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The two-step model for plant root microbiomes considers soil as the primary microbial
source. Active selection of the plant’s bacterial inhabitants results in a biodiversity
decrease toward roots. We collected sixteen samples of in situ ruderal plant roots and
their soils and used these soils as the main microbial input for single genotype tomatoes
grown in a greenhouse. Our main goal was to test the soil influence in the structuring
of rhizosphere microbiomes, minimizing environmental variability, while testing multiple
plant species. We massively sequenced the 16S rRNA and shotgun metagenomes of
the soils, in situ plants, and tomato roots. We identified a total of 271,940 bacterial
operational taxonomic units (OTUs) within the soils, rhizosphere and endospheric
microbiomes. We annotated by homology a total of 411,432 (13.07%) of the
metagenome predicted proteins. Tomato roots did follow the two-step model with lower
α-diversity than soil, while ruderal plants did not. Surprisingly, ruderal plants are probably
working as a microenvironmental oasis providing moisture and plant-derived nutrients,
supporting larger α-diversity. Ruderal plants and their soils are closer according to
their microbiome community composition than tomato and its soil, based on OTUs
and protein comparisons. We expected that tomato β-diversity clustered together
with their soil, if it is the main rhizosphere microbiome structuring factor. However,
tomato microbiome β-diversity was associated with plant genotype in most samples
(81.2%), also supported by a larger set of enriched proteins in tomato rhizosphere than
soil or ruderals. The most abundant bacteria found in soils was the Actinobacteria
Solirubrobacter soli, ruderals were dominated by the Proteobacteria Sphingomonas
sp. URGHD0057, and tomato mainly by the Bacteroidetes Ohtaekwangia koreensis,
Flavobacterium terrae, Niastella vici, and Chryseolinea serpens. We calculated a
metagenomic tomato root core of 51 bacterial genera and 2,762 proteins, which could
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be the basis for microbiome-oriented plant breeding programs. We attributed a larger
diversity in ruderal plants roots exudates as an effect of the moisture and nutrient acting
as a microbial harbor. The tomato and ruderal metagenomic differences are probably
due to plant domestication trade-offs, impacting plant-bacteria interactions.

Keywords: plant microbiome, soil microbiome, rhizosphere metagenomics, core metagenome, domesticated
plants, ruderal plants, common garden experiment

INTRODUCTION

Soil and plant root-associated bacteria are relevant for plant
health, which has already been noticed in the beginning of the
20th century (Hiltner, 1904). It has been hypothesized that the
microbiome could be related to crop quality (Hartmann et al.,
2008). Soil is the most diverse microbial ecosystem, with up to
1011 bacterial cells per gram (Roesch et al., 2007). Soil properties
such as pH, nutrient content, or moisture, and plant species can
drive the soil microbiome composition (Fierer and Jackson, 2006;
Lauber et al., 2009; Schlaeppi et al., 2014). Plants and soil interact
at the rhizosphere, defined as the millimetric soil layer attached to
plant roots. Plants play an active role in selecting their microbial
inhabitants through root exudates, accounting from 5 to 20% of
the photosynthetically fixed carbon and used by the microbes
(Marschner et al., 2004). Plant-microbe interactions mainly occur
in the rhizosphere (Berendsen et al., 2012). Some other known
factors affecting the root microbial community structure are plant
developmental stage (Inceoğlu et al., 2011), pathogen presence
(Tian et al., 2015), and soil characteristics (Lundberg et al.,
2012; Edwards et al., 2015). Plant-microbiome interaction has
documented effects on plant growth and health; for example, the
root microbiome composition has been associated with biomass
increase in Arabidopsis thaliana (Swenson et al., 2000) and can
also affect flowering time (Panke-Buisse et al., 2015).

A study of the A. thaliana microbiome using hundreds
of plants and two soil sources concluded that root bacterial
communities were strongly influenced by soil type (Lundberg
et al., 2012). Microbial diversity was reduced in the rhizosphere
compared to the surrounding soil, suggesting that plants filter
and recruit a microbiome subset; these observations have led to
the two-step model of microbiome selection (Bulgarelli et al.,
2012, 2013). This model considers soil abiotic properties in
the soil microbiome (first step), and specific plant-derived
rhizodeposits contribute to selecting differential microbes in
the rhizosphere and the endosphere (second step) (Bulgarelli
et al., 2013). In the two-step model, α-diversity decreased
in the following order: soils > rhizosphere > endosphere
(Bulgarelli et al., 2013). However, a global-scale meta-analysis
has reported that root microbiomes of multiple plant species
(domesticated and wild) have a more substantial diversity than
soils (Thompson et al., 2017).

This work explores the bacterial diversity by 16S rRNA gene
massive amplicon sequencing and whole shotgun metagenomes
to predict the protein diversity of 16 geochemically distinct

Abbreviations: EC, ruderal plant endosphere; ECT, tomato endosphere; FS, final
soil; RT, tomato rhizosphere; RZ, ruderal plant rhizosphere; SI, Initial source soil;
US, control unplanted soil.

Mexican soils, collected over a large geographical scale
(Figure 1A and Table 1). The collected soils were chosen
based on country-wide edaphological charts (INEGI, 2014). We
explored the role of soil in microbiome structuring of in situ
ruderal plants, growing above the collected soils with multiple
species and at several plant developmental stages. The collected
soils were used as the substrate in a greenhouse experiment for
growing tomatoes (Solanum lycopersicum), eliminating plant
genotype variability as well as developmental, climatic, and
watering variables. Finally, testing diverse soil groups allowed
us to explore the tomato core root microbiome, which follows
the two-step model for root microbiome selection. The ruderal
plants do not follow the two-step model and have a larger
diversity than their source soils.

RESULTS

Soil Geochemical Description
Total nutrient concentration (C, N, P), pH, and Lang’s aridity
index were calculated and considered as soil abiotic properties
(Table 1). With the common garden experiment, we increased
soil biological activity, reflected in the N and C overall
increases after the experiment. We observed an increase in N
concentrations in 12/16 samples, while total C increased in 11/16
samples, and P decreased in 7/16 samples (Table 1). Another
explanation for the soil carbon enrichment is by plant root
exudates (Canarini et al., 2019). Tomatoes planted in SLP1 and
SIN2 exhibited a reduction in their total N concentrations; in
SLP1, this is explained as plant biomass generation, and in SIN2,
a coastal dune N was probably drained through watering (Table 1
and Supplementary Figure S2). Only two samples changed their
pH profiles (Table 1). Ordination analysis showed clustering
apart of source soils (SI) from final greenhouse soils (FS) and
evidenced the modifications derived from the common garden
experiment (Supplementary Figure S2A and Table 1).

