namely, ALPACA,
consensus clustering, random edge weight permutation, SBM,
CRANE, and subsampling – to find differential modules and rank
the nodes according to either their differential modularity score
(DMS), or by the p-value representing how much their scores
deviate from the generated null distribution. A Wilcoxon rank-
sum test was used to evaluate how highly each method ranked
the genes in the true disease module. In order to include the
configuration model in this panel, we also performed a second
test after applying an exponential transformation on the network

edge weights, since the configuration model requires positive
edge weights (Gabrielli et al., 2019).

We found that, although ALPACA by itself can successfully
recover artificial modules of size greater than 48 nodes
(Figure 4A), CRANE was able to dramatically improve
performance, as indicated by more significant Wilcoxon p-values,
showing that the simulated “disease” genes were ranked higher
by CRANE than by ALPACA; CRANE also increased F-scores
computed using the top 1% ranked nodes in each method
(Supplementary Figure 2). Consensus clustering improved
performance in recovering a single added module but embeds
the artificial module within a much larger community, reducing
the resolution (Figure 4B), whereas CRANE maintained high
resolution. By the same metrics, CRANE was more successful
than random edge weight permutation, the configuration model,
and the SBM. This performance gain in CRANE was preserved
across α-parameter values ranging from 0.1 through 0.4,
suggesting that, within this range, the exact value of α is
not critical (Supplementary Figure 3). As expected, the “true”
subsampled distribution performed best out of all the methods.
We observed a similar trend in performance whether or not
the exponential transformation was applied to the network edge
weights (Supplementary Figure 4).

Applying CRANE to Cancer Data
To determine if CRANE can be used to increase the detection
of network alterations in complex diseases, we applied CRANE
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FIGURE 3 | CRANE can generate networks that resemble subsampled data while maintaining control of key network properties. Using the breast cancer
transcriptional network as a reference, network ensembles were generated using configuration model, SBM, permutation, and CRANE. As a “true” null distribution,
eight PANDA networks were inferred by subsampling (n = 50) the gene expression data without replacement from the estrogen receptor negative subtypes. (A,B)
Density plots showing the null distribution of the differential modularity score (x-axis) computed using different methods for two example genes. (C,D) The boxplots
show the impact of the CRANE alpha parameter on (C) community structure and (D) edge weight variance, as compared to subsampled (SS) networks. (C) Plot
showing the normalized mutual information (y-axis) between the reference network and CRANE-generated networks for different values of alpha (x-axis). (D) The
edge weight variance (y-axis) among subsampled or CRANE-generated networks at different values of alpha (x-axis).

to real biological data. Since there is no “ground truth” dataset
for disease modules in transcriptional networks, there is no
straightforward way to count false positives and false negatives
and compute the precision and accuracy of our results. Instead,
we quantified the extent to which highly ranked genes from

CRANE are statistically enriched in biological functions driving
two well-understood disease processes – angiogenesis in ovarian
cancer and estrogen response in breast cancer – using Fisher’s
exact test p-values. Using our simulation study as a guide
(Supplementary Figure 3), we chose α = 0.1 as a value that
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FIGURE 4 | Performance of seven methods on identifying artificial modules in simulated disease networks. (A) Box plot shows performance of each method –
subsample, CRANE, ALPACA, configuration model, permutation, or SBM – on network simulations with exponentially transformed edge weights. P-values (y-axis)
for various sizes of artificial modules (x-axis) are computed using Wilcoxon rank-sum test. (B) The boxplots show the total number of modules and module size
across all simulation trials for ALPACA versus consensus clustering.

would provide the biggest performance increase with the least
amount of computational cost (the run time of CRANE increases
with α due to the deviation correction step).