Microbiome Diversity in the Source Soils,
Ruderal Plants, and Tomatoes
A total of 106 amplicon libraries (16S rRNA gene V3-V4)
were sequenced (Figure 1 and Supplementary Table S1).
After quality control and assembly, 5,211,969 sequences were
recovered. Subsequently 2,570,541 operational taxonomic units
(OTUs; 97% identity) were clustered. After discarding singleton,
mitochondrial, chloroplast, chimeras, and non-matching
sequences, a total of 271,940 OTUs were the base for further
analysis. The average in situ source soil (SI) OTU number
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FIGURE 1 | Experimental overview of the work. (A) In situ sampling locations; sampling points were selected according to edaphological charts. (B) The in situ
plants were dependent on the weather and local environmental conditions, and we collected soil samples (SI) and roots of the dominant plant species in each
locality. We extracted the rhizosphere (RZ) and endosphere (EC) metagenomic DNA. (C) A common garden experiment was conducted in a greenhouse; the soil (SI)
was used as a microbial inoculum to reduce environmental variability. Plant diversity was eliminated using tomato, with constant watering, and finally, we collected
roots (RT), endosphere (ECT), final soil (FS), and control unplanted soil (US).

(SI = 2,143) was lower than that in ruderal plants rhizospheres
(RZ) and endosphere (EC) (RZ = 18,158; EC = 19,885 OTUs).
Common garden final soils (FS) and control unplanted soils
(US) had similar OTU averages (FS = 3,084; US = 2,882). The
control soils (US) were pots with unplanted soil and output of the
greenhouse experiment, thus receiving the same watering and
homogeneous environmental conditions as final soils (FS), and
tomato root microbiomes (RT and ECT). The rationale behind
the common garden experiment is to impose a homogeneous
treatment for all experimental units, in this case, regular watering
and the same temperature, thereby eliminating local climatic
variables of soil (temperature, humidity, altitude, precipitation).
Lang’s aridity index is based on the historical data of precipitation
and temperature in a site. The aridity index of soils is disrupted
in the common garden experiment where the environmental
conditions are homogenized. We hypothesize that control soils
(US) have a larger number of OTUs than source soils (SI) either
by reactivation of biological activity, increasing the abundance
of microorganisms, and the proliferation of external sources of
microbes such as the ones carried through air and water. Tomato
rhizosphere (RT) and endosphere (ECT) samples had a higher
OTU average than the SI, but a smaller average compared to FS
(RT = 2,474 OTUs, EC = 2,088) (Supplementary Table S2).

We found 586 shared bacterial genera between soils and roots
(rhizosphere and endosphere) of tomatoes and ruderal plants
(Figure 2A). The source soils had eight unique genera and shared
most (98.78%) of their microbes with tomatoes or ruderal plants.
The largest amount of unique genera (46.21%) was found for the
ruderal plants, sharing the most bacterial genera with the tomato

and the soils (53.78%). The tomato root microbiomes had 14
unique bacterial genera (1.9%), four were only shared with soils
(0.53%), while most genera were shared with soils and ruderal
plants (97.53%). The unique bacterial members found in plants
and not found in soil may be a product of vertical inheritance
of the plant microbiome (e.g., seed endophytes, Truyens et al.,
2015; Shade et al., 2017). Another of our analyses showed that the
tomato core microbiome had 51 bacterial genera, while ruderal
plants and core soils had 187 and 16 bacterial genera, respectively.
Cores were defined as detected genera in all of the sample types
compared (RT, soils, and RZ). Complete information on unique
and shared OTUs is available (Supplementary Table S3). In
comparison to our result, another study identified a bacterial
tomato rhizosphere core microbiome composed of 68 orders
using different tomato cultivars in a single soil, and 27 orders
using a single tomato genotype in five soils (Cheng et al., 2020).

Ruderal Plants Rhizospheres Harbored a
Larger Bacterial Diversity Than Soils and
Tomatoes
We analyzed the α-diversity of soils, rhizospheres, and
endosphere microbiomes through the Shannon diversity
index (H′). Multiple studies have confirmed the two-step model
of root microbiomes (Lundberg et al., 2012; Bulgarelli et al., 2013;
Edwards et al., 2015). Here, we found that soils (H′ = 6.1–7.6)
were more diverse than the tomato rhizosphere (H′ = 5.2–7.4) or
the tomato endosphere (H′ = 5.5–7.1), thus fitting the two-step
model for microbiome selection. However, when comparing the
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soil to the ruderal plant root microbiomes, higher H′ values were
observed in the rhizosphere (H′ = 7.4–9.1) and even in their
endosphere microbiomes (H′ = 7.0–9.2) compared to their soils
(H′ = 6.1–7.6), not adjusting to the two-step model (Figure 2B
and Supplementary Figure S3, Supplementary Table S2).

Ruderal plants might have a larger α-diversity because of
the rhizosphere micro-environmental conditions, analogs to an
oasis in the dry soil. However, previous reports show a larger
diversity in rhizospheres than in soils comparing different biomes
(Thompson et al., 2017). Marasco et al. (2018) found a higher
16S rRNA copies (qPCR) in the rhizosphere and rhizosheath
than soil, of three species of dune colonizing speargrasses
(Stipagrostis sabulicola, S. seelyae, and Cladoraphis spinosa).
The larger rhizosphere and rhizoheath suggest an increase in
microbial abundance and activity in these plants influenced
microniches compared to soils. They also found that S. seelyae
possessed a more substantial species richness in the rhizosphere
than the bulk soil. Another study found that plants of Caragana
microphylla can host rhizospheric microbial communities with
larger Shannon diversity values in comparison to their bulk
soils in particular sites or depending on the type of dunes (Gao
et al., 2019). Additionally, some considerations must be made
for ruderal plants since they are present in environments where
they are not the only plant species but part of a plant community
that could be broadening the rhizosphere effect. Different plant
species or genotypes, as well as plant age, have been reported
to attract specific bacterial communities (Baudoin et al., 2002;
Marschner et al., 2004; Micallef et al., 2009). Additionally, plant
communities and their richness and diversity growing in the soil
affects belowground microbial community diversity, biomass,
and respiration rates, thereby impacting plant diversity (Wu et al.,
2019). Current agricultural management includes practices such
as fertilizer-driven production, which decreases the importance
of plant-microbe interactions when scavenging for nutrients (van
der Heijden et al., 2008). The larger microbial diversity observed
in ruderal plants shows the commitment of wild plants to their
microbes, fostering plant-microbe relationships which are not
observed in domesticated cultivars (Wissuwa et al., 2009). We
have previously tested other non-domesticated plants, such as the
aquatic carnivorous bladderwort Utricularia gibba (Alcaraz et al.,
2016) and the bryophyte species Marchantia polymorpha and
M. paleacea (Alcaraz et al., 2018); both showed less diversity in
their root analogs (bladders, and rhizoids) than their soil sources,
supporting the two-step model. The Marchantia microbiomes
even allowed us to perform an extreme microbial selection due
to the in vitro propagation of these plants, highlighting a reduced
core of closely related microbial inhabitants (Alcaraz et al., 2018).
Testing multiple plants, wild and domesticated, could reduce
the gaps in understanding the microbiome structure loss as a
domestication trade-off.

Plant Driven Selection of Bacterial Root
Colonizers in Tomatoes and Ruderal
Plants
We performed a α-diversity analysis based on the weighted
UniFrac community distance matrix to dissect the role of soil
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FIGURE 2 | Alpha diversity and richness of the soil, rhizosphere, and endosphere of tomato and ruderal plants. (A) Venn diagram showing the number of shared
bacterial genera in roots (endosphere + rhizosphere) and soils. (B) Boxplots showing the OTU Shannon diversity index (H′) of source soils (SI), tomato rhizosphere
(RT), tomato endosphere (ECT), in situ plants rhizosphere (RZ), and in situ ruderal plant endosphere (EC).

in the establishment and structure of rhizo and endosphere
microbiomes in both ruderal and S. lycopersicum plants
(Figure 3). We observed that the microbiome (16S rRNA
gene) distribution was largely driven by the host species. The
weighted UniFrac dendrogram grouped the samples into three
major clusters: Cluster (I) contains only tomato-associated
microbiomes, cluster (II) includes soil and ruderal plant
microbiomes, and a mixed cluster (III) includes soil, tomato, and
ruderal plant microbiomes (Figure 3). The clustering of the three
groups is supported by ANOSIM (R = 0.7257; p < 0.001; 999
permutations). Pairwise distance values were calculated between
every sample in the weighted UniFrac dendrogram to evaluate
the distance patterns and cohesion found inside and between
each of the described clusters. The average internal distances
were 0.5041 for cluster (I), 0.5058 for cluster (II), and 0.4787 for
the cluster (III). The measured distance between any terminal
node of cluster I against any tip in either cluster (II) or (III) was
0.6608. Most of the tomato samples were closer to each other than
to their source soils. The tomato-associated cluster (Figure 3,
cluster I) grouped 10/16 tomato rhizospheres, along with
13/16 of the tomato endospheres, suggesting a plant genotype-
dependent role in root microbiome establishment. The closer
α-diversity distance of ruderal plants to their soils, compared to
tomatoes (Figure 3), showed the tomato host genotype associated
microbiome selection having a larger effect than soil, lowering
its overall α-diversity in a probable outcome of domestication
trade-offs. A comparison of maize, its ancestor teosinte, and other
Poaceae rhizosphere microbiomes showed correlations between
microbiomes and host evolutionary distances (Bouffaud et al.,
2014). The few tomatoes and ruderal samples that clustered closer

to their source soils, were remarkably acid soils, indicating pH
properties as microbiome structuring factor, as shown before
(Fierer and Jackson, 2006; Männistö et al., 2007; Table 1).

Microbiome Phylogenetic Assignments
and Differential Taxa in Soil, Ruderals,
and Tomato
In situ samples of soils and ruderal plants were dominated by
Actinobacteria, with a significantly (ANOVA p < 2e-16) lower
abundance in tomato roots (Figure 3, Supplementary Figure S4
and Supplementary Table S5). Using the tomato (fixed plant
genotype), we imposed a selective factor, since the plant-
derived chemotactic signals and photosynthates should be
similar, independent of the soil. Proteobacteria were significantly
enriched in tomatoes (ANOVA p < 1.82e-15) compared to soils
and ruderal plants. It seems that plants such as tomatoes as
other agricultural species favor Proteobacteria (Correa-Galeote
et al., 2018; Cordero et al., 2020), while ruderals and soils
depend upon Actinobacteria. The class α-Proteobacteria was
the most abundant in tomatoes, with significant enrichment
(ANOVA p < 2e-16) compared to ruderal plants and soils.
The β, γ, and δ-Proteobacteria were more abundant in ruderal
plants (p < 0.05) than in tomatoes and soils. Bacteroidetes were
enriched in tomato roots (ANOVA p < 1.34e-15) when compared
to soils and ruderal plants (Figure 3, Supplementary Figure S4,
and Supplementary Table S5). Each plant can attract and
select specific microorganisms depending on plant-genotype-
dependent chemical formulation of rhizodeposits and cell
wall features, resulting in specificity for microbiome selection

Frontiers in Microbiology | www.frontiersin.org 5 October 2020 | Volume 11 | Article 542742

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-542742 October 7, 2020 Time: 19:42 # 6

Barajas et al. Testing Plant Root Microbiome Acquisition

FIGURE 3 | Host genotype and soil influence on microbial community structure (16S rRNA gene). On the left, a weighted Unifrac dendrogram shows α-diversity and
phylogenetic similarity between soil, tomato, and ruderal plants. Each location is indicated at the dendrogram terminal nodes with a three-letter key for sampling
location and suffix indicating type: initial source soil (SI), final soil (FS), unplanted soil (US), tomato rhizosphere (RT), tomato endosphere (ECT), ruderal plant
rhizosphere (RZ), and ruderal plant endosphere (EC). Phyla diversity (H′) in each sampled microbiome is shown as a horizontal heatmap. Bar plots show bacterial
phyla relative abundance in each sample. Proteobacteria are shown at the class level in the bar plots.