Ovarian Cancer
Ovarian cancer is one of the leading causes of death among
women in the developed world (Arend et al., 2013; Bowtell
et al., 2015; Reid et al., 2017). Ovarian cancer is divided into
many histologic subtypes based on cellular origin, pathogenesis,
molecular alterations, and gene expression (Reid et al., 2017). In
particular, an angiogenesis gene signature can categorize ovarian
cancer patients into a poor-prognosis subtype (Bentink et al.,
2012). To test CRANE on angiogenic ovarian cancer, we first
applied PANDA to infer ovarian cancer gene regulatory networks

from Pan-Cancer TCGA RNA-seq data (Cancer Genome Atlas
Research Network, 2011). Normalized RNA-seq profiles were
classified into 124 angiogenic and 166 non-angiogenic ovarian
cancer tumors as described in Glass et al. (2015). We then
applied the same panel of methods as above, ranked the top-
scoring genes, and evaluated their functional enrichment for
biological processes.

We first checked the performance of consensus clustering
compared to ALPACA to see how the reduction in community
resolution would impact the biological interpretation. Consistent
with our previous work, ALPACA discovers finer community
structure enriched for GO terms that are specific to the
angiogenic ovarian cancer phenotype such as “blood vessel
development” and “cardiovascular system development”
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(Figure 5A) (Padi and Quackenbush, 2018). In comparison,
consensus clustering results in loss of community resolution
(Figure 5B), which in turn leads to the lack of enrichment in
more specific GO terms. Instead, communities are enriched for
general processes such as “RNA splicing,” “monoubiquitinated
protein deubiquitination,” “translation initiation,” and “ribosome
biogenesis” (Supplementary Table 1).

We then applied CRANE (α = 0.1) and found that it showed
good performance and resolution in recovering disease-specific
processes (Figure 6A). CRANE-ranked genes were statistically
enriched for expected GO terms such as “angiogenesis” and
“positive regulation of angiogenesis,” with p-values similar
to the “true” subsampled distribution, and exhibited mild
improvement (i.e., more significant Fisher’s exact test p-values)
over ALPACA (Figure 6A). Although the improvement in GO
term detection in the individual modules was modest, we noticed
that both CRANE and subsampling increased the ranking of
“blood vessel development” related genes, when genes were
ranked across the whole network instead of in a module-
specific manner (Supplementary Figure 5). This is because the
blood vessel development genes are split across two modules
which allows them to be masked by other enriched processes
present in the same modules, such as inflammation pathways
(Supplementary Figure 6). Interestingly, compared to ALPACA
and consensus clustering, CRANE reduces signals from non-
specific housekeeping processes, like “RNA transport” and “RNA
processing.” The permutation and SBM methods performed
poorly in uncovering the disease-specific GO terms, as these
methods had a tendency to overestimate the DMS distribution
while underestimating the variance (Figure 6C).

CRANE and subsampling also consistently identified
communities that represent inflammation and immune
response. Genes in Module 1 deemed most significant by
CRANE were enriched for interferon response, interleukins,
cytokine signaling, and inflammation, consistent with the
theory that chronic inflammation is associated with risk
of cancer (Hanahan and Weinberg, 2011) (Supplementary
Table 2). Specifically, immunomodulators and interferon
gamma have been proposed as a therapeutic target in ovarian
cancer (Wall et al., 2003; Cohen et al., 2016). The enrichment
in inflammation and immune response was not readily
detectable using ALPACA, permutation, and SBM (Figure 6A
and Supplementary Tables 4–6). CRANE is therefore able
to uncover additional communities enriched with processes
relevant to the disease phenotype.

We also tested our methods after exponentially transforming
the edge weights and found that neither CRANE nor the
“gold standard” subsampling method improve the recovery
of angiogenesis related processes compared to ALPACA
(Figure 6B). The exponentiation process leads to a change in
community structure in the PANDA networks (NMI = 0.69)
that results in most of the blood vessel development
genes being concentrated in a single giant differential
module (Supplementary Figure 7). The embedment of the
angiogenesis genes in a large module along with overall
increase in edge weight variance leads to reduction in
CRANE performance, whereas other methods have inflated

node p-values due to a tendency to underestimate the null
distribution (Figure 6D).