(Schlaeppi et al., 2014; Bulgarelli et al., 2015; Fitzpatrick
et al., 2018). Additionally, in situ natural variations in the
climatic conditions were reduced in the common garden
experiment, tomato plants watered regularly, and minimized
climatic variation. The larger abundance of Actinobacteria
has practical explanations in plant interactions; there are
reports of its use as biocontrol agents isolated from soil and
rhizospheres, and they are secondary metabolite producers
such as antibiotics or plant growth-promoting molecules
such as indole acetic acid (El-Tarabily et al., 2009; Brader
et al., 2014; Sreevidya et al., 2016). Actinobacteria differential
abundance in both soils and ruderal plants can also be a
product of environmental water limitations. Aridity increases the

proportions of Actinobacteria in arid soils, while humid sites
usually have larger Proteobacteria abundances (Neilson et al.,
2017), probably because Proteobacteria have faster duplication
times than Actinobacteria (Ramin and Allison, 2019).

We used DESeq2 to compare and identify significantly
(p < 0.01, Bonferroni corrected) enriched OTUs
(Supplementary Table S6). The overall diversity decrease
in the tomato roots is consistent with the enrichment of certain
bacterial groups capable of close plant interactions through
specific molecular mechanisms (e.g., chemotaxis responsive,
plant degradation enzymes) (Bais et al., 2006; Compant et al.,
2010). We found six differential OTUs assigned as Sphingobium,
Caulobacter, Asticcacaulis, Arthrospira, and Kaistobacter

Frontiers in Microbiology | www.frontiersin.org 6 October 2020 | Volume 11 | Article 542742

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-542742 October 7, 2020 Time: 19:42 # 7

Barajas et al. Testing Plant Root Microbiome Acquisition

in the tomato rhizospheres compared to their source soils
(Supplementary Figure S5A). These bacterial genera have been
isolated from sources such as freshwater (Chen et al., 2013),
soil (Costa et al., 2006), and rhizospheres (Young et al., 2008;
Schreiter et al., 2014; Yang et al., 2016). The genera Caulobacter
and Asticcacaulis are characterized by having at least one
appendage or prostheca that protrudes from the cell envelope
and can play a role in adhesion to solid substrates (Poindexter,
1981; Ong et al., 1990), a helpful attribute for the colonization
of plant roots (Wheatley and Poole, 2018). Additionally,
Caulobacter has been described as a hub taxa in the phyllosphere
of Arabidopsis thaliana (Agler et al., 2016), remarking
the possible importance of these taxa in plant-associated
microbial communities. In contrast, in the endospheres,
we found 14 enriched OTUs belonging to the same genera
present in the rhizosphere and Agrobacterium and Lacibacter
(Supplementary Figure S5B). The presence of OTUs assigned
to the families Sphingomonadaceae and Bradyrhizobiaceae
in roots of S. lycopersicum has been reported previously.
Both Sphingomonadaceae and Bradyrhizobiaceae OTUs were
reduced with plants inoculated with the pathogen Phytophthora
parasitica, compared to healthy plants (Larousse et al., 2017).
We found an overrepresentation of some Sphingobium and
Rhizobium species, suggesting that their abundance could be
used as a plant health proxy since we did not observe root
rot symptoms in any of our individuals, as in other studies
with healthy tomato plants (Satour and Butler, 1967; Lee et al.,
2019). Moreover, in a previous work describing tomato roots,
microbiomes, Sphingomonas, and Sphingobium were detected in
more than 50% of the 16S rRNA gene OTUs (Lee et al., 2016).
Sphingobium has been observed as the dominant genus in tomato
roots elsewhere (Pii et al., 2016). The comparison between
ruderal plant roots and soils showed 45 differentially abundant
OTUs in the rhizospheres (Supplementary Figure S5C) and 31
enriched OTUs in the endosphere (Supplementary Figure S5D),
most belonging to Actinobacteria (Supplementary Table S6).
Additionally, we compared the sets of soils and their controls
(Figure 1) and did not find any shared OTUs whose abundance
differed significantly. Most of the ruderals in our study were
grasses (Poaceae; Supplementary Figure S1), and recently
it was reported that grasses rhizospheres were enriched in
Actinobacteria under drought conditions (Naylor et al., 2017).
Also, the loss of Actinobacteria abundance in tomato, a
domesticated crop, compared to the soils and ruderal plants
suggests that it could be a domestication trade-off, as previously
suggested by a correlation between microbiome structure and
host evolutionary history (Redford et al., 2010; Peiffer et al., 2013;
Bouffaud et al., 2014).

Shotgun Metagenomic Diversity in
Source Soils, Ruderal Plant
Rhizospheres, and Tomato Rhizospheres
We sequenced 50.1 Gb in a total of 17 SI, RT, and RZ
metagenomes. After quality control, we obtained 464,372,598
high-quality paired-end reads (µ = 27,316,035 ± 2,943,233 per
sample), which were used as input to an assembly that yielded

12,677,118 contigs (µ = 745,713 ± 366,001 per sample), with
an average N50 of 176 ± 51 bp and the longest contig average
length of 45,645 bp. Subsequently, we were able to compute a
total of 12,272,971 predicted peptides (µ = 708,835 ± 332,770
per sample) (Supplementary Table S7). Protein redundancy was
reduced using proxy-genes of matches to known proteins and
protein-clustering alignments (70% identity). After clustering
and matching, protein annotation was performed using the
M5NR database (see “Materials and Methods”), resulting in
3,147,929 proteins; only 411,432 (13.07%) were annotated based
on homology against the M5NR database.

We compared the shared set of proteins between soils,
ruderals, and tomatoes, resulting in a set of 43,305 proteins
detected at least once for every sample type (Figure 4A). Most of
the union set proteins (93%) were annotated. Tomatoes shared
with the soils 8.49% of their predicted proteins, while ruderal
plants shared 8.72% of the identified peptides with the soil.
Tomatoes shared more coding genes with ruderal plants (8.85%)
than with soil (8.49%) (Figure 4A). Different sets of proteins for
each sample showed the largest novelty in soil (88.83%), followed
by ruderal plants (87.46%) and tomatoes (86.36%) (Figure 4A).
Although the largest number of unique proteins could be the
result of an enthusiastic computer prediction, it was interesting
that the tomato had the largest amount of annotated proteins
(12.10%) compared to ruderals (9.97%) and soils (6.75%), maybe
reflecting the larger previous genomic information in agricultural
microbes, being scarcer in wild plants, and the soil microbes
(Figure 4A). Complete lists of identified proteins are available as
Supplementary Material (Supplementary Table S8).

We compared the protein α-diversity using the Shannon
diversity index (H′) based on the total number of predicted
proteins (Supplementary Table S9). Soil diversity had a higher
median (H′ = 11.8) than tomato diversity (H′ = 11.3) and
ruderal plant diversity (H′ = 11.3), without significant differences
(Figure 4B and Supplementary Figure S6). We hypothesize
that domestication decreased the microbial diversity of the
tomato root microbiome compared with that of grasses growing
in the same soil. Plant domestication is targeted at meeting
the requirements of humans, thereby decreasing plant genetic
variability and generating crops dependent on humans (Doebley
et al., 2006; Bulgarelli et al., 2013). Interestingly, the two-step
model for root microbiota resembles the effects of reductive gene
diversity in crop domestication (Doebley et al., 2006). Current
agricultural management includes practices such as fertilizer-
driven production, which decreases the importance of plant-
microbe interactions when scavenging for nutrients (van der
Heijden et al., 2008). Although it is not as descriptive with
metagenome-predicted proteins, and it probably needs further
refinement, maybe through linking the OTU abundance with
pan-genomics and metagenomics to describe the genomic coding
diversity (Delmont and Eren, 2018). To test the hypothesis that
the tomato predicted metaproteome is divergent from those of
the soil and ruderal plants, as suggested by the 16S α-diversity
dendrogram (Figure 3), we performed a constrained analysis of
principal coordinates (CAP) ordination (Figure 4C). We used
the protein abundance as CAP input, and we constrained the
analysis by sample type, pH, total N, C, and P. This metagenomic
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FIGURE 4 | Shotgun metagenomics diversity of soil and rhizosphere microbial communities. (A) Venn diagram showing the number of shared and unique annotated
protein families (70% identity) in soil and rhizosphere. (B) Boxplots showing the Shannon diversity index based on the total number of predicted proteins in soil and
rhizosphere. (C) Constrained analysis of principal coordinates (CAP), calculated from the total number of predicted proteins for all sequenced soil and rhizosphere
metagenomes using Bray-Curtis dissimilarity. Vectors display the environmental factors: CT, Total Carbon concentration; NT, Total Nitrogen concentration; PT, Total
Phosphorus concentration; RZ, ruderal plant rhizosphere; SI, Initial soil.
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profiling of the microbial communities showed that ruderal
plants and soils have a similar composition of predicted proteins
(Figure 4C), differentiating them from tomato rhizospheres and
highlighting the host-dependent selection. The CAP explained
16.6% of the total observed variance, with CAP1 (9.4%) splitting
the tomatoes from ruderals and source soils. Ruderal plants
were closer to the soils, but not mixed with them (CAP, Bray-
Curtis distance, PERMANOVA 9,999 permutations, p < 1e-4).
The split tomato and ruderal-soil groups are also supported by
ANOSIM (R = 0.4568; p < 0.001; 999 permutations) (Figure 4C).
Correlations with the measured geochemical variables with the
two CAP axes showed positive correlations of P, source soils (SI),
and ruderal plants (RZ), while negative correlations observed for
pH, N, and C (Figure 4C).

Shotgun Metagenomics Taxa
Assignments
We were able to bin and classify 38% ± 1.66 of the sequenced
metagenomic reads to multiple taxa. Bacteria accounted for
88.14% of the identified matches, followed by 7.09% of
Eukaryota, with almost half of the hits corresponding to
Fungi (3.83%) (Supplementary Table S10). Further work will
explore eukaryotic, archaeal, and viral diversity of the sequenced
metagenomes. In soils, the most abundant bacterial species
binned was Solirubrobacter soli (Actinobacteria), which was
also highly abundant in ruderals and tomatoes. Sphingomonas
sp. URHD0057 (α-Proteobacteria) were most abundant in
ruderals, along with Solirubrobacter soli and the Rhizobiales
Rhodoplanes sp. Z2-YC6860. The 16S data showed that
Bacteroidetes were significantly enriched in tomato roots
compared to soil and ruderals; metagenomic bins confirm
the 16S rRNA gene trends. There are reports about bacterial
groups’ enrichment, such as Bacteroidetes on wild plants and
Proteobacteria on domesticated plants (Pérez-Jaramillo et al.,
2018). Within the principal tomato metagenomic bins, we found
Ohtaekwangia koreensis, Flavobacterium terrae, Niastella vici,
Chryseolinea serpens the metagenome-assembled genome of a
Chitinophagaceae bacterium IBVUCB2 as Bacteroidetes species.

We analyzed a functional summary of the sequenced
metagenomes using the SEED subsystem gene ontology
(Figure 5). The largest category was clustering-based subsystems,
which include protein families that are quite diverse from
the CRISPR, sugar metabolism, other known categories, and
hypothetical proteins. We only found small differences (Tukey’s
HSD) in iron acquisition metabolism (p = 0.07), cell wall and
capsule genes (p = 0.06) between soils and tomatoes. We found
significant differences (p = 0.017) between ruderals and tomatoes
in sulfur metabolism genes (Figure 5).

Enriched Proteins in the
Rhizospheres-Soil Comparison
Pairwise comparisons were made using DESeq2 to find
significant (p < 0.001, Bonferroni) predicted protein
enrichments. Comparing tomatoes (RT) and soils (SI), we
identified 67 enriched proteins in RT involved in motility,
chemotaxis, and biofilm formation (e.g., LuxR, CheY, diguanylate

cyclase, CpaE), complex carbohydrate degradation (e.g.,
xyloglucanase, cellulase Cel5F), antibiotic resistance (e.g., β-
lactamase class C), iron metabolism (e.g., TonB), and sporulation
(e.g., SpoIIIE), as well as secretion system-related proteins (e.g.,
exo-sortase) (Supplementary Figure S7). The enrichment of
Proteobacteria in tomato is in line with enriched genes such
as motility and chemotaxis, widely distributed amongst α, β,
and δ-Proteobacteria (Liu and Ochman, 2007). Motility traits
are important for host colonization; this has been tested by
mutagenesis in Pseudomonas fluorescens WCS36, reducing
colonization efficiency of plant roots (de Weert et al., 2002),
also reported for P. fluorescens SBW25 (Turnbull et al., 2001).
Diguanylate cyclase and CpaE are involved in biofilm formation
and pili production in Caulobacter crescentus (Skerker and
Shapiro, 2000; Del Medico et al., 2020). Another interesting
metabolic feature relevant for the plant-associated niche found
in tomato roots is the enzyme xyloglucanase, involved in the
degradation of xyloglucan. This heteropolysaccharide comprises
up to one-quarter of the total carbohydrate content of terrestrial
plant cell walls (Scheller and Ulvskov, 2010; Figure 6).