Breast Cancer
Breast cancer is the second most common cancer and a
leading cause of death for women worldwide (Bray et al.,
2018). Although breast cancer is highly heterogeneous, one
of its most important risk factors is overexpression of the
estrogen receptor (ER+) leading to increased cell growth (Garcia-
Closas et al., 2008; Ahmed et al., 2009; Dunning et al., 2009).
Cellular networks in ER+ breast tumors should therefore exhibit
increased estrogen signaling.

We used PANDA to infer ER+ (1449 subjects) and ER−
(445 subjects) gene regulatory networks from microarray data
collected by the METABRIC consortium (Curtis et al., 2012;
Pereira et al., 2016). We compared the ER+ network to the
ER− network using the same panel of methods as before,
and we analyzed the top-ranked genes from each method for
enrichment in GO terms. Consensus clustering and ALPACA
both failed to detect estrogen-specific pathways (Figure 7A and
Supplementary Tables 6, 7). Similar to the results from ovarian
cancer, general biological processes such as RNA localization,
mRNA splicing, protein catabolic process, and chromosome
organization were highly enriched after consensus clustering
(Supplementary Table 6).

On the contrary, reranking the nodes using CRANE (α = 0.1)
effectively uncovered estrogen specific GO terms such as “cellular
response to estrogen” and “positive regulation of intracellular
estrogen receptor signaling pathway” with more significant
p-values than ALPACA, consensus, and the permutation method
(Figure 7A and Supplementary Table 8). Similar to the
ovarian cancer analysis, CRANE decreased the significance of
non-specific housekeeping processes. The “true” subsampled
distribution performed even better than CRANE, reinforcing our
hypothesis that real disease pathways are robust relative to the
underlying noise in regulatory networks.

We also applied the full panel of methods on exponentially
transformed breast cancer PANDA networks. The exponential
transformation decreased the discovery of estrogen related
processes compared to the non-exponentiated network
(Figures 7A,B). Nevertheless, all methods showed improvements
in the significance level of “cellular response to estrogen
stimulus” compared to ALPACA and consensus clustering. The
configuration model again had a tendency to underestimate the
null distribution of differential modularity scores (DMS), leading
to a general inflation of GO term significance (Figure 7D).
The permutation method performed well in discovering
estrogen-related GO terms. This is likely because for this specific
dataset, edge permutation produces a DMS null distribution
close to the subsampled distribution. However, over all the
analyses we performed, the configuration model, SBM, and
permutation methods generally exhibited larger deviations
from the subsampled distribution than CRANE, leading to
unreliability in their performance (Figures 6C,D, 7C,D). In
summary, we found that different generative models may be
useful in specific networks, contexts, and conditions, but only
CRANE provides reliable and consistent performance across
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FIGURE 5 | Comparison of ALPACA modules and consensus clustering in angiogenic ovarian tumors. Network with (A) ALPACA solution has seven modules while
(B) the consensus clustering results in four modules. Top 10 core TFs and 100 core genes were extracted from each module based on DMS from ALPACA. The
consensus community or ALPACA membership was then overlaid on top by coloring the nodes. The angiogenesis genes (ellipse) were labeled based on whether
they were ranked within the top 100 genes in the respective methods. Network is annotated with representative enriched GO terms in each module with Padj < 0.05.

multiple settings in identifying genes statistically enriched for
disease-related processes rather than housekeeping functions.