When comparing ruderals (RZ) and tomatoes (RT),
we found 16 enriched proteins in RT and 11 in RZ
(Supplementary Figure S8). The lowest number of enriched
proteins between tomatoes and ruderals indicates that their
shared set contains common features in plant-microbe
interactions. Compared to RT, the RZ-enriched proteins
included transporters and, interestingly, osmotic sensor
components (e.g., osmosensitive K channel histidine kinase).
The RT-enriched proteins, compared to RZ, included several
peptidases (e.g., M17 leucyl aminopeptidase) and some
horizontal gene transfer elements (e.g., integrase-recombinase,
ISRSO17 transposase, bacteriophage N4 adsorption protein
B). Interestingly, multiple similar proteins enriched in the
RT-SI comparison were also enriched in the RT-RZ (e.g., β

class C, glycoside hydrolases), remarking the host genotype
filtering of RT. Finally, comparing RZ-SI registered only two
RZ-enriched proteins, indicating the similarities between
soil and ruderals (Supplementary Figure S9). The full list
of overrepresented proteins for each comparison is available
(Supplementary Table S11).

The Tomato Rhizosphere, Soil, and
Ruderal Plant Core Metagenomes
It seems that the tomato was highly selective about its microbial
inhabitants; we found 2,762 protein families ubiquitous in all
tomato roots tested (Supplementary Figure S10). We used the
protein annotation to reduce the dataset to 1,777 core proteins
and only 1,353 exclusively in tomato (Supplementary Table S12).
The core tomato metagenome was contrasting to the soil
with only 162/639 and the ruderal metagenome with just
143/694 core-exclusive proteins. Some essential proteins were
expected to be part of the core metagenomes and worked
as controls for our searches, such as ribosomal proteins,
DNA and RNA polymerases, gyrases, chaperonin GroEL, and
we found them all within the tomato core metagenome.
Within the tomato core metagenome, we found multiple
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FIGURE 5 | Summary of metagenomic functional profiles. Heatmap is describing the level 1 SEED subsystems ontology annotations in each row. Although only
using the 138,627 M5NR matches to the SEED, representing 4.4% of the total dataset, it was helpful to describe the main molecular functions. Columns represent
each metagenome, and the first four alphanumeric codes are for location; suffixes indicate sample type: RT is tomato rhizosphere metagenome, SI is source soil,
and RZ represents ruderal plant rhizosphere metagenome.

strategies to cope with nitrogen, such as regulation genes
via denitrification (nosZ) and nitrate reductase genes (nasA,
nirB, and nrfA) to obtain ammonia (Figure 6). The high
abundance of Actinobacteria in the source soils and the switch
to a Proteobacteria dominance in the FS suggests processes
such as biological nitrogen fixation and microbial biomass
increments. Both Actinobacteria and Proteobacteria are capable
of nitrogen fixation since their genomes contain nitrogenases
(Boyd and Peters, 2013). Glutamate, glutamine synthetases,
and their transferases were also detected in the RT core
metagenome and could regulate amino acid synthesis and
ammonia. Additional nitrogen storage proteins were detected,

such as cyanophycin synthetase (CphA) and cyanophycinase,
within the RT metagenomic core; cyanophycin is a non-
ribosomal peptide built by aspartic acid and arginine. This
reserve polymer regulates N and C and mediates N storage,
providing bacterial fitness advantages under nitrogen fluctuations
(Watzer and Forchhammer, 2018; Figure 6). Further, we found
allantoinase and allantoate amidohydrolase genes, which are
responsible for allantoin degradation to ammonia (Cruz-Ramos
et al., 1997; Ma et al., 2016). Patatin-like phospholipase proteins
were also found in the tomato core metagenome; they are
phospholipases originally described in potato, but with abundant
homologs in bacteria (Banerji and Flieger, 2004). Bacteria
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FIGURE 6 | Tomato rhizosphere core metagenome and differential features with soil and ruderal plants summary. Predicted tomato core proteins and enriched
tomato proteins are color-coded to the related cellular processes. The found proteins were previously reported as fundamental for plant-microbe interactions.

use patatins to target host cell membrane as effectors via
the type III secretion system (Finck-Barbançon et al., 1997;
Phillips et al., 2003; Sato et al., 2003) and are activated by
ubiquitin (Anderson et al., 2015). The eukaryotic patatins
are known to have antimicrobial activities (e.g., Phytophthora
infestans inhibition) (Bártová et al., 2019). Tomato and potato,
belonging to the family Solanaceae, interact with microbes via
patatin and patatin-like proteins, and we will further explore
plant-microbe interactions mediated by these proteins. While
significantly enriched in ruderals, leucyl aminopeptidase was
also ubiquitous in tomato metagenomes. Interestingly, leucine
aminopeptidase A (LapA) is expressed in tomato after wounding
and prevents foraging (e.g., Manduca sexta foraging tomato)
(Fowler et al., 2009). LapA is also transcriptional and protein-
responsive to microbial pathogens (Pautot et al., 1993; Pautot
et al., 2001). The bacterial leucine aminopeptidases found in
tomato metagenomes could be expanding the plant’s defensive
response through LapA, but this is yet to be explored. The
complete M5NR identifiers and core metagenomes are available
(Supplementary Table S13).

Describing the tomato core microbiome and metagenome
under multiple soils also allowed us to test the plant
genotype filtering effect, evaluating selected microbes in diverse
environments. With the current advances in synthetic biology,
the tomato core metagenome could lead to a tomato root
metagenomic chassis. This core metagenome could lead to
microbe-complemented plant breeding programs aiming to
reduce and optimize fertilizer use while increasing plant

resilience, such as that observed in ruderal plants. Further
possibilities could be the recovery of the domesticated missed
root microbes from wild plants.