DISCUSSION

Phenotypic transitions like disease are often driven by the
appearance of new groups of genes, or communities, that
carry out relevant cellular processes. However, most methods

for detecting these new communities rely on maximizing a
modularity-based score, and there is no easy way of determining
whether the solutions represent true disease modules or whether
they could have appeared in healthy tissue due to measurement
noise. Consensus clustering offers an effective way of finding
stable communities; however, the loss of community resolution
leads to a reduction in interpretability. Comparing disease
modules with randomized versions of a matched control network
could help identify genes that are significantly associated with
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FIGURE 6 | Performance of seven methods on discovering disease-relevant modules associated with angiogenic ovarian tumors. The top five-hundred genes in
each module discovered by each method were extracted and subjected to GO term enrichment analysis. (A,B) Horizontal bar plots show a curated set of GO terms
and their average –log10P-values over 100 different ALPACA runs. The GO terms (y-axis) colored in green are disease-relevant terms while black terms represent
general biological processes. (C,D) The left vertical bar plot shows the average center distance and the right bar plot shows the average ratio between the mean of
the null distribution created from subsampled networks and the mean of the null distribution generated from the indicated methods. Negative distance indicates that
the specific method underestimates the center of the “true” subsample distribution. For the variance ratio, values less than 1 represent greater variance in the
subsample distribution compared to the indicated methods. The GO term enrichment analysis and the distribution analysis were performed on networks with either
(A,C) PANDA edge weights or (B,D) exponentially transformed edge weights. The error bars represent mean ± S.E.M.
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FIGURE 7 | Performance of seven methods on discovering disease-relevant modules associated with ER-positive breast tumors. The top five-hundred genes in
each module discovered by each method were extracted and subjected to GO term enrichment analysis. (A,B) Horizontal bar plots show a curated set of GO terms
and their average –log10P-values over 100 different ALPACA runs. The GO terms (y-axis) colored in green are disease-relevant terms while black terms represent
general biological processes. (C,D) The left vertical bar plot shows the average center distance and the right bar plot shows the average ratio between the mean of
the null distribution created from subsampled networks and the mean of the null distribution generated from the indicated methods. Negative distance indicates that
the specific method underestimates the center of the “true” subsample distribution. For the variance ratio, values less than 1 represent greater variance in the
subsample distribution compared to the indicated methods. The GO term enrichment analysis and the distribution analysis were performed on networks with either
(A,C) PANDA edge weights or (B,D) exponentially transformed edge weights. The error bars represent mean ± S.E.M.
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disease. However, available network generative models are
unable to randomize gene regulatory networks while properly
controlling the sparsity and edge weight variance. Additionally,
biological experiments are resource-limited and do not typically
generate enough data to empirically estimate network variance
for statistical testing.

We therefore devised CRANE, an algorithm for generating
more realistic null distributions of gene regulatory networks by
maintaining node strengths and the underlying “hard-wired”
structure. We compared CRANE against a “true” null distribution
created by down-sampling a large breast cancer dataset to make
multiple independent replicate networks. The strength parameter
α in CRANE can be used to alter the variance in the edge weights,
community structure, and modularity score of the randomized
networks. However, our analysis showed that there is no single
value of α that fully recapitulates the “true” null distribution. This
may be because CRANE independently perturbs all edges while
subsampled networks retain correlations between network edges.
When applied to cancer networks, CRANE was more accurate
at reproducing the center of the subsampled distribution but
less accurate at reproducing the variance (Figures 6C,D, 7C,D).
We hypothesize that better modeling of the variance of the null
distribution would further improve the performance of CRANE.

We used simulated networks with artificial disease modules to
evaluate the accuracy and statistical significance of the ranking
of disease genes by CRANE. CRANE was consistently more
successful in identifying the real disease genes than network
generative models and edge weight permutation (Figure 4A).
This is likely due to the stricter constraints in CRANE that ensure
the randomized networks mimic the original network structure,
while other methods deviate due to their looser constraints
(Figures 3A,B). We note that the “true” subsampled distribution
performed best out of all the methods, suggesting that there
is room to further improve CRANE’s ability to capture all the
properties of gene regulatory networks.

CRANE also achieved more robust discovery of disease
specific processes in cancer regulatory networks. Comparing
angiogenic to non-angiogenic ovarian tumors, we found that
CRANE leads to a mild improvement in detecting differences
in expected pathways like blood vessel development and
inflammatory processes. Additionally, CRANE was able to
minimize noise from housekeeping processes that are present in
all living cells. Comparing ER+ to ER− subtypes of breast cancer,
we found that running a modularity maximization method like
ALPACA or consensus clustering failed to identify expected
changes in estrogen signaling. In contrast, ranking genes by
their significance using CRANE revealed that estrogen-related
modules were robustly activated in ER+ breast cancer.

The superior performance of CRANE in breast cancer
relative to ovarian cancer is likely rooted in differences in
the performance of ALPACA in the two datasets. In ovarian
cancer, the angiogenesis genes had high ALPACA scores and
re-ranking them by significance did not make a big difference
(Supplementary Figures 6, 8); in breast cancer, the estrogen
genes had lower ALPACA scores to begin with, providing
CRANE with more room for improvement. We also found
that CRANE performs poorly after exponentiating edge weights,

because the exponential transformation leads to a reduction in
ALPACA resolution (Supplementary Figures 7, 9). Therefore,
exploring other edge weight transformation methods that retain
finer community structure while controlling the influence of
negative (low-confidence) PANDA edge weights may improve
the performance of ALPACA and CRANE.

CRANE assisted differential network analysis minimally
requires the user to provide (i) a pair of disease and control
networks, and (ii) a list of nodes that defines a candidate
module. Although we have applied it in conjunction with
PANDA and ALPACA, other network inference and module
identification algorithms could also be used in principle.
CRANE is designed for weighted networks, with approximately
normally distributed edge weights, that incorporate sparsity;
in general, network inference methods that use a combination
of data-driven correlations and prior information, partial
thresholding, or other constraints could be compatible with
CRANE. Binary networks with edges either present or absent –
e.g., protein–protein interactions measured by IP-MS or Y2H –
may require a different statistical treatment. The user-defined
candidate module should be more strongly interconnected
(higher total edge weight) in the disease network than
in the control network, but otherwise could be identified
using any method.

In summary, CRANE is a flexible algorithm that can be
applied to both weighted unipartite (e.g., WGCNA) and bipartite
(e.g., PANDA) gene regulatory networks to generate biologically
realistic null distributions. We have demonstrated that this null
distribution can be used to better rank the genes that significantly
drive disease pathways. In the future, we anticipate that CRANE
could be used to evaluate the significance of other features (e.g.,
information flow or betweenness centrality) of disease networks
that are built around a “skeleton” of prior information, like
TF binding sites or interaction databases. As gene regulatory
networks become an increasingly common framing device for
multi-omics data, CRANE provides a robust approach to identify
what aspects of these networks are truly altered in disease.
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GLOSSARY OF STAND-ALONE METHODS

PANDA (network inference algorithm): infers a weighted bipartite gene regulatory network by iteratively integrating target gene co-
expression with transcription factor binding site occurrence (Glass et al., 2013).

WGCNA (network inference algorithm): constructs weighted networks that obey the scale-free topology criterion using soft
thresholding of gene correlations (Zhang and Horvath, 2005).

ALPACA (network analysis method): finds candidate disease modules by optimizing a differential modularity score defined as the
difference in edge density between disease and matched control networks (Padi and Quackenbush, 2018).

CONDOR (network analysis method): algorithm for detecting community structure in weighted bipartite networks
(Platig et al., 2016).

CRANE (network randomization algorithm): perturbs network edges while fixing node strengths and maintaining realistic features
of gene regulatory networks.

Configuration model (network randomization algorithm): an exponential random graph model for generating networks from a
given node degree or strength sequence (Gabrielli et al., 2019).

SBM (network randomization algorithm): a generative model that defines a probability distribution between node pairs by assuming
pre-existing densely connected communities or “blocks” (Aicher et al., 2015).
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