By using 16 geochemically diverse soils as microbial inputs
for root colonization, we discarded the role of soil as
the major structuring factor of root microbial communities,
particularly of their coding genes. Further work is needed
for detecting other environmental microbe sources than the
soil for rhizosphere metagenomic diversity. Weather-dependent
ruderal plant roots are a nutrient and moisture oasis for
soil microbial communities with a higher taxonomic α-
diversity. The tomato root microbiome followed the two-
step model of microbiome acquisition. The reduced total
protein number, along with significant enrichments in the
tomato root metagenomes compared to ruderals and soils,
suggests a tomato rhizosphere specialization and a possible
domestication trade-off. Plants had been domesticated since
the Neolithic age some 10,000 years ago (Purugganan and
Fuller, 2009), and genomic changes in microbes linked
to domestication processes have been documented (genome
reduction, insertion sequences, and transposition expansions),
such as the enriched genes found in RT (Mira et al., 2006).
Our experimental setup showed that tomato enriched plant-
microbe interaction genes (Figure 6). Altogether, our results
show that tomato roots have a convergent, genotype driven, and
reduced microbiome compared to their source soils, following
the two-step selection model for the root microbiome. This
is contrary to the ruderal plants, which exhibit a larger
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microbiome diversity than their soils, not following the two-
step model.

MATERIALS AND METHODS

Soil and Local Plant Roots Sampling
Edaphological charts were used to locate eight different soil
groups, according to the United Nations FAO classification
(IUSS Working Group WRB, 2015) from 16 different geographic
locations described in Figure 1A and Table 1. In each
location, 0.09 m1 quadrats were placed, and duplicate root
samples were taken from the quadrant dominating plant
species and the soil below them. We collected 2 kg of
each soil into sterile plastic bags for the common garden
experiment and biogeochemical analysis. All soil samples
were taken from a depth not larger than 10 cm. The
soil was kept at 4◦C in a darkroom until greenhouse
experiments were conducted 1 month later. In situ soils
were collected for each soil group, poured into duplicate
sterile centrifuge tubes (50 mL volume), and immediately field
frozen in liquid nitrogen until storage into a −80◦C freezer
metagenomic DNA extraction.

Common Garden Experiment,
Harvesting, and Sample Collection
The tomato seeds used were Solanum lycopersicum L. Cv.
Río grande (Sun Seeds, Parma, ID, United States). Seeds
were surface disinfected in 70% ethanol for 1 min, followed
by a wash in 2.5% NaOCl for 2 min, and rinsed with
sterile distilled water. Seeds were germinated in 1% agar
for 96 h in a dark growth chamber at 27◦C. Sprouts were
aseptically transplanted into duplicated pots filled with the
collected soils, two plants per pot were transplanted, summing
four biological replicates; additionally, pots with each soil
were prepared without plants which served as a control
to track the changes in the soil microbiome composition
due to the treatment applied in the greenhouse lacking the
influence of plant development (US; Figure 1C). Pots were
set in the greenhouse randomly, and plants were watered
with tap water every other day and harvested after 60 days
of growth. All soil samples (Figure 1) were collected in
50 mL sterile tubes and frozen at −80◦C until metagenomic
DNA extraction. Roots were separated from shoots to collect
rhizosphere and endosphere samples by removing loose soil,
followed by a washing and ultrasound procedure in 1X PBS
buffer (137 mM NaCl; 2.7 mM KCl; 10 mM Na2HPO4;
1.8 mM KH2PO4) as described before (Lundberg et al., 2012).
Tomato rhizosphere and endosphere metagenomic pellets were
recovered through centrifugation (50mL tubes centrifuged at
1,300 g during10 min). Roots and shoots were oven-dried at
60◦C for 24 h to measure plant biomass production. Due
to low DNA extraction efficiency by this method in ruderal
plant roots, they were cut and separated into ten 1.5 mL
tubes, which received the same treatment as the 50 mL

1https://github.com/genomica-fciencias-unam/Barajas-2020

tubes. All sample pellets were frozen and kept −80◦C until
metagenomic DNA extraction.

Soil Geochemical Analyses
Initial and final soils were oven-dried for 24 h at 70◦C.
The pH was measured in deionized water (1:4 w:v) with a
Corning digital pH meter. Total carbon was measured by
coulometric combustion detection (Huffman, 1977) with a
Total Carbon Analyzer (UIC Mod. CM 5012; Chicago, IL,
United States). Total nitrogen was determined by a semi-
Kjeldahl method and phosphorus by the molybdate colorimetric
method after ascorbic acid reduction (Murphy and Riley,
1962) using a Bran-Luebbe Auto Analyzer III (Norderstedt,
Germany). The Lang’s aridity index (Lang, 1920) of each
site was calculated using historical data of mean annual
precipitation and temperature for each sampling location,
and data was consulted at the Atmospheric Sciences Center2

of UNAM. Non-metric multidimensional scaling (NMDS) of
the samples was calculated with the geochemical data using
the metaMDS function in the vegan R package (Oksanen
et al., 2015) and plotted with ggplot2 (Wickham, 2009).
Detailed statistical and bioinformatic methods are available
at Github2.

Metagenomic DNA Processing and
Massive Sequencing
The metagenomic DNA of all samples was extracted using the
Mobio PowerSoil DNA extraction kit (MoBio, Carlsbad, CA,
United States), following the manufacturer’s instructions. Briefly,
for soils,∼0.25 g were used for the extraction, for rhizosphere and
endosphere pellets collected after washing and sonication of the
roots were used respectively, as previously described (Lundberg
et al., 2012). Then, the Mobio protocol was slightly modified to
get extra DNA by heating the C6 elution solution to 60◦C before
eluting the DNA, and two 30 µL elutions were performed on the
same spin filter. The same DNA was used for both amplicon and
whole metagenome shotgun sequencing.

PCR amplification of the 16S rRNA gene was performed
in duplicates, followed by the Illumina R© MiSeq protocol
for 16S metagenomic sequencing library preparation
(Illumina 2013) using the 341F/805R primer pair targeting
the V3-V4 regions with the Illumina sequencing adaptors
in 5′ (341F: 5′-CCTACGGGNGGCWGCAG-3′; 805R: 5′-
ACTACHVGGGTATCTAATCC 3′). PCR reactions were
performed in a 20 µL volume, consisting of 0.16 µL Pfx
polymerase (0.02U/µL) (Invitrogen, Thermo Fisher Scientific,
Waltham, MA) 2µL buffer, 3 µL enhancer, 1.2 µL of each primer
(5µM), 1.6 µL dNTPs (2.5 mM), 0.6 µL Mg2S04 (1.5µM), 9.2 µL
PCR grade water and 2 µL DNA template. The PCR program for
amplification was 95◦C for 3 min, followed by five cycles of 94◦C
for 30 s, 55◦C for 30 s, 68◦C for the 30 s, followed by 25 cycles
of 94◦C for 5 s and 68◦C for 30 s. The duplicate amplification
products of each sample were pooled and purified with the SV
Wizard PCR Purification kit (Promega, Madison, WI) following
the manufacturer’s instructions. Amplicon library sequencing

2http://uniatmos.atmosfera.unam.mx/ACDM/
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was done in the Illumina R© MiSeq platform in a 2 × 300
paired-end configuration at the University Unit of Massive
Sequencing and Bioinformatics3 of the Biotechnology Institute,
UNAM, Mexico. Whole shotgun metagenome sequencing
libraries were prepared using the Truseq PCR free library
preparation kit for selected initial soils, ruderal plants, and
S. lycopersicum rhizospheres, which were then sequenced with
an Illumina HiSeq 2000 in a 2 × 100 bp reads, at the facilities of
Macrogen, Korea4.

16S rRNA Gene Amplicon Sequence
Analysis
The 16S rRNA protocol used in this work had been used
previously and is detailed at GitHub5 (Alcaraz et al., 2018).
In summary, gene amplicon libraries were quality inspected
using Fastx Toolkit6 and trimmed to a 250 bp length. Trimmed
paired-end reads were assembled using Pandaseq (Masella et al.,
2012). The assembly was performed using a minimum overlap
of 15 bp, the minimum output length of 250 bp, the maximum
output length of 470 bp, and an alignment threshold of 95%.
Finally, assembled sequences were filtered using a minimum
PHRED score of 20. All the samples were concatenated and
clustered into OTUs, using a 97% identity threshold with cd-
hit-est (Li and Godzik, 2006). The taxonomy of representative
sequences was assigned against Greengenes (De Santis et al.,
2006) database with QIIME’s scripts (Caporaso et al., 2010).
After taxonomic classification, singletons, and chimeras were
removed as well as sequences corresponding to the mitochondria,
chloroplast, and unassigned hits were filtered out. Finally,
the representative OTU sequences were aligned with SSU-
align (Nawrocki et al., 2009), and a phylogenetic tree was
constructed with Fasttree (Price et al., 2009). Detailed statistical
and bioinformatic methods are available at Github (See text
footnote 2).

Metagenomic Shotgun Sequence
Analysis
The quality control of whole shotgun metagenome sequences
was done using Trimmomatic (Bolger et al., 2014), only paired-
end matched reads were used for subsequent analysis. We
filtered out metagenomic reads matching S. lycopersicum genome
(NCBI BioProject: PRJNA66163), while soils and ruderal plants
rhizosphere libraries were filtered against the Oryza sativa
genome (NCBI BioProject: PRJNA122) with Bowtie2 (Langmead
and Salzberg, 2012). Quality and host filtered metagenomic
libraries were used to assemble individual metagenomes with
metaSPADES (Nurk et al., 2017). High-quality reads were
mapped against the metaSPADES contigs, and unmapped reads
were subjected to a second assembly with Velvet (Zerbino and
Birney, 2008). The resulting contigs from both assemblies were
merged and used to predict ORFs and coding proteins with
Prodigal (Hyatt et al., 2010). Annotation of predicted proteins

3http://www.uusmd.unam.mx
4https://www.macrogen.com
5https://genomica-fciencias-unam.github.io/SOP/
6http://hannonlab.cshl.edu/fastx_toolkit/

was made against the M5NR database (Wilke et al., 2012)
using DIAMOND (Buchfink et al., 2015) with the following
parameters -f6 -e 1e-10 -k 10 -p1, retrieving Refseq (Pruitt
et al., 2007) and SEED subsystems (Overbeek et al., 2014)
annotations from M5NR matched identifiers. The abundance
of each predicted protein was calculated by mapping the high-
quality reads against the predicted ORFs with Bowtie2. All the
predicted proteins were clustered using cd-hit (Li and Godzik,
2006) using a 70% identity threshold, and they were parsed into
a biom formatted matrix, used as input for sets comparison
using UpSetR (Conway et al., 2017). The binning of whole
shotgun metagenomic reads was performed with Kaiju (Menzel
et al., 2016). Detailed statistical and bioinformatic methods are
available at Github2.

Diversity Analysis
The α and β-diversity of soils, rhizospheres, and endospheres
from each site were calculated with phyloseq (McMurdie and
Holmes, 2013), and vegan R (Oksanen et al., 2015) packages.
Taxonomic α-diversity was assessed using a weighted Unifrac
(Lozupone et al., 2006) distance matrix. Microbiomes were
then hierarchically clustered with the hclust method using
complete distances and clustering evaluated through the
ANOSIM function. OTUs were clustered at the genus level,
and Venn diagrams were used to compare the complete root
system (rhizosphere + endosphere) microbiome composition
of ruderal plants, S. lycopersicum, and initial soils using a
web Venn diagram calculator7. Unique soil, ruderal plants,
S. lycopersicum, and the ruderal plants-S. lycopersicum
intersection taxonomic profiles were described at the phylum
level based on OTU abundances.

Metabolic α-diversity was estimated through a constrained
analysis of principal coordinates (CAP) analysis using Bray-
Curtis dissimilarity based on the total abundance of predicted
proteins. Differential OTUs and protein abundances comparing
rhizospheres or endosphere against soils were calculated using
DESeq2 (Love et al., 2014) with a Wald statistical test and a
local fit of the data. For 16S rRNA data, OTUs were considered
differentially abundant between groups using a p < 0.01, for
metagenome predicted proteins, a p < 0.001 was used as
a cut-off. Their 16S rRNA matches identified the collected
ruderal plant species to NCBI’s NR database representing a
variety of 5 different plant families, mainly grasses (Poaceae
N = 10, Asteraceae N = 3, Lamiaceae N = 1, Fabaceae
N = 1, and Fagales N = 1; Supplementary Figure S1).
Detailed statistical and bioinformatic methods are available
at Github2.
